Evaluation of the Hot Air Recirculation Effect and Relevant Empirical Formulae Applicability for Mechanical Draft Wet Cooling Towers

Due to the hot air recirculation, the inlet air enthalpy h1 of mechanical draft wet cooling towers (MCTs) was usually greater than the ambient air enthalpy ha. To realize the cooling performance and accurate design of MCTs, this paper clarified the feasibility of the inlet air enthalpy empirical for...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 13; no. 13; p. 3347
Main Authors Dong, Haotian, Wan, Dawei, Liu, Minghua, Chen, Tiefeng, Gao, Shasha, Zhao, Yuanbin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the hot air recirculation, the inlet air enthalpy h1 of mechanical draft wet cooling towers (MCTs) was usually greater than the ambient air enthalpy ha. To realize the cooling performance and accurate design of MCTs, this paper clarified the feasibility of the inlet air enthalpy empirical formula presented by the Cooling Technology Institute (CTI) of the USA. A three-dimensional (3D) numerical model was established for a representative power plant, with full consideration of MCTs and adjacent main workshops, which were validated by design data and published test results. By numerical simulation, the influence of different wind directions and wind speeds on hot air recirculation (HAR) and the influence of HAR on the cooling performance of the MCTs were qualitatively studied based on the concept of hot air recirculation rate (HRR), and the correction value of HRR was compared with the calculated value of the CTI standard. The evaluation coefficient ηh, representing the ratio of the corrected value to the calculated value was introduced to evaluate the applicability of the CTI formula. It was found that HAR was more sensitive to ambient crosswind, and an increase in HRR would deteriorate the tower cooling performance. When the crosswind speed increased from 0 to 15 m/s, ηh, changed from 2.42 to 80.18, and the calculation error increased accordingly. It can be concluded that the CTI empirical HRR formula should be corrected when there are large buildings around the MCTs, especially under high-speed ambient crosswind conditions.
AbstractList Due to the hot air recirculation, the inlet air enthalpy h1 of mechanical draft wet cooling towers (MCTs) was usually greater than the ambient air enthalpy ha. To realize the cooling performance and accurate design of MCTs, this paper clarified the feasibility of the inlet air enthalpy empirical formula presented by the Cooling Technology Institute (CTI) of the USA. A three-dimensional (3D) numerical model was established for a representative power plant, with full consideration of MCTs and adjacent main workshops, which were validated by design data and published test results. By numerical simulation, the influence of different wind directions and wind speeds on hot air recirculation (HAR) and the influence of HAR on the cooling performance of the MCTs were qualitatively studied based on the concept of hot air recirculation rate (HRR), and the correction value of HRR was compared with the calculated value of the CTI standard. The evaluation coefficient ηh, representing the ratio of the corrected value to the calculated value was introduced to evaluate the applicability of the CTI formula. It was found that HAR was more sensitive to ambient crosswind, and an increase in HRR would deteriorate the tower cooling performance. When the crosswind speed increased from 0 to 15 m/s, ηh, changed from 2.42 to 80.18, and the calculation error increased accordingly. It can be concluded that the CTI empirical HRR formula should be corrected when there are large buildings around the MCTs, especially under high-speed ambient crosswind conditions.
Author Wan, Dawei
Zhao, Yuanbin
Chen, Tiefeng
Gao, Shasha
Liu, Minghua
Dong, Haotian
Author_xml – sequence: 1
  givenname: Haotian
  surname: Dong
  fullname: Dong, Haotian
– sequence: 2
  givenname: Dawei
  surname: Wan
  fullname: Wan, Dawei
– sequence: 3
  givenname: Minghua
  surname: Liu
  fullname: Liu, Minghua
– sequence: 4
  givenname: Tiefeng
  surname: Chen
  fullname: Chen, Tiefeng
– sequence: 5
  givenname: Shasha
  surname: Gao
  fullname: Gao, Shasha
– sequence: 6
  givenname: Yuanbin
  surname: Zhao
  fullname: Zhao, Yuanbin
BookMark eNpNkUFrGzEQhUVJoWmaS3-BoLeC25VGllZH4zpNICUQEnIUs1opkZGlrVZOyb0_vKpd2s5lhvc-3gzMW3KScnKEvGfdJwDdfXaJAQMAoV6RU6a1XLBOwcl_8xtyPs_brhUcyFPyc_OMcY815ESzp_XJ0ctc6SoUeutsKHYfj-bGe2crxTQ2I7pnTJVudlMowWKkF7nsGunoappiU4YQQ32hPhf6zdknTAfqS0Ff6YOrdJ1zDOmR3uUfrszvyGuPcXbnf_oZub_Y3K0vF9c3X6_Wq-uFBcnqQnI7jKikYINeypEJq1jnYGS8F4NQbRRCSDd6zpcMNO-HnqNaDiOg7x0XcEaujrljxq2ZSthheTEZgzkIuTwaLDXY6IwA1F3PufIgBfYtStrRctWrHjwXrGV9OGZNJX_fu7mabd6X1M43zdaaSc1loz4eKVvyPBfn_25lnfn9NPPvafAL6miKIQ
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2022_119645
crossref_primary_10_3390_en14196303
crossref_primary_10_3390_en17092073
Cites_doi 10.1108/02644400810874958
10.1016/j.enconman.2014.12.018
10.1016/j.applthermaleng.2012.01.043
10.1016/0895-7177(89)90135-0
10.3390/en12234560
10.1016/j.applthermaleng.2008.09.011
10.1016/S1359-4311(03)00201-1
10.1080/01457630591003763
10.1016/j.applthermaleng.2005.10.016
10.1016/j.ijthermalsci.2009.07.012
10.1016/j.ijheatmasstransfer.2013.03.075
10.1016/j.applthermaleng.2014.04.021
10.1016/j.apenergy.2015.03.119
10.1016/j.apenergy.2012.06.006
10.1016/0017-9310(72)90076-2
10.1016/j.applthermaleng.2005.06.018
10.1002/er.958
10.1016/S0167-6105(96)00083-9
10.1016/j.proeng.2017.10.073
10.1016/0890-4332(93)90033-R
10.1016/j.ijthermalsci.2006.04.007
10.1016/j.jweia.2017.11.026
10.1016/B978-0-12-803088-2.00005-5
10.1016/j.jweia.2014.11.007
10.1016/B978-0-444-63433-7.50079-1
10.1016/0167-6105(95)00026-7
10.1016/j.ijheatmasstransfer.2004.09.004
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en13133347
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
ProQuest Central China
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_43a908227f364a88b86cdc278783f241
10_3390_en13133347
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
HCIFZ
I-F
IAO
KQ8
L6V
L8X
M7S
MODMG
M~E
OK1
P2P
PATMY
PIMPY
PROAC
PYCSY
RIG
TR2
TUS
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-62cbda7641b956d14c710e3d1284b470e34446edf22513928b82a75bd3af8e243
IEDL.DBID DOA
ISSN 1996-1073
IngestDate Tue Oct 22 15:16:39 EDT 2024
Wed Oct 23 00:43:49 EDT 2024
Thu Aug 22 11:27:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-62cbda7641b956d14c710e3d1284b470e34446edf22513928b82a75bd3af8e243
OpenAccessLink https://doaj.org/article/43a908227f364a88b86cdc278783f241
PQID 2419916926
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_43a908227f364a88b86cdc278783f241
proquest_journals_2419916926
crossref_primary_10_3390_en13133347
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Jones (ref_32) 1972; 15
Behnia (ref_23) 2004; 28
Lu (ref_5) 2013; 63
Kloppers (ref_34) 2003; 23
ref_36
ref_35
Yang (ref_7) 2012; 99
Kloppers (ref_33) 2005; 48
Liu (ref_12) 2009; 29
ref_31
(ref_17) 1995; 58
ref_16
Behnia (ref_24) 2005; 26
ref_38
Chahine (ref_9) 2015; 136
Dandan (ref_30) 2006; 5
ref_37
Ge (ref_15) 2012; 39
Lee (ref_4) 2014; 72
Bender (ref_25) 1996; 64
(ref_8) 1993; 13
Gu (ref_21) 2007; 46
(ref_27) 2010; 49
Lu (ref_10) 2015; 91
Xiong (ref_11) 2017; 205
Becker (ref_6) 1989; 12
ref_20
Zhao (ref_22) 2015; 149
ref_1
ref_3
ref_2
ref_29
ref_28
Zhou (ref_19) 2019; 61
Wang (ref_13) 2008; 25
Ghani (ref_18) 2018; 172
ref_26
Behnia (ref_39) 2006; 26
Zhai (ref_14) 2006; 26
References_xml – ident: ref_28
– volume: 25
  start-page: 342
  year: 2008
  ident: ref_13
  article-title: CFD simulation on a thermal power plant with air-cooled heat exchanger system in north China
  publication-title: Eng. Comput.
  doi: 10.1108/02644400810874958
  contributor:
    fullname: Wang
– volume: 91
  start-page: 238
  year: 2015
  ident: ref_10
  article-title: Experimental study of crosswind effects on the performance of small cylindrical natural draft dry cooling towers
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.12.018
  contributor:
    fullname: Lu
– volume: 39
  start-page: 37
  year: 2012
  ident: ref_15
  article-title: Effects of discharge recirculation in cooling towers on energy efficiency and visible plume potential of chilling plants
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.01.043
  contributor:
    fullname: Ge
– volume: 12
  start-page: 799
  year: 1989
  ident: ref_6
  article-title: A numerical model of cooling tower plume recirculation
  publication-title: Math. Comput. Model.
  doi: 10.1016/0895-7177(89)90135-0
  contributor:
    fullname: Becker
– ident: ref_26
  doi: 10.3390/en12234560
– ident: ref_16
– volume: 29
  start-page: 1927
  year: 2009
  ident: ref_12
  article-title: Numerical investigation of hot air recirculation of air-cooled condensers at a large power plant
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2008.09.011
  contributor:
    fullname: Liu
– volume: 23
  start-page: 2201
  year: 2003
  ident: ref_34
  article-title: Loss coefficient correlation for wet-cooling tower fills
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(03)00201-1
  contributor:
    fullname: Kloppers
– ident: ref_37
– volume: 26
  start-page: 50
  year: 2005
  ident: ref_24
  article-title: The effect of windbreak walls on the thermal performance of natural draft dry cooling towers
  publication-title: Heat Transf. Eng.
  doi: 10.1080/01457630591003763
  contributor:
    fullname: Behnia
– ident: ref_1
– volume: 26
  start-page: 1008
  year: 2006
  ident: ref_14
  article-title: Improving cooling efficiency of dry-cooling towers under cross-wind conditions by using wind- break methods
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2005.10.016
  contributor:
    fullname: Zhai
– ident: ref_35
– volume: 49
  start-page: 218
  year: 2010
  ident: ref_27
  article-title: Crosswinds effect on the performance of natural draft wet cooling towers
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2009.07.012
– volume: 63
  start-page: 162
  year: 2013
  ident: ref_5
  article-title: Windbreak walls reverse the negative effect of crosswind in short natural draft dry cooling towers into a performance enhancement
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.03.075
  contributor:
    fullname: Lu
– volume: 72
  start-page: 10
  year: 2014
  ident: ref_4
  article-title: A numerical simulation on recirculation phenomena of the plume generated by obstacles around a row of cooling towers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.04.021
  contributor:
    fullname: Lee
– volume: 149
  start-page: 225
  year: 2015
  ident: ref_22
  article-title: Numerical study on the cooling performance of natural draft dry cooling tower with vertical delta radiators under constant heat load
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.03.119
  contributor:
    fullname: Zhao
– volume: 5
  start-page: 20
  year: 2006
  ident: ref_30
  article-title: Design program of cooling tower with the influence of circumfluence
  publication-title: Ind. Water Treat.
  contributor:
    fullname: Dandan
– volume: 99
  start-page: 402
  year: 2012
  ident: ref_7
  article-title: Trapezoidal array of air-cooled condensers to restrain the adverse impacts of ambient winds in a power plant
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.06.006
  contributor:
    fullname: Yang
– volume: 15
  start-page: 301
  year: 1972
  ident: ref_32
  article-title: The prediction of laminarization with two-equation model of turbulence
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(72)90076-2
  contributor:
    fullname: Jones
– volume: 26
  start-page: 382
  year: 2006
  ident: ref_39
  article-title: CFD simulation of wet cooling towers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2005.06.018
  contributor:
    fullname: Behnia
– volume: 28
  start-page: 147
  year: 2004
  ident: ref_23
  article-title: The performance of natural draft dry cooling towers under crosswind: CFD study
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.958
  contributor:
    fullname: Behnia
– volume: 64
  start-page: 61
  year: 1996
  ident: ref_25
  article-title: A study on the effects of wind on the air intake flow rate of a cooling tower: Part 2. Wind wall study
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/S0167-6105(96)00083-9
  contributor:
    fullname: Bender
– ident: ref_31
– ident: ref_29
– volume: 205
  start-page: 2003
  year: 2017
  ident: ref_11
  article-title: Numerical Analysis and Optimization Research on Backflow Effect of Cooling Tower
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.10.073
  contributor:
    fullname: Xiong
– volume: 13
  start-page: 139
  year: 1993
  ident: ref_8
  article-title: Effect of wind on performance of a dry-cooling tower
  publication-title: Heat Recovery Syst. CHP
  doi: 10.1016/0890-4332(93)90033-R
– volume: 46
  start-page: 308
  year: 2007
  ident: ref_21
  article-title: Wind tunnel simulation of exhaust recirculation in an air-cooling system at a large power plant
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2006.04.007
  contributor:
    fullname: Gu
– volume: 172
  start-page: 409
  year: 2018
  ident: ref_18
  article-title: Numerical and wind tunnel investigation of Hot Air Recirculation across Liquefied Natural Gas Air Cooled Heat Exchangers
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2017.11.026
  contributor:
    fullname: Ghani
– ident: ref_3
  doi: 10.1016/B978-0-12-803088-2.00005-5
– volume: 136
  start-page: 151
  year: 2015
  ident: ref_9
  article-title: Modeling atmospheric effects on performance and plume dispersal from natural draft wet cooling towers
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2014.11.007
  contributor:
    fullname: Chahine
– ident: ref_38
– ident: ref_36
– ident: ref_2
  doi: 10.1016/B978-0-444-63433-7.50079-1
– volume: 58
  start-page: 293
  year: 1995
  ident: ref_17
  article-title: The effect of the heat exchanger arrangement and wind-break walls on the performance of natural draft dry-cooling towers subjected to cross-winds
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/0167-6105(95)00026-7
– volume: 48
  start-page: 765
  year: 2005
  ident: ref_33
  article-title: A critical investigation into the heat and mass transfer analysis of counterflow wet-cooling towers
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2004.09.004
  contributor:
    fullname: Kloppers
– volume: 61
  start-page: 123
  year: 2019
  ident: ref_19
  article-title: Study on Influence of Ambient Air Upon Heat Transfer Characteristics of a New Air Cooling Unit
  publication-title: Turbine Technol.
  contributor:
    fullname: Zhou
– ident: ref_20
SSID ssj0000331333
Score 2.28917
Snippet Due to the hot air recirculation, the inlet air enthalpy h1 of mechanical draft wet cooling towers (MCTs) was usually greater than the ambient air enthalpy ha....
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 3347
SubjectTerms Air recirculation
ambient wind
Computer simulation
Construction
Cooling
Cooling rate
Cooling Technology Institute
Cooling towers
Crosswinds
Design
Design engineering
Enthalpy
evaluation coefficient
Green buildings
Heat
hot air recirculation rate
Mathematical models
mechanical draft wet cooling towers
Numerical models
Power plants
Wind
Wind speed
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66XvQgPnF1lQG9FrdJ2saT7Ooui6CIKHoreVUWtF1rPXj3hztJs6sgeCtJDmUymfm-POYj5EQrbVhGReR0aSJuWBKdyX4Woesgm1A2s_7d2vVNOnngV0_JU9hwew_XKucx0QdqU2m3R36KmcZBmTOans_eIqca5U5Xg4TGMlmhyBRoh6wMRze3d4tdlj5jSMJYW5eUIb8_tWXsm5yeyq9M5Av2_4nHPsmMN8h6QIcwaKdzkyzZcous_aoZuE2-Rov63FAVgPgNJlUDg2kNCAGntQ56XNDWJQZZGux4sYiYGxi9zqa-JgiMEaviSAuD9gTb35H9BISwcG3da2A_6rKWRQOPtoGLyqn7PMO9V1XbIQ_j0f3FJApSCpFmadxEKdXKyCzlsUJCZGKuEVlYZlx2UjzDT4680JoC5wgxIRVKUJklyjBZCEs52yWdsirtHgEEAP2-jmOlY4Nsx0iFJCNJCpEKIaXlXXI8N2s-aytm5Mg0nPHzH-N3ydBZfDHCVbn2DVX9nIdFk3MmnSI7zQqWcinwp1JtNMUYI1iBDtElvfl85WHpvec_jrL_f_cBWaWOPPu7tz3SaeoPe4gIo1FHwY2-AQBv0MI
  priority: 102
  providerName: ProQuest
Title Evaluation of the Hot Air Recirculation Effect and Relevant Empirical Formulae Applicability for Mechanical Draft Wet Cooling Towers
URI https://www.proquest.com/docview/2419916926
https://doaj.org/article/43a908227f364a88b86cdc278783f241
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA46L3oQf-J0jgd6LVuTtM2OU_cDQRHZcLeSX5WBtmPWg3f_cF_SOgcevHgpJQ20vJfmfR9Jvo-QS620YQkVgfOlCbhhUdCT3STAoYNsQtnE-nNrd_fxeMpvZ9FszerL7Qmr5IGrwHU4k86VmyYZi7kUQolYG01xnAmWUV4Rn25vjUz5OZgxJF-s0iNlyOs7Ng99k_NRWatAXqj_1zzsi8twj-zWqBD61dfskw2bH5CdNa3AQ_I5WOlyQ5EB4jYYFyX050tA6Ddf6tqHCyo9YpC5wQcvFpFyCYPXxdxrgcAQMSr2tNCvVq793tgPQOgKd9adAva9bpYyK-HJlnBdOFefZ5h4N7UjMh0OJtfjoLZQCDSLwzKIqVZGJjEPFRIhE3KNiMIy46qS4gnecuSD1mSYG8SCFMNLZRIpw2QmLOXsmDTyIrcnBLDwd7s6DJUODbIcIxWSiyjKRCyElJY3ycV3WNNFpZSRIsNwwU9_gt8kVy7iqx5O3do3YM7TOufpXzlvktZ3vtL6l3tLsd1h3R6NT__jHWdkmzpq7XfmtkijXL7bc8QfpWqTTTEctcnW1eD-4bHtBx5eR7PwCyVC2gM
link.rule.ids 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELVYDsABsYqyjgTXiMZ2EnNCBVrKUk5FcIu8paoESQnhwJ0PZ-ykBQmJW2T7EI3HM-95mUfIiVbasISKwOnSBNywKDiT7SRA10E2oWxi_bu1wUPcf-S3z9Fzs-H23lyrnMZEH6hNod0e-SlmGgdlzmh8PnkLnGqUO11tJDTmySJnmGjcS_He9WyPpc0YUjBWVyVlyO5PbR76Jqem8isP-XL9f6KxTzG9NbLaYEPo1JO5TuZsvkFWflUM3CRf3Vl1bigyQPQG_aKCzrgEBIDjUjdqXFBXJQaZG-x4sYiXK-i-Tsa-Igj0EKniSAud-vza35D9BASwMLDuLbAfdVXKrIInW8Fl4bR9RjD0mmpb5LHXHV72g0ZIIdBolSqIqVZGJjEPFdIhE3KNuMIy43KT4gl-cmSF1mQ4Q4gIqVCCyiRShslMWMrZNlnIi9zuEMD0327rMFQ6NMh1jFRIMaIoE7EQUlreIsdTs6aTul5GijzDGT_9MX6LXDiLz0a4Gte-oShHabNkUs6k02OnScZiLgX-VKyNphhhBMvQHVpkfzpfabPw3tMfN9n9v_uILPWHg_v0_ubhbo8sU0ej_S3cfbJQlR_2ALFGpQ69Q30DbB7STQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7aDZT2UJo-6KZ5DDRXs2tJtpVT2SS7bNpmCSGhuRm9HBZae-O4h977wzOStZtAoTcj6WCk0cz3SaP5AA6NNpYXTCZelyYRlmfJkRoXCZkOsQntChferZ0v8vm1-HqT3cT8p_uYVrn2icFR28b4M_IRRRoPZY5YPqpiWsTF6ezL6i7xClL-pjXKaTyHrUKQVQ1g63i6uLjcnLiMOSdCxvsapZy4_sjVaWjy2ipPolIo3v-Pbw4BZ_YGXkekiJN-abfhmavfwqsn9QPfwd_pplY3NhUSlsN50-Fk2SLBwWVrojYX9jWKUdWWOn46Qs8dTn-tlqE-CM4It9JIh5P-Njvky_5BgrN47vzL4DDqtFVVhz9chyeNV_q5xaugsPYermfTq5N5EmUVEsPztEtyZrRVRS5STeTIpsIQynDc-kilRUGfgjiisxWtF-FDJrVkqsi05aqSjgn-AQZ1U7uPgAQGxmOTptqklpiPVZoIR5ZVMpdSKSeG8Hk9reWqr55REuvwk18-Tv4Qjv2Mb0b4itehoWlvy7iBSsGVV2dnRcVzoST9VG6sYeRvJK_IOIawu16vMm7D-_LRaHb-330AL8iayu9ni2-f4CXznDqk5O7CoGt_uz0CHp3ejxb1ANJs1_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+Hot+Air+Recirculation+Effect+and+Relevant+Empirical+Formulae+Applicability+for+Mechanical+Draft+Wet+Cooling+Towers&rft.jtitle=Energies+%28Basel%29&rft.au=Haotian+Dong&rft.au=Dawei+Wan&rft.au=Minghua+Liu&rft.au=Tiefeng+Chen&rft.date=2020-07-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=13&rft.issue=13&rft.spage=3347&rft_id=info:doi/10.3390%2Fen13133347&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_43a908227f364a88b86cdc278783f241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon