Evaluation of the Hot Air Recirculation Effect and Relevant Empirical Formulae Applicability for Mechanical Draft Wet Cooling Towers
Due to the hot air recirculation, the inlet air enthalpy h1 of mechanical draft wet cooling towers (MCTs) was usually greater than the ambient air enthalpy ha. To realize the cooling performance and accurate design of MCTs, this paper clarified the feasibility of the inlet air enthalpy empirical for...
Saved in:
Published in | Energies (Basel) Vol. 13; no. 13; p. 3347 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the hot air recirculation, the inlet air enthalpy h1 of mechanical draft wet cooling towers (MCTs) was usually greater than the ambient air enthalpy ha. To realize the cooling performance and accurate design of MCTs, this paper clarified the feasibility of the inlet air enthalpy empirical formula presented by the Cooling Technology Institute (CTI) of the USA. A three-dimensional (3D) numerical model was established for a representative power plant, with full consideration of MCTs and adjacent main workshops, which were validated by design data and published test results. By numerical simulation, the influence of different wind directions and wind speeds on hot air recirculation (HAR) and the influence of HAR on the cooling performance of the MCTs were qualitatively studied based on the concept of hot air recirculation rate (HRR), and the correction value of HRR was compared with the calculated value of the CTI standard. The evaluation coefficient ηh, representing the ratio of the corrected value to the calculated value was introduced to evaluate the applicability of the CTI formula. It was found that HAR was more sensitive to ambient crosswind, and an increase in HRR would deteriorate the tower cooling performance. When the crosswind speed increased from 0 to 15 m/s, ηh, changed from 2.42 to 80.18, and the calculation error increased accordingly. It can be concluded that the CTI empirical HRR formula should be corrected when there are large buildings around the MCTs, especially under high-speed ambient crosswind conditions. |
---|---|
AbstractList | Due to the hot air recirculation, the inlet air enthalpy h1 of mechanical draft wet cooling towers (MCTs) was usually greater than the ambient air enthalpy ha. To realize the cooling performance and accurate design of MCTs, this paper clarified the feasibility of the inlet air enthalpy empirical formula presented by the Cooling Technology Institute (CTI) of the USA. A three-dimensional (3D) numerical model was established for a representative power plant, with full consideration of MCTs and adjacent main workshops, which were validated by design data and published test results. By numerical simulation, the influence of different wind directions and wind speeds on hot air recirculation (HAR) and the influence of HAR on the cooling performance of the MCTs were qualitatively studied based on the concept of hot air recirculation rate (HRR), and the correction value of HRR was compared with the calculated value of the CTI standard. The evaluation coefficient ηh, representing the ratio of the corrected value to the calculated value was introduced to evaluate the applicability of the CTI formula. It was found that HAR was more sensitive to ambient crosswind, and an increase in HRR would deteriorate the tower cooling performance. When the crosswind speed increased from 0 to 15 m/s, ηh, changed from 2.42 to 80.18, and the calculation error increased accordingly. It can be concluded that the CTI empirical HRR formula should be corrected when there are large buildings around the MCTs, especially under high-speed ambient crosswind conditions. |
Author | Wan, Dawei Zhao, Yuanbin Chen, Tiefeng Gao, Shasha Liu, Minghua Dong, Haotian |
Author_xml | – sequence: 1 givenname: Haotian surname: Dong fullname: Dong, Haotian – sequence: 2 givenname: Dawei surname: Wan fullname: Wan, Dawei – sequence: 3 givenname: Minghua surname: Liu fullname: Liu, Minghua – sequence: 4 givenname: Tiefeng surname: Chen fullname: Chen, Tiefeng – sequence: 5 givenname: Shasha surname: Gao fullname: Gao, Shasha – sequence: 6 givenname: Yuanbin surname: Zhao fullname: Zhao, Yuanbin |
BookMark | eNpNkUFrGzEQhUVJoWmaS3-BoLeC25VGllZH4zpNICUQEnIUs1opkZGlrVZOyb0_vKpd2s5lhvc-3gzMW3KScnKEvGfdJwDdfXaJAQMAoV6RU6a1XLBOwcl_8xtyPs_brhUcyFPyc_OMcY815ESzp_XJ0ctc6SoUeutsKHYfj-bGe2crxTQ2I7pnTJVudlMowWKkF7nsGunoappiU4YQQ32hPhf6zdknTAfqS0Ff6YOrdJ1zDOmR3uUfrszvyGuPcXbnf_oZub_Y3K0vF9c3X6_Wq-uFBcnqQnI7jKikYINeypEJq1jnYGS8F4NQbRRCSDd6zpcMNO-HnqNaDiOg7x0XcEaujrljxq2ZSthheTEZgzkIuTwaLDXY6IwA1F3PufIgBfYtStrRctWrHjwXrGV9OGZNJX_fu7mabd6X1M43zdaaSc1loz4eKVvyPBfn_25lnfn9NPPvafAL6miKIQ |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2022_119645 crossref_primary_10_3390_en14196303 crossref_primary_10_3390_en17092073 |
Cites_doi | 10.1108/02644400810874958 10.1016/j.enconman.2014.12.018 10.1016/j.applthermaleng.2012.01.043 10.1016/0895-7177(89)90135-0 10.3390/en12234560 10.1016/j.applthermaleng.2008.09.011 10.1016/S1359-4311(03)00201-1 10.1080/01457630591003763 10.1016/j.applthermaleng.2005.10.016 10.1016/j.ijthermalsci.2009.07.012 10.1016/j.ijheatmasstransfer.2013.03.075 10.1016/j.applthermaleng.2014.04.021 10.1016/j.apenergy.2015.03.119 10.1016/j.apenergy.2012.06.006 10.1016/0017-9310(72)90076-2 10.1016/j.applthermaleng.2005.06.018 10.1002/er.958 10.1016/S0167-6105(96)00083-9 10.1016/j.proeng.2017.10.073 10.1016/0890-4332(93)90033-R 10.1016/j.ijthermalsci.2006.04.007 10.1016/j.jweia.2017.11.026 10.1016/B978-0-12-803088-2.00005-5 10.1016/j.jweia.2014.11.007 10.1016/B978-0-444-63433-7.50079-1 10.1016/0167-6105(95)00026-7 10.1016/j.ijheatmasstransfer.2004.09.004 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en13133347 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic ProQuest Central China |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_43a908227f364a88b86cdc278783f241 10_3390_en13133347 |
GroupedDBID | 29G 2WC 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 HCIFZ I-F IAO KQ8 L6V L8X M7S MODMG M~E OK1 P2P PATMY PIMPY PROAC PYCSY RIG TR2 TUS ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c361t-62cbda7641b956d14c710e3d1284b470e34446edf22513928b82a75bd3af8e243 |
IEDL.DBID | DOA |
ISSN | 1996-1073 |
IngestDate | Tue Oct 22 15:16:39 EDT 2024 Wed Oct 23 00:43:49 EDT 2024 Thu Aug 22 11:27:03 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-62cbda7641b956d14c710e3d1284b470e34446edf22513928b82a75bd3af8e243 |
OpenAccessLink | https://doaj.org/article/43a908227f364a88b86cdc278783f241 |
PQID | 2419916926 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_43a908227f364a88b86cdc278783f241 proquest_journals_2419916926 crossref_primary_10_3390_en13133347 |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Jones (ref_32) 1972; 15 Behnia (ref_23) 2004; 28 Lu (ref_5) 2013; 63 Kloppers (ref_34) 2003; 23 ref_36 ref_35 Yang (ref_7) 2012; 99 Kloppers (ref_33) 2005; 48 Liu (ref_12) 2009; 29 ref_31 (ref_17) 1995; 58 ref_16 Behnia (ref_24) 2005; 26 ref_38 Chahine (ref_9) 2015; 136 Dandan (ref_30) 2006; 5 ref_37 Ge (ref_15) 2012; 39 Lee (ref_4) 2014; 72 Bender (ref_25) 1996; 64 (ref_8) 1993; 13 Gu (ref_21) 2007; 46 (ref_27) 2010; 49 Lu (ref_10) 2015; 91 Xiong (ref_11) 2017; 205 Becker (ref_6) 1989; 12 ref_20 Zhao (ref_22) 2015; 149 ref_1 ref_3 ref_2 ref_29 ref_28 Zhou (ref_19) 2019; 61 Wang (ref_13) 2008; 25 Ghani (ref_18) 2018; 172 ref_26 Behnia (ref_39) 2006; 26 Zhai (ref_14) 2006; 26 |
References_xml | – ident: ref_28 – volume: 25 start-page: 342 year: 2008 ident: ref_13 article-title: CFD simulation on a thermal power plant with air-cooled heat exchanger system in north China publication-title: Eng. Comput. doi: 10.1108/02644400810874958 contributor: fullname: Wang – volume: 91 start-page: 238 year: 2015 ident: ref_10 article-title: Experimental study of crosswind effects on the performance of small cylindrical natural draft dry cooling towers publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.12.018 contributor: fullname: Lu – volume: 39 start-page: 37 year: 2012 ident: ref_15 article-title: Effects of discharge recirculation in cooling towers on energy efficiency and visible plume potential of chilling plants publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.01.043 contributor: fullname: Ge – volume: 12 start-page: 799 year: 1989 ident: ref_6 article-title: A numerical model of cooling tower plume recirculation publication-title: Math. Comput. Model. doi: 10.1016/0895-7177(89)90135-0 contributor: fullname: Becker – ident: ref_26 doi: 10.3390/en12234560 – ident: ref_16 – volume: 29 start-page: 1927 year: 2009 ident: ref_12 article-title: Numerical investigation of hot air recirculation of air-cooled condensers at a large power plant publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2008.09.011 contributor: fullname: Liu – volume: 23 start-page: 2201 year: 2003 ident: ref_34 article-title: Loss coefficient correlation for wet-cooling tower fills publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(03)00201-1 contributor: fullname: Kloppers – ident: ref_37 – volume: 26 start-page: 50 year: 2005 ident: ref_24 article-title: The effect of windbreak walls on the thermal performance of natural draft dry cooling towers publication-title: Heat Transf. Eng. doi: 10.1080/01457630591003763 contributor: fullname: Behnia – ident: ref_1 – volume: 26 start-page: 1008 year: 2006 ident: ref_14 article-title: Improving cooling efficiency of dry-cooling towers under cross-wind conditions by using wind- break methods publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2005.10.016 contributor: fullname: Zhai – ident: ref_35 – volume: 49 start-page: 218 year: 2010 ident: ref_27 article-title: Crosswinds effect on the performance of natural draft wet cooling towers publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2009.07.012 – volume: 63 start-page: 162 year: 2013 ident: ref_5 article-title: Windbreak walls reverse the negative effect of crosswind in short natural draft dry cooling towers into a performance enhancement publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.03.075 contributor: fullname: Lu – volume: 72 start-page: 10 year: 2014 ident: ref_4 article-title: A numerical simulation on recirculation phenomena of the plume generated by obstacles around a row of cooling towers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.04.021 contributor: fullname: Lee – volume: 149 start-page: 225 year: 2015 ident: ref_22 article-title: Numerical study on the cooling performance of natural draft dry cooling tower with vertical delta radiators under constant heat load publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.03.119 contributor: fullname: Zhao – volume: 5 start-page: 20 year: 2006 ident: ref_30 article-title: Design program of cooling tower with the influence of circumfluence publication-title: Ind. Water Treat. contributor: fullname: Dandan – volume: 99 start-page: 402 year: 2012 ident: ref_7 article-title: Trapezoidal array of air-cooled condensers to restrain the adverse impacts of ambient winds in a power plant publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.06.006 contributor: fullname: Yang – volume: 15 start-page: 301 year: 1972 ident: ref_32 article-title: The prediction of laminarization with two-equation model of turbulence publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(72)90076-2 contributor: fullname: Jones – volume: 26 start-page: 382 year: 2006 ident: ref_39 article-title: CFD simulation of wet cooling towers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2005.06.018 contributor: fullname: Behnia – volume: 28 start-page: 147 year: 2004 ident: ref_23 article-title: The performance of natural draft dry cooling towers under crosswind: CFD study publication-title: Int. J. Energy Res. doi: 10.1002/er.958 contributor: fullname: Behnia – volume: 64 start-page: 61 year: 1996 ident: ref_25 article-title: A study on the effects of wind on the air intake flow rate of a cooling tower: Part 2. Wind wall study publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/S0167-6105(96)00083-9 contributor: fullname: Bender – ident: ref_31 – ident: ref_29 – volume: 205 start-page: 2003 year: 2017 ident: ref_11 article-title: Numerical Analysis and Optimization Research on Backflow Effect of Cooling Tower publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.10.073 contributor: fullname: Xiong – volume: 13 start-page: 139 year: 1993 ident: ref_8 article-title: Effect of wind on performance of a dry-cooling tower publication-title: Heat Recovery Syst. CHP doi: 10.1016/0890-4332(93)90033-R – volume: 46 start-page: 308 year: 2007 ident: ref_21 article-title: Wind tunnel simulation of exhaust recirculation in an air-cooling system at a large power plant publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2006.04.007 contributor: fullname: Gu – volume: 172 start-page: 409 year: 2018 ident: ref_18 article-title: Numerical and wind tunnel investigation of Hot Air Recirculation across Liquefied Natural Gas Air Cooled Heat Exchangers publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2017.11.026 contributor: fullname: Ghani – ident: ref_3 doi: 10.1016/B978-0-12-803088-2.00005-5 – volume: 136 start-page: 151 year: 2015 ident: ref_9 article-title: Modeling atmospheric effects on performance and plume dispersal from natural draft wet cooling towers publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2014.11.007 contributor: fullname: Chahine – ident: ref_38 – ident: ref_36 – ident: ref_2 doi: 10.1016/B978-0-444-63433-7.50079-1 – volume: 58 start-page: 293 year: 1995 ident: ref_17 article-title: The effect of the heat exchanger arrangement and wind-break walls on the performance of natural draft dry-cooling towers subjected to cross-winds publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/0167-6105(95)00026-7 – volume: 48 start-page: 765 year: 2005 ident: ref_33 article-title: A critical investigation into the heat and mass transfer analysis of counterflow wet-cooling towers publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2004.09.004 contributor: fullname: Kloppers – volume: 61 start-page: 123 year: 2019 ident: ref_19 article-title: Study on Influence of Ambient Air Upon Heat Transfer Characteristics of a New Air Cooling Unit publication-title: Turbine Technol. contributor: fullname: Zhou – ident: ref_20 |
SSID | ssj0000331333 |
Score | 2.28917 |
Snippet | Due to the hot air recirculation, the inlet air enthalpy h1 of mechanical draft wet cooling towers (MCTs) was usually greater than the ambient air enthalpy ha.... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 3347 |
SubjectTerms | Air recirculation ambient wind Computer simulation Construction Cooling Cooling rate Cooling Technology Institute Cooling towers Crosswinds Design Design engineering Enthalpy evaluation coefficient Green buildings Heat hot air recirculation rate Mathematical models mechanical draft wet cooling towers Numerical models Power plants Wind Wind speed |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66XvQgPnF1lQG9FrdJ2saT7Ooui6CIKHoreVUWtF1rPXj3hztJs6sgeCtJDmUymfm-POYj5EQrbVhGReR0aSJuWBKdyX4Woesgm1A2s_7d2vVNOnngV0_JU9hwew_XKucx0QdqU2m3R36KmcZBmTOans_eIqca5U5Xg4TGMlmhyBRoh6wMRze3d4tdlj5jSMJYW5eUIb8_tWXsm5yeyq9M5Av2_4nHPsmMN8h6QIcwaKdzkyzZcous_aoZuE2-Rov63FAVgPgNJlUDg2kNCAGntQ56XNDWJQZZGux4sYiYGxi9zqa-JgiMEaviSAuD9gTb35H9BISwcG3da2A_6rKWRQOPtoGLyqn7PMO9V1XbIQ_j0f3FJApSCpFmadxEKdXKyCzlsUJCZGKuEVlYZlx2UjzDT4680JoC5wgxIRVKUJklyjBZCEs52yWdsirtHgEEAP2-jmOlY4Nsx0iFJCNJCpEKIaXlXXI8N2s-aytm5Mg0nPHzH-N3ydBZfDHCVbn2DVX9nIdFk3MmnSI7zQqWcinwp1JtNMUYI1iBDtElvfl85WHpvec_jrL_f_cBWaWOPPu7tz3SaeoPe4gIo1FHwY2-AQBv0MI priority: 102 providerName: ProQuest |
Title | Evaluation of the Hot Air Recirculation Effect and Relevant Empirical Formulae Applicability for Mechanical Draft Wet Cooling Towers |
URI | https://www.proquest.com/docview/2419916926 https://doaj.org/article/43a908227f364a88b86cdc278783f241 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA46L3oQf-J0jgd6LVuTtM2OU_cDQRHZcLeSX5WBtmPWg3f_cF_SOgcevHgpJQ20vJfmfR9Jvo-QS620YQkVgfOlCbhhUdCT3STAoYNsQtnE-nNrd_fxeMpvZ9FszerL7Qmr5IGrwHU4k86VmyYZi7kUQolYG01xnAmWUV4Rn25vjUz5OZgxJF-s0iNlyOs7Ng99k_NRWatAXqj_1zzsi8twj-zWqBD61dfskw2bH5CdNa3AQ_I5WOlyQ5EB4jYYFyX050tA6Ddf6tqHCyo9YpC5wQcvFpFyCYPXxdxrgcAQMSr2tNCvVq793tgPQOgKd9adAva9bpYyK-HJlnBdOFefZ5h4N7UjMh0OJtfjoLZQCDSLwzKIqVZGJjEPFRIhE3KNiMIy46qS4gnecuSD1mSYG8SCFMNLZRIpw2QmLOXsmDTyIrcnBLDwd7s6DJUODbIcIxWSiyjKRCyElJY3ycV3WNNFpZSRIsNwwU9_gt8kVy7iqx5O3do3YM7TOufpXzlvktZ3vtL6l3tLsd1h3R6NT__jHWdkmzpq7XfmtkijXL7bc8QfpWqTTTEctcnW1eD-4bHtBx5eR7PwCyVC2gM |
link.rule.ids | 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELVYDsABsYqyjgTXiMZ2EnNCBVrKUk5FcIu8paoESQnhwJ0PZ-ykBQmJW2T7EI3HM-95mUfIiVbasISKwOnSBNywKDiT7SRA10E2oWxi_bu1wUPcf-S3z9Fzs-H23lyrnMZEH6hNod0e-SlmGgdlzmh8PnkLnGqUO11tJDTmySJnmGjcS_He9WyPpc0YUjBWVyVlyO5PbR76Jqem8isP-XL9f6KxTzG9NbLaYEPo1JO5TuZsvkFWflUM3CRf3Vl1bigyQPQG_aKCzrgEBIDjUjdqXFBXJQaZG-x4sYiXK-i-Tsa-Igj0EKniSAud-vza35D9BASwMLDuLbAfdVXKrIInW8Fl4bR9RjD0mmpb5LHXHV72g0ZIIdBolSqIqVZGJjEPFdIhE3KNuMIy43KT4gl-cmSF1mQ4Q4gIqVCCyiRShslMWMrZNlnIi9zuEMD0327rMFQ6NMh1jFRIMaIoE7EQUlreIsdTs6aTul5GijzDGT_9MX6LXDiLz0a4Gte-oShHabNkUs6k02OnScZiLgX-VKyNphhhBMvQHVpkfzpfabPw3tMfN9n9v_uILPWHg_v0_ubhbo8sU0ej_S3cfbJQlR_2ALFGpQ69Q30DbB7STQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7aDZT2UJo-6KZ5DDRXs2tJtpVT2SS7bNpmCSGhuRm9HBZae-O4h977wzOStZtAoTcj6WCk0cz3SaP5AA6NNpYXTCZelyYRlmfJkRoXCZkOsQntChferZ0v8vm1-HqT3cT8p_uYVrn2icFR28b4M_IRRRoPZY5YPqpiWsTF6ezL6i7xClL-pjXKaTyHrUKQVQ1g63i6uLjcnLiMOSdCxvsapZy4_sjVaWjy2ipPolIo3v-Pbw4BZ_YGXkekiJN-abfhmavfwqsn9QPfwd_pplY3NhUSlsN50-Fk2SLBwWVrojYX9jWKUdWWOn46Qs8dTn-tlqE-CM4It9JIh5P-Njvky_5BgrN47vzL4DDqtFVVhz9chyeNV_q5xaugsPYermfTq5N5EmUVEsPztEtyZrRVRS5STeTIpsIQynDc-kilRUGfgjiisxWtF-FDJrVkqsi05aqSjgn-AQZ1U7uPgAQGxmOTptqklpiPVZoIR5ZVMpdSKSeG8Hk9reWqr55REuvwk18-Tv4Qjv2Mb0b4itehoWlvy7iBSsGVV2dnRcVzoST9VG6sYeRvJK_IOIawu16vMm7D-_LRaHb-330AL8iayu9ni2-f4CXznDqk5O7CoGt_uz0CHp3ejxb1ANJs1_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+Hot+Air+Recirculation+Effect+and+Relevant+Empirical+Formulae+Applicability+for+Mechanical+Draft+Wet+Cooling+Towers&rft.jtitle=Energies+%28Basel%29&rft.au=Haotian+Dong&rft.au=Dawei+Wan&rft.au=Minghua+Liu&rft.au=Tiefeng+Chen&rft.date=2020-07-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=13&rft.issue=13&rft.spage=3347&rft_id=info:doi/10.3390%2Fen13133347&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_43a908227f364a88b86cdc278783f241 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |