A Method of Vision Aided GNSS Positioning Using Semantic Information in Complex Urban Environment
High-precision localization through multi-sensor fusion has become a popular research direction in unmanned driving. However, most previous studies have performed optimally only in open-sky conditions; therefore, high-precision localization in complex urban environments required an urgent solution....
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 4; p. 869 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-precision localization through multi-sensor fusion has become a popular research direction in unmanned driving. However, most previous studies have performed optimally only in open-sky conditions; therefore, high-precision localization in complex urban environments required an urgent solution. The complex urban environments employed in this study include dynamic environments, which result in limited visual localization performance, and highly occluded environments, which yield limited global navigation satellite system (GNSS) performance. In order to provide high-precision localization in these environments, we propose a vision-aided GNSS positioning method using semantic information by integrating stereo cameras and GNSS into a loosely coupled navigation system. To suppress the effect of dynamic objects on visual positioning accuracy, we propose a dynamic-simultaneous localization and mapping (Dynamic-SLAM) algorithm to extract semantic information from images using a deep learning framework. For the GPS-challenged environment, we propose a semantic-based dynamic adaptive Kalman filtering fusion (S-AKF) algorithm to develop vision aided GNSS and achieve stable and high-precision positioning. Experiments were carried out in GNSS-challenged environments using the open-source KITTI dataset to evaluate the performance of the proposed algorithm. The results indicate that the dynamic-SLAM algorithm improved the performance of the visual localization algorithm and effectively suppressed the error spread of the visual localization algorithm. Additionally, after vision was integrated, the loosely-coupled navigation system achieved continuous high-accuracy positioning in GNSS-challenged environments. |
---|---|
AbstractList | High-precision localization through multi-sensor fusion has become a popular research direction in unmanned driving. However, most previous studies have performed optimally only in open-sky conditions; therefore, high-precision localization in complex urban environments required an urgent solution. The complex urban environments employed in this study include dynamic environments, which result in limited visual localization performance, and highly occluded environments, which yield limited global navigation satellite system (GNSS) performance. In order to provide high-precision localization in these environments, we propose a vision-aided GNSS positioning method using semantic information by integrating stereo cameras and GNSS into a loosely coupled navigation system. To suppress the effect of dynamic objects on visual positioning accuracy, we propose a dynamic-simultaneous localization and mapping (Dynamic-SLAM) algorithm to extract semantic information from images using a deep learning framework. For the GPS-challenged environment, we propose a semantic-based dynamic adaptive Kalman filtering fusion (S-AKF) algorithm to develop vision aided GNSS and achieve stable and high-precision positioning. Experiments were carried out in GNSS-challenged environments using the open-source KITTI dataset to evaluate the performance of the proposed algorithm. The results indicate that the dynamic-SLAM algorithm improved the performance of the visual localization algorithm and effectively suppressed the error spread of the visual localization algorithm. Additionally, after vision was integrated, the loosely-coupled navigation system achieved continuous high-accuracy positioning in GNSS-challenged environments. |
Author | Yuan, Yunbin Zhai, Rui |
Author_xml | – sequence: 1 givenname: Rui orcidid: 0000-0002-2936-0718 surname: Zhai fullname: Zhai, Rui – sequence: 2 givenname: Yunbin surname: Yuan fullname: Yuan, Yunbin |
BookMark | eNpNUU1LAzEQDaJgrb34CwLehGq-NukeS6m1UD-g1mtIdpOa0k1qshX992atqHOYGd7MvHnMnIFjH7wB4AKja0pLdBMTZoihES-PQI8gQYaMlOT4X34KBiltUDZKcYlYD6gxvDfta6hhsPDFJRc8HLva1HD2sFzCp5BcmzHn13CVOr80jfKtq-Dc2xAb1VWh83ASmt3WfMBV1MrDqX93MfjG-PYcnFi1TWbwE_tgdTt9ntwNF4-z-WS8GFaU43ZYVBxThpRhxFZMCSOQrTUzTBCibak5RbiknCplsnDBNcF4pGtFi0JrxjDtg_mBtw5qI3fRNSp-yqCc_AZCXEsVs_CtkazqRoS2hBRMoEwobCWEJYYgzk2ZuS4PXLsY3vYmtXIT9tFn-ZJwmm_HcFHkrqtDVxVDStHY360Yye4j8u8j9AvsHn29 |
CitedBy_id | crossref_primary_10_1109_JSEN_2023_3301039 crossref_primary_10_1109_ACCESS_2023_3262506 crossref_primary_10_3390_rs15010154 crossref_primary_10_1109_LGRS_2023_3308891 crossref_primary_10_3390_rs14163983 crossref_primary_10_3390_rs15092430 crossref_primary_10_3390_rs14184467 crossref_primary_10_3390_rs14133010 |
Cites_doi | 10.1109/TRO.2017.2705103 10.1109/TRO.2015.2463671 10.3390/rs10020205 10.1109/ICRA.2012.6225002 10.1109/IROS45743.2020.9341697 10.3390/rs11060610 10.1179/1752270614Y.0000000099 10.1109/34.993559 10.1109/ISMAR.2007.4538852 10.1109/ICRA.2014.6906953 10.1109/PLANS.2014.6851506 10.1007/s10291-017-0667-9 10.3390/s151026212 10.1007/s00190-017-1029-7 10.1109/TPAMI.2007.1049 10.3390/s120303162 10.1109/ICRA40945.2020.9197029 10.3390/s17081889 10.1109/IROS.2013.6696917 10.1016/j.jenvrad.2015.02.004 10.1016/j.actaastro.2015.12.014 10.3390/s130810599 10.1109/InertialSensors.2014.7049479 10.1109/ICRA.2018.8460193 10.1016/j.ast.2018.07.026 10.1186/s43020-020-00033-9 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs14040869 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_4cbb447bf225470e907fc77f2e2066e9 10_3390_rs14040869 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c361t-5c61340ae42fc4a7e70fdb4e4722bf9b63019363aae90476b2118bda355bb4413 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:10:43 EDT 2024 Thu Oct 10 20:07:29 EDT 2024 Thu Sep 26 20:59:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-5c61340ae42fc4a7e70fdb4e4722bf9b63019363aae90476b2118bda355bb4413 |
ORCID | 0000-0002-2936-0718 |
OpenAccessLink | https://doaj.org/article/4cbb447bf225470e907fc77f2e2066e9 |
PQID | 2633314155 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4cbb447bf225470e907fc77f2e2066e9 proquest_journals_2633314155 crossref_primary_10_3390_rs14040869 |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Chiang (ref_9) 2013; 13 Hsu (ref_6) 2018; 22 Martin (ref_1) 2015; 143 ref_14 Levinson (ref_32) 2008; 3 Gao (ref_8) 2017; 91 ref_12 ref_31 Tardos (ref_33) 2017; 33 ref_19 Zhang (ref_10) 2018; 80 Chu (ref_29) 2012; 12 Levinson (ref_3) 2011; Volume 108 Davison (ref_15) 2007; 29 Eling (ref_13) 2015; 15 Montiel (ref_17) 2015; 31 ref_25 ref_24 ref_23 ref_22 Meng (ref_11) 2016; 120 Chiuso (ref_16) 2002; 24 ref_21 ref_20 ref_2 ref_28 Mouragnon (ref_18) 2006; 1 ref_26 Li (ref_30) 2021; 2 ref_5 ref_4 Niu (ref_7) 2015; 47 Bloesch (ref_27) 2015; Volume 2015 |
References_xml | – ident: ref_28 – volume: 33 start-page: 1255 year: 2017 ident: ref_33 article-title: ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2017.2705103 contributor: fullname: Tardos – volume: Volume 2015 start-page: 298 year: 2015 ident: ref_27 article-title: Robust visual inertial odometry using a direct EKF-based approach publication-title: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October 2015 contributor: fullname: Bloesch – volume: 31 start-page: 1147 year: 2015 ident: ref_17 article-title: ORB-SLAM: A versatile and accurate monocular SLAM system publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2015.2463671 contributor: fullname: Montiel – ident: ref_14 doi: 10.3390/rs10020205 – ident: ref_25 doi: 10.1109/ICRA.2012.6225002 – ident: ref_22 doi: 10.1109/IROS45743.2020.9341697 – ident: ref_5 doi: 10.3390/rs11060610 – volume: 47 start-page: 87 year: 2015 ident: ref_7 article-title: Development and evaluation of gnss/ins data processing software for position and orientation systems publication-title: Surv. Rev. doi: 10.1179/1752270614Y.0000000099 contributor: fullname: Niu – volume: 24 start-page: 523 year: 2002 ident: ref_16 article-title: Structure from motion causally integrated over time publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.993559 contributor: fullname: Chiuso – ident: ref_19 doi: 10.1109/ISMAR.2007.4538852 – ident: ref_23 – ident: ref_20 doi: 10.1109/ICRA.2014.6906953 – ident: ref_31 doi: 10.1109/PLANS.2014.6851506 – volume: Volume 108 start-page: 163 year: 2011 ident: ref_3 article-title: Towards fully autonomous driving: Systems and algorithms publication-title: Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011 contributor: fullname: Levinson – volume: 22 start-page: 1 year: 2018 ident: ref_6 article-title: Analysis and modeling GPS NLOS effect in highly urbanized area publication-title: GPS Solut. doi: 10.1007/s10291-017-0667-9 contributor: fullname: Hsu – volume: 15 start-page: 26212 year: 2015 ident: ref_13 article-title: Real-time single-frequency GPS/MEMS-IMU attitude determination of lightweight UAVs publication-title: Sensors doi: 10.3390/s151026212 contributor: fullname: Eling – volume: 91 start-page: 1351 year: 2017 ident: ref_8 article-title: Ionospheric and receiver DCB-constrained multi-GNSS single-frequency PPP integrated with MEMS inertial measurements publication-title: J. Geod. doi: 10.1007/s00190-017-1029-7 contributor: fullname: Gao – volume: 1 start-page: 363 year: 2006 ident: ref_18 article-title: Real time localization and 3D reconstruction publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. contributor: fullname: Mouragnon – volume: 29 start-page: 1052 year: 2007 ident: ref_15 article-title: MonoSLAM: Real-time single camera SLAM publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1049 contributor: fullname: Davison – ident: ref_12 – volume: 12 start-page: 3162 year: 2012 ident: ref_29 article-title: Monocular camera/IMU/GNSS integration for ground vehicle navigation in challenging GNSS environments publication-title: Sensors doi: 10.3390/s120303162 contributor: fullname: Chu – volume: 3 start-page: 121 year: 2008 ident: ref_32 article-title: Map-based precision vehicle localization in urban environments publication-title: Robot. Sci. Syst. contributor: fullname: Levinson – ident: ref_21 doi: 10.1109/ICRA40945.2020.9197029 – ident: ref_2 doi: 10.3390/s17081889 – ident: ref_26 doi: 10.1109/IROS.2013.6696917 – volume: 143 start-page: 135 year: 2015 ident: ref_1 article-title: The use of unmanned aerial systems for the mapping of legacy uranium mines publication-title: J. Environ. Radioact. doi: 10.1016/j.jenvrad.2015.02.004 contributor: fullname: Martin – volume: 120 start-page: 171 year: 2016 ident: ref_11 article-title: Covariance matching based adaptive unscented Kalman filter for direct filtering in INS/GNSS integration publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2015.12.014 contributor: fullname: Meng – volume: 13 start-page: 10599 year: 2013 ident: ref_9 article-title: The performance analysis of a real-time integrated INS/GPS vehicle navigation system with abnormal GPS measurement elimination publication-title: Sensors doi: 10.3390/s130810599 contributor: fullname: Chiang – ident: ref_4 doi: 10.1109/InertialSensors.2014.7049479 – ident: ref_24 doi: 10.1109/ICRA.2018.8460193 – volume: 80 start-page: 368 year: 2018 ident: ref_10 article-title: Intelligent GNSS/INS integrated navigation system for a commercial UAV flight control system publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.07.026 contributor: fullname: Zhang – volume: 2 start-page: 1 year: 2021 ident: ref_30 article-title: Semi-tightly coupled integration of multi-GNSS PPP and S-VINS for precise positioning in GNSS-challenged environments publication-title: Satell. Navig. doi: 10.1186/s43020-020-00033-9 contributor: fullname: Li |
SSID | ssj0000331904 |
Score | 2.4016244 |
Snippet | High-precision localization through multi-sensor fusion has become a popular research direction in unmanned driving. However, most previous studies have... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 869 |
SubjectTerms | Accuracy adaptive Kalman filter Algorithms Cameras Deep learning Global navigation satellite system Global positioning systems GPS high-precision Information processing Kalman filters Localization Machine learning Microelectromechanical systems Multisensor fusion Navigation systems Optimization Performance evaluation Remote sensing semantic segmentation Semantics Sensors stereo camera Urban environments Velocity Vision vision/GNSS integration |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA46H_RFvOJ0SkBfy9ombdYnmbILwoYwJ3srTZroQNvZTdB_7zlZtiGCr01vnJzLd07OhZAbYJOcJ1J4ysgIo1XCS3wlPTx0ikBpGhZg7fBgGPfH_GESTVzAbe7SKlc60SrqvFQYI2-GMWMsQPN3O_vwcGoUnq66ERrbZCcIhUCubnV76xiLD08kPl92JWXg3TerObaTARif_LJDtl3_H21sTUz3gOw7bEjby808JFu6OCK7bkz56_cxydp0YCc-09LQZ1sVTtvTXOe0NxyN6KNLwAJrRG0qAB3pd6DcVFFXdYSrdFpQ1AJv-ouOK5kVtLMpdjsh427n6b7vuRkJnmJxsPAiBfaY-5nmoVE8E1r4JpdcYw9IaRIZgwAnLGZZpoESIpbg8LVkngHMkBKgEDsltaIs9BmhiuWAlSLwwMCsG61aiVYAQGKZcw1qkdfJ9Ypi6WzZCiMFFwLpmm7oWid3SMz1Hdi-2l4oq5fUSUPKFX5cSAPahAsffk0YJYQJNXaX1_CSxmorUidT83TDAef_L1-QvRCLFGxudYPUFtWnvgTosJBXlj9-AH0cwcw priority: 102 providerName: ProQuest |
Title | A Method of Vision Aided GNSS Positioning Using Semantic Information in Complex Urban Environment |
URI | https://www.proquest.com/docview/2633314155 https://doaj.org/article/4cbb447bf225470e907fc77f2e2066e9 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT8JAEJ0oHvRi_Iwokk302lDYbZcewfAREwgRMdya7nY3kmgxgIn-e2e2RTAevHilJG3ezM68aWfeANyim6QiUtLTVgX0tkp6ka-VRx-dAgyaltdpdngwDPsTcT8NplurvqgnLJcHzoGrCa2UEFJZdDwhfYPFnNVS2oYhIXKTj-750VYx5WIwR9fyRa5HyrGury2WJCSDBD76kYGcUP-vOOySS_cIDgtWyFr50xzDjslOYL9YUP78eQpJiw3crmc2t-zJzYOz1iw1KesNx2M2KlqvMA8x1wTAxuYVMZtpVswb0VU2yxid_xfzwSYLlWSssxlzO4NJt_N41_eK7Qie5mF95QUaM7HwEyMaVotEGunbVAlD6o_KRirEoxvxkCcJYiZkqLDUa6o0QYJBiNb5OZSyeWYugGmeIksKsPbChG6NbkZGI_UIVSoMBkRRhps1YvFbLoIRY_FAuMYbXMvQJjC__0HC1e4HNGdcmDP-y5xlqKxNERenaRk3Qo72JOpz-R_3uIKDBg0xuN7rCpRWi3dzjdRipaqw2-z2qrDX7gxHD1XnU1-Kb8yl |
link.rule.ids | 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4UD3gxPiOK2kSvG1ba3bIng4aHCsQEMNw2226rJLqLgIn-e2dKgRgTr_veaTvfN9N5EHIF0yTlkRSeMjJAb5XwIl9JDzedAlCahl1j7nC3F7aH_GEUjJzDbebCKpc60SrqNFfoI69UQ8bYNcLfzeTDw65RuLvqWmhski3OAGgwU7zZWvlYfLgj8vmiKikD674ynWE5GaDx0S8csuX6_2hjCzHNXbLjuCGtLwZzj2zobJ8UXZvy1-8DktRp13Z8prmhzzYrnNbHqU5pq9fv0ycXgAVoRG0oAO3rd5DcWFGXdYRn6TijqAXe9BcdTmWS0cY62e2QDJuNwV3bcz0SPAU_PPcCBXjM_UTzqlE8EVr4JpVcYw1IaSIZwgKOWMiSRIMkRCjB4KvJNAGaISVQIXZEClme6WNCFUuBKwVggQGsG61qkVZAQEKZcg1qkZfI5VJi8WRRCiMGEwLlGq_lWiK3KMzVFVi-2h7Ipy-xWw0xV_hyIQ1oEy58-DRhlBCmqrG6vIaHlJdDEbs1NYvXM-Dk_9MXpNgedDtx5773eEq2q5iwYOOsy6Qwn37qM6ARc3lu58oPo9zErg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZTwIxEG4UE_XFeEYUtYm-blhod8s-GVQQDwgJYnjbbLutkuguAib6750pBWJMfN3ulekc30znIOQC2CTlkRSeMjLAaJXwIl9JDw-dAlCahlWwdrjdCVt9fj8IBi7_aeLSKuc60SrqNFcYIy9XQ8ZYBc1f2bi0iO5N83L04eEEKTxpdeM0VskaWEWBQlpr3i7iLT48Hfl81qGUgadfHk-wtQxA-uiXTbKt-_9oZmtumttky-FEWp9t7A5Z0dku2XAjy1-_90hSp207_Znmhj7bCnFaH6Y6pbedXo92XTIWWCZq0wJoT78DFYeKugokXKXDjKJGeNNftD-WSUYby8K3fdJvNp6uW56bl-ApFlamXqDANnM_0bxqFE-EFr5JJdfYD1KaSIYgzBELWZJooIQIJTh_NZkmADmkBFjEDkghyzN9SKhiKeCmALwxMPFGq1qkFYCRUKZcg4rkRXI-p1g8mrXFiMGdQLrGS7oWyRUSc3EHtrK2F_LxS-wkI-YKPy6kAc3ChQ-_JowSwlQ1dprX8JLSfCtiJ1-TeMkNR_8vn5F1YJP48a7zcEw2q1i7YFOuS6QwHX_qE0AUU3lqWeUHuIHI4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+of+Vision+Aided+GNSS+Positioning+Using+Semantic+Information+in+Complex+Urban+Environment&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Rui+Zhai&rft.au=Yunbin+Yuan&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=4&rft.spage=869&rft_id=info:doi/10.3390%2Frs14040869&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4cbb447bf225470e907fc77f2e2066e9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |