Joint Face Image Restoration and Frontalization for Recognition

In real-world scenarios, many factors may harm face recognition performance, e.g ., large pose, bad illumination, low resolution, blur and noise. To address these challenges, previous efforts usually first restore the low-quality faces to high-quality ones and then perform face recognition. However,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 3; pp. 1285 - 1298
Main Authors Tu, Xiaoguang, Zhao, Jian, Liu, Qiankun, Ai, Wenjie, Guo, Guodong, Li, Zhifeng, Liu, Wei, Feng, Jiashi
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In real-world scenarios, many factors may harm face recognition performance, e.g ., large pose, bad illumination, low resolution, blur and noise. To address these challenges, previous efforts usually first restore the low-quality faces to high-quality ones and then perform face recognition. However, most of these methods are stage-wise, which is sub-optimal and deviates from the reality. In this paper, we address all these challenges jointly for unconstrained face recognition. We propose an M ulti- D egradation F ace R estoration (MDFR) model to restore frontalized high-quality faces from the given low-quality ones under arbitrary facial poses, with three distinct novelties. First, MDFR is a well-designed encoder-decoder architecture which extracts feature representation from an input face image with arbitrary low-quality factors and restores it to a high-quality counterpart. Second, MDFR introduces a pose residual learning strategy along with a 3D-based P ose N ormalization M odule (PNM), which can perceive the pose gap between the input initial pose and its real-frontal pose to guide the face frontalization. Finally, MDFR can generate frontalized high-quality face images by a single unified network, showing a strong capability of preserving face identity. Qualitative and quantitative experiments on both controlled and in-the-wild benchmarks demonstrate the superiority of MDFR over state-of-the-art methods on both face frontalization and face restoration.
AbstractList In real-world scenarios, many factors may harm face recognition performance, e.g ., large pose, bad illumination, low resolution, blur and noise. To address these challenges, previous efforts usually first restore the low-quality faces to high-quality ones and then perform face recognition. However, most of these methods are stage-wise, which is sub-optimal and deviates from the reality. In this paper, we address all these challenges jointly for unconstrained face recognition. We propose an M ulti- D egradation F ace R estoration (MDFR) model to restore frontalized high-quality faces from the given low-quality ones under arbitrary facial poses, with three distinct novelties. First, MDFR is a well-designed encoder-decoder architecture which extracts feature representation from an input face image with arbitrary low-quality factors and restores it to a high-quality counterpart. Second, MDFR introduces a pose residual learning strategy along with a 3D-based P ose N ormalization M odule (PNM), which can perceive the pose gap between the input initial pose and its real-frontal pose to guide the face frontalization. Finally, MDFR can generate frontalized high-quality face images by a single unified network, showing a strong capability of preserving face identity. Qualitative and quantitative experiments on both controlled and in-the-wild benchmarks demonstrate the superiority of MDFR over state-of-the-art methods on both face frontalization and face restoration.
Author Liu, Qiankun
Feng, Jiashi
Zhao, Jian
Liu, Wei
Ai, Wenjie
Guo, Guodong
Tu, Xiaoguang
Li, Zhifeng
Author_xml – sequence: 1
  givenname: Xiaoguang
  orcidid: 0000-0002-1185-5229
  surname: Tu
  fullname: Tu, Xiaoguang
  email: xguangtu@outlook.com
  organization: Aviation Engineering Institute, Civil Aviation Flight University of China, Guanghan, China
– sequence: 2
  givenname: Jian
  orcidid: 0000-0002-3508-756X
  surname: Zhao
  fullname: Zhao, Jian
  email: zhaojian90@u.nus.edu
  organization: Institute of North Electronic Equipment, Beijing, China
– sequence: 3
  givenname: Qiankun
  orcidid: 0000-0003-4786-8563
  surname: Liu
  fullname: Liu, Qiankun
  email: allen.liu@pensees.ai
  organization: Pensees Ptd Ltd., Singapore
– sequence: 4
  givenname: Wenjie
  orcidid: 0000-0001-6841-0899
  surname: Ai
  fullname: Ai, Wenjie
  email: 201821011405@std.uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 5
  givenname: Guodong
  orcidid: 0000-0001-9583-0055
  surname: Guo
  fullname: Guo, Guodong
  email: guodong.guo@mail.wvu.edu
  organization: Institute of Deep Learning, Baidu Research, Beijing, China
– sequence: 6
  givenname: Zhifeng
  orcidid: 0000-0002-9653-7907
  surname: Li
  fullname: Li, Zhifeng
  email: michaelzfli@tencent.com
  organization: Tencent AI Lab, Shenzhen, China
– sequence: 7
  givenname: Wei
  orcidid: 0000-0002-3865-8145
  surname: Liu
  fullname: Liu, Wei
  email: wl2223@columbia.edu
  organization: Tencent AI Lab, Shenzhen, China
– sequence: 8
  givenname: Jiashi
  orcidid: 0000-0001-6843-0064
  surname: Feng
  fullname: Feng, Jiashi
  email: elefjia@nus.edu.sg
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore
BookMark eNp9kEtLAzEUhYNUsK3-Ad0MuJ4x72RWIsVqpSBodRtiJikpbVIz6UJ_vdNOceHC1X1wvnsuZwQGIQYLwCWCFUKwvllMXt8XFYYYVQQKyZA4AUPEmCwxhmzQ9ZChUmLEzsCobVcQIiqpGILbp-hDLqba2GK20UtbvNg2x6Szj6HQoSmmKYas1_67X7mYOomJy-D38zk4dXrd2otjHYO36f1i8ljOnx9mk7t5aQhHuWS6ERZKhF3thLMN45I2ojOVzJGaa-Iap7nUtjZEGkQJ5oYKKjghHxg3hIzBdX93m-LnrntRreIuhc5SYU4EpRDWolPJXmVSbNtknTI-H_7OSfu1QlDt41KHuNQ-LnWMq0PxH3Sb_Eanr_-hqx7y1tpfoKZYQEHID4IRd_o
CODEN ITCTEM
CitedBy_id crossref_primary_10_1016_j_dsp_2025_104986
crossref_primary_10_1109_ACCESS_2022_3202216
crossref_primary_10_1049_2024_7886911
crossref_primary_10_1109_TBIOM_2023_3349218
crossref_primary_10_3390_math13050749
crossref_primary_10_1109_TCSVT_2023_3244786
crossref_primary_10_1109_TCSVT_2024_3386671
crossref_primary_10_1109_TCSVT_2021_3130196
crossref_primary_10_1109_ACCESS_2023_3297488
crossref_primary_10_3390_electronics12102248
crossref_primary_10_3389_fphy_2023_1193245
crossref_primary_10_1109_TCSVT_2024_3419933
crossref_primary_10_1109_TPAMI_2021_3090942
crossref_primary_10_61927_igmin231
crossref_primary_10_1109_TCSVT_2024_3403713
crossref_primary_10_1007_s10044_024_01255_2
crossref_primary_10_1109_TCSVT_2022_3192422
crossref_primary_10_1007_s00530_024_01515_5
crossref_primary_10_1109_TIFS_2023_3329686
crossref_primary_10_1109_ACCESS_2021_3106483
crossref_primary_10_1587_transinf_2022DLP0055
crossref_primary_10_1109_TCSVT_2023_3257271
crossref_primary_10_1109_TCSVT_2023_3272924
crossref_primary_10_1007_s11760_024_03577_4
crossref_primary_10_1109_TPAMI_2024_3432651
crossref_primary_10_1109_LGRS_2022_3228689
crossref_primary_10_1145_3485132
crossref_primary_10_1049_ipr2_70003
crossref_primary_10_1016_j_tsep_2024_103204
crossref_primary_10_1109_TCSVT_2022_3181828
crossref_primary_10_1109_TMM_2023_3305095
crossref_primary_10_1080_08839514_2023_2175108
crossref_primary_10_1109_TIFS_2022_3140687
crossref_primary_10_1109_TCSVT_2024_3383659
crossref_primary_10_1109_TIP_2023_3322593
crossref_primary_10_1109_TCSVT_2023_3266222
crossref_primary_10_1109_TCSVT_2024_3450493
Cites_doi 10.1109/ICIP.2016.7533077
10.1109/CVPR.2016.90
10.1109/TCSVT.2020.3042178
10.1109/TIP.2018.2808840
10.1016/j.neucom.2017.05.055
10.1109/CVPR.2017.618
10.1109/TPAMI.2019.2914039
10.1109/ICCV.2015.64
10.1109/ICCV.2017.430
10.1007/978-3-319-10593-2_17
10.1007/s11263-019-01252-7
10.1109/CVPR.2019.00482
10.1109/CVPR.2018.00552
10.24963/ijcai.2019/611
10.1109/CVPR.2016.182
10.1109/TIP.2020.3046918
10.1109/ICCV.2017.116
10.1007/978-3-030-01252-6_12
10.1007/978-3-319-46454-1_20
10.1016/j.patcog.2017.02.004
10.1109/TPAMI.2021.3061312
10.1109/WACV.2016.7477558
10.1109/TCSVT.2017.2748379
10.1109/CVPR.2017.713
10.1109/CVPR.2018.00235
10.1016/j.imavis.2009.08.002
10.24963/ijcai.2018/131
10.1109/ICCV.2017.267
10.1109/CVPR.2018.00101
10.1109/CVPR.2014.375
10.1007/s11263-019-01254-5
10.1109/ICCV.2015.441
10.1109/TIP.2018.2831899
10.1109/CVPR.2015.7298803
10.1007/s11263-019-01178-0
10.1109/CVPR.2016.23
10.1109/TIP.2018.2839891
10.1109/ICCV.2017.36
10.1007/978-3-030-01240-3_47
10.1109/LSP.2011.2158998
10.1109/CVPR.2018.00854
10.1109/CVPR.2017.570
10.1109/CVPR.2014.243
10.1109/CVPR.2018.00876
10.1109/CVPR.2018.00264
10.1109/CVPR.2015.7299058
10.1109/TPAMI.2018.2858819
10.1109/CVPR.2016.309
10.1109/CVPRW.2017.250
10.1109/CVPR42600.2020.00738
10.1109/CVPR.2018.00862
10.1109/CVPR.2017.141
10.1109/ICCV.2015.425
10.1007/978-3-030-01240-3_14
10.1109/TCSVT.2010.2045817
10.1109/SPICES.2015.7091490
10.1007/s13042-013-0182-4
10.1109/ICB2018.2018.00033
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2021.3078517
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1298
ExternalDocumentID 10_1109_TCSVT_2021_3078517
9427073
Genre orig-research
GrantInformation_xml – fundername: Project of Comprehensive Reform of Electronic Information Engineering Specialty for Civil Aircraft Maintenance
  grantid: 14002600100017J172
– fundername: National Key Research and Development Program of China
  grantid: 2018AAA0103203
  funderid: 10.13039/501100012166
– fundername: Sichuan University Failure Mechanics & Engineering Disaster Prevention and Mitigation Key Laboratory of Sichuan Province Open Foundation
  grantid: 2020FMSCU02
  funderid: 10.13039/501100004912
– fundername: National Science Foundation of China
  grantid: 62006244
  funderid: 10.13039/501100001809
– fundername: Open Fund Project of Key Laboratory of Flight Technology and Flight Safety of CAFUC
  grantid: FZ2020KF10
– fundername: Project of Civil Aviation Flight University of China
  grantid: J2018-56; CJ2019-01; J2020-060
  funderid: 10.13039/501100002881
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-5ad7e0812f9f7fed5684d7ace85f396a3fdfa68ae9c38c14326c4747633b22d33
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 03:20:06 EDT 2025
Tue Jul 01 00:41:15 EDT 2025
Thu Apr 24 23:03:17 EDT 2025
Wed Aug 27 02:49:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-5ad7e0812f9f7fed5684d7ace85f396a3fdfa68ae9c38c14326c4747633b22d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6841-0899
0000-0003-4786-8563
0000-0002-3865-8145
0000-0002-9653-7907
0000-0001-6843-0064
0000-0001-9583-0055
0000-0002-1185-5229
0000-0002-3508-756X
PQID 2637440097
PQPubID 85433
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2021_3078517
ieee_primary_9427073
crossref_primary_10_1109_TCSVT_2021_3078517
proquest_journals_2637440097
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref55
ref11
ref54
ref10
ref16
ref19
ref18
ref50
ref48
ref47
ref41
ref44
yi (ref45) 2014
ref49
ref8
goodfellow (ref27) 2014
ref7
ref9
ref4
ref3
ref6
ref5
kong (ref20) 2019
wang (ref13) 2018
ref40
tu (ref42) 2020
ref35
ref34
ref37
ref36
ref31
zhu (ref51) 2014
ref30
ref33
ref32
ref2
ref1
ref39
ref38
zhu (ref24) 2015
ref71
huang (ref46) 2008
ref70
yim (ref52) 2015
ref68
ref67
zhou (ref23) 2019
ref26
ref69
ref25
ref64
ref63
ref66
ref22
ref65
ref21
vasiljevic (ref17) 2016
ref28
simonyan (ref43) 2014
ref60
ref62
ref61
zhao (ref29) 2017
References_xml – ident: ref36
  doi: 10.1109/ICIP.2016.7533077
– year: 2014
  ident: ref43
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– ident: ref49
  doi: 10.1109/CVPR.2016.90
– ident: ref71
  doi: 10.1109/TCSVT.2020.3042178
– ident: ref66
  doi: 10.1109/TIP.2018.2808840
– ident: ref15
  doi: 10.1016/j.neucom.2017.05.055
– ident: ref32
  doi: 10.1109/CVPR.2017.618
– ident: ref58
  doi: 10.1109/TPAMI.2019.2914039
– start-page: 63
  year: 2018
  ident: ref13
  article-title: ESRGAN: Enhanced super-resolution generative adversarial networks
  publication-title: Proc ECCV
– ident: ref35
  doi: 10.1109/ICCV.2015.64
– ident: ref28
  doi: 10.1109/ICCV.2017.430
– ident: ref33
  doi: 10.1007/978-3-319-10593-2_17
– ident: ref5
  doi: 10.1007/s11263-019-01252-7
– ident: ref50
  doi: 10.1109/CVPR.2019.00482
– ident: ref56
  doi: 10.1109/CVPR.2018.00552
– ident: ref3
  doi: 10.24963/ijcai.2019/611
– ident: ref31
  doi: 10.1109/CVPR.2016.182
– ident: ref59
  doi: 10.1109/TIP.2020.3046918
– ident: ref68
  doi: 10.1109/ICCV.2017.116
– ident: ref12
  doi: 10.1007/978-3-030-01252-6_12
– ident: ref67
  doi: 10.1007/978-3-319-46454-1_20
– ident: ref39
  doi: 10.1016/j.patcog.2017.02.004
– ident: ref65
  doi: 10.1109/TPAMI.2021.3061312
– ident: ref48
  doi: 10.1109/WACV.2016.7477558
– ident: ref70
  doi: 10.1109/TCSVT.2017.2748379
– start-page: 2672
  year: 2014
  ident: ref27
  article-title: Generative adversarial nets
  publication-title: Proc NIPS
– year: 2019
  ident: ref23
  article-title: When AWGN-based denoiser meets real noises
  publication-title: arXiv 1904 03485
– ident: ref55
  doi: 10.1109/CVPR.2017.713
– ident: ref8
  doi: 10.1109/CVPR.2018.00235
– ident: ref10
  doi: 10.1016/j.imavis.2009.08.002
– ident: ref30
  doi: 10.24963/ijcai.2018/131
– ident: ref21
  doi: 10.1109/ICCV.2017.267
– ident: ref63
  doi: 10.1109/CVPR.2018.00101
– year: 2014
  ident: ref45
  article-title: Learning face representation from scratch
  publication-title: arXiv 1411 7923
– ident: ref34
  doi: 10.1109/CVPR.2014.375
– ident: ref64
  doi: 10.1007/s11263-019-01254-5
– year: 2016
  ident: ref17
  article-title: Examining the impact of blur on recognition by convolutional networks
  publication-title: arXiv 1611 05760
– ident: ref25
  doi: 10.1109/ICCV.2015.441
– ident: ref53
  doi: 10.1109/TIP.2018.2831899
– ident: ref1
  doi: 10.1109/CVPR.2015.7298803
– ident: ref4
  doi: 10.1007/s11263-019-01178-0
– ident: ref41
  doi: 10.1109/CVPR.2016.23
– ident: ref22
  doi: 10.1109/TIP.2018.2839891
– start-page: 66
  year: 2017
  ident: ref29
  article-title: Dual-agent gans for photorealistic and identity preserving profile face synthesis
  publication-title: Proc NIPS
– ident: ref37
  doi: 10.1109/ICCV.2017.36
– year: 2020
  ident: ref42
  article-title: 3D face reconstruction from a single image assisted by 2D face images in the wild
  publication-title: arXiv 1903 09359
– ident: ref18
  doi: 10.1007/978-3-030-01240-3_47
– ident: ref40
  doi: 10.1109/LSP.2011.2158998
– ident: ref54
  doi: 10.1109/CVPR.2018.00854
– start-page: 787
  year: 2015
  ident: ref24
  article-title: High-fidelity pose and expression normalization for face recognition in the wild
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref61
  doi: 10.1109/CVPR.2017.570
– year: 2019
  ident: ref20
  article-title: Cross-resolution face recognition via prior-aided face hallucination and residual knowledge distillation
  publication-title: arXiv 1905 10777
– ident: ref26
  doi: 10.1109/CVPR.2014.243
– ident: ref9
  doi: 10.1109/CVPR.2018.00876
– start-page: 676
  year: 2015
  ident: ref52
  article-title: Rotating your face using multi-task deep neural network
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– start-page: 217
  year: 2014
  ident: ref51
  article-title: Multi-view perceptron: A deep model for learning face identity and view representations
  publication-title: Proc NIPS
– ident: ref19
  doi: 10.1109/CVPR.2018.00264
– ident: ref6
  doi: 10.1109/CVPR.2015.7299058
– ident: ref2
  doi: 10.1109/TPAMI.2018.2858819
– ident: ref44
  doi: 10.1109/CVPR.2016.309
– ident: ref47
  doi: 10.1109/CVPRW.2017.250
– year: 2008
  ident: ref46
  article-title: Labeled faces in the wild: A database forstudying face recognition in unconstrained environments
– ident: ref60
  doi: 10.1109/CVPR42600.2020.00738
– ident: ref16
  doi: 10.1109/CVPR.2018.00862
– ident: ref7
  doi: 10.1109/CVPR.2017.141
– ident: ref57
  doi: 10.1109/ICCV.2015.425
– ident: ref62
  doi: 10.1007/978-3-030-01240-3_14
– ident: ref69
  doi: 10.1109/TCSVT.2010.2045817
– ident: ref14
  doi: 10.1109/SPICES.2015.7091490
– ident: ref38
  doi: 10.1007/s13042-013-0182-4
– ident: ref11
  doi: 10.1109/ICB2018.2018.00033
SSID ssj0014847
Score 2.5404968
Snippet In real-world scenarios, many factors may harm face recognition performance, e.g ., large pose, bad illumination, low resolution, blur and noise. To address...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1285
SubjectTerms 3D based face normalization
Coders
Encoders-Decoders
Face recognition
Feature extraction
Generators
Image quality
Image restoration
Lighting
multi-degradation face restoration
Object recognition
Task analysis
Training
unconstrained face recognition
Title Joint Face Image Restoration and Frontalization for Recognition
URI https://ieeexplore.ieee.org/document/9427073
https://www.proquest.com/docview/2637440097
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLHLxp1zRJ0-YkIi66sB50FW8lTRMQ165o9-Kvd5JtF1-It0ITCDPTeTTzzQdwyJTRtMCypEhiE4ki5ugHHY0Sx6SLLbOUe4Dz4Fpe3on-Q_IwB8czLIy1NjSf2a5_DHf55dhM_K-yEyVYiiY5D_NYuE2xWrMbA5EFMjFMF-IowzjWAmSoOhme394PsRRkcRct2pPRfwlCgVXlhysO8aW3AoP2ZNO2kqfupC665v3b0Mb_Hn0VlptEk5xNLWMN5my1Dkufxg9uwGl__FjVpKeNJVfP6FjITeCZCcoiuipJz4830KMGq0kwwSU3bcfRuNqEu97F8PwyaggVIsNlXEeJLlOLOQBzyqXOlonMRJlqz1zquJKau9JpmWmrDM8MZlJMGoH1huS8YKzkfAsWqnFlt4GgI7BOJ7jAWEEd14KWjIoiY1rhG9GBuJVwbppp4570YpSHqoOqPGgl91rJG6104Gi252U6a-PP1RtezLOVjYQ7sNcqMm8-x7ecSe4HIVKV7vy-axcWmcc1hOayPVioXyd2H7ONujgIZvYBF33P0A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swED6k7tBm6CNpEbd5cOiWyqFIihKnoghi2E7swXGKbAJFkUBRVwoSecmv75GWjCYtgmwCRALE3eke4n33AXxhymhaYFlSJLGJRBFz9IOORolj0sWWWco9wHk6k6MrMblOrrfg6wYLY60NzWd24B_DXX5Zm5X_VXaiBEvRJF_AS4z7SbxGa23uDEQW6MQwYYijDCNZB5Gh6mRxevljgcUgiwdo056O_kEYCrwq_zjjEGGGb2HanW3dWPJrsGqKgbl_NLbxuYd_B2_aVJN8X9vGe9iy1Q5s_zWAcBe-TeqfVUOG2lgy_o2uhcwD00xQF9FVSYZ-wIFetmhNgikumXc9R3X1Aa6GZ4vTUdRSKkSGy7iJEl2mFrMA5pRLnS0TmYky1Z671HElNXel0zLTVhmeGcylmDQCKw7JecFYyflH6FV1ZfeAoCuwTie4wFhBHdeCloyKImNa4RvRh7iTcG7aeeOe9mKZh7qDqjxoJfdayVut9OF4s-dmPW3jydW7Xsybla2E-7DfKTJvP8i7nEnuRyFSlX76_64jeDVaTC_yi_Hs_DO8Zh7lEFrN9qHX3K7sAeYeTXEYTO4PG23TGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Face+Image+Restoration+and+Frontalization+for+Recognition&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Tu%2C+Xiaoguang&rft.au=Zhao%2C+Jian&rft.au=Liu%2C+Qiankun&rft.au=Ai%2C+Wenjie&rft.date=2022-03-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=32&rft.issue=3&rft.spage=1285&rft.epage=1298&rft_id=info:doi/10.1109%2FTCSVT.2021.3078517&rft.externalDocID=9427073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon