Internet of Underwater Things and Big Marine Data Analytics-A Comprehensive Survey
The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations,...
Saved in:
Published in | IEEE Communications surveys and tutorials Vol. 23; no. 2; pp. 904 - 956 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2373-745X |
DOI | 10.1109/COMST.2021.3053118 |
Cover
Loading…
Abstract | The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a mid-sized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this article is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed. Accordingly, the reader will become familiar with the pivotal issues of IoUT and BMD processing, whilst gaining an insight into the state-of-the-art applications, tools, and techniques. Finally, we analyze the architectural challenges of the IoUT, followed by proposing a range of promising direction for research and innovation in the broad areas of IoUT and BMD. Our hope is to inspire researchers, engineers, data scientists, and governmental bodies to further progress the field, to develop new tools and techniques, as well as to make informed decisions and set regulations related to the maritime and underwater environments around the world. |
---|---|
AbstractList | The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a mid-sized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this article is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed. Accordingly, the reader will become familiar with the pivotal issues of IoUT and BMD processing, whilst gaining an insight into the state-of-the-art applications, tools, and techniques. Finally, we analyze the architectural challenges of the IoUT, followed by proposing a range of promising direction for research and innovation in the broad areas of IoUT and BMD. Our hope is to inspire researchers, engineers, data scientists, and governmental bodies to further progress the field, to develop new tools and techniques, as well as to make informed decisions and set regulations related to the maritime and underwater environments around the world. |
Author | Xiang, Wei Hanzo, Lajos Jahanbakht, Mohammad Rahimi Azghadi, Mostafa |
Author_xml | – sequence: 1 givenname: Mohammad orcidid: 0000-0002-3609-9677 surname: Jahanbakht fullname: Jahanbakht, Mohammad email: mohammad.jahanbakht@my.jcu.edu.au organization: College of Science and Engineering, James Cook University, Queensland, Townsville, QLD, Australia – sequence: 2 givenname: Wei orcidid: 0000-0002-0608-065X surname: Xiang fullname: Xiang, Wei email: w.xiang@latrobe.edu.au organization: School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, VIC, Australia – sequence: 3 givenname: Lajos orcidid: 0000-0002-2636-5214 surname: Hanzo fullname: Hanzo, Lajos email: lh@ecs.soton.ac.uk organization: School of Electronics and Computer Science, University of Southampton, Southampton, U.K – sequence: 4 givenname: Mostafa orcidid: 0000-0001-7975-3985 surname: Rahimi Azghadi fullname: Rahimi Azghadi, Mostafa email: mostafa.rahimiazghadi@jcu.edu.au organization: College of Science and Engineering, James Cook University, Queensland, Townsville, QLD, Australia |
BookMark | eNotzN1KwzAYgOEgCm7TG9CT3EBnkq_Nz2GtTgcbA9eBZyOmX7fIlo6kTnr3Cnr0wnPwjsll6AIScsfZlHNmHqrVcl1PBRN8CqwAzvUFGQlQkKm8eL8m45Q-GctFbtiIvM1DjzFgT7uWbkKD8dv-Aq33PuwStaGhj35Hlzb6gPTJ9paWwR6G3ruUlbTqjqeIewzJn5Guv-IZhxty1dpDwtv_Tshm9lxXr9li9TKvykXmQPI-KwxyyLnLCydbYYUzTn8o1XCQObQolbHSCmOVAoVMNcZoI4xysnESNUqYkPu_r0fE7Sn6o43D1oDQWgH8APULTqM |
CitedBy_id | crossref_primary_10_1364_OE_439138 crossref_primary_10_3390_rs16081380 crossref_primary_10_1016_j_ocecoaman_2023_106713 crossref_primary_10_1109_IOTM_001_2200067 crossref_primary_10_1109_COMST_2022_3191697 crossref_primary_10_1364_OE_507955 crossref_primary_10_3390_jmse13010141 crossref_primary_10_1109_OJCOMS_2024_3474290 crossref_primary_10_1109_TGCN_2023_3270867 crossref_primary_10_1109_TITS_2022_3184314 crossref_primary_10_1155_2021_1690168 crossref_primary_10_1155_2021_1213978 crossref_primary_10_1109_TAES_2023_3281531 crossref_primary_10_1111_exsy_13425 crossref_primary_10_1007_s11276_022_03177_5 crossref_primary_10_1016_j_ecoinf_2024_102788 crossref_primary_10_1109_TCOMM_2024_3388501 crossref_primary_10_1109_TII_2024_3412160 crossref_primary_10_1016_j_comcom_2022_05_032 crossref_primary_10_3390_jmse12101731 crossref_primary_10_1016_j_cogr_2024_11_001 crossref_primary_10_1016_j_eswa_2023_121841 crossref_primary_10_1109_JSEN_2021_3104533 crossref_primary_10_1364_OE_541188 crossref_primary_10_1111_faf_12666 crossref_primary_10_1155_2021_7669449 crossref_primary_10_1155_2021_5269431 crossref_primary_10_1155_2021_5841822 crossref_primary_10_1109_COMST_2024_3389728 crossref_primary_10_1016_j_future_2024_107481 crossref_primary_10_1109_JPHOT_2022_3186702 crossref_primary_10_61186_crpase_9_4_2876 crossref_primary_10_1063_5_0171461 crossref_primary_10_1016_j_apor_2022_103385 crossref_primary_10_1109_JIOT_2023_3283252 crossref_primary_10_1016_j_jnca_2023_103594 crossref_primary_10_1155_2021_1979523 crossref_primary_10_1016_j_vehcom_2023_100625 crossref_primary_10_1145_3575801 crossref_primary_10_3390_s21165669 crossref_primary_10_3390_su14105938 crossref_primary_10_1051_e3sconf_202450701010 crossref_primary_10_1109_JSEN_2022_3182881 crossref_primary_10_1109_JSAC_2022_3227103 crossref_primary_10_1007_s11276_023_03555_7 crossref_primary_10_1016_j_ifacol_2022_07_586 crossref_primary_10_1109_JIOT_2023_3304488 crossref_primary_10_1109_TWC_2024_3381643 crossref_primary_10_1109_JIOT_2023_3325289 crossref_primary_10_1155_2021_2073881 crossref_primary_10_1016_j_nexres_2025_100225 crossref_primary_10_1109_TII_2022_3181986 crossref_primary_10_3389_fmars_2023_1093665 crossref_primary_10_1364_AO_526005 crossref_primary_10_1016_j_aej_2024_08_101 crossref_primary_10_1039_D3TC02646A crossref_primary_10_1109_JIOT_2023_3336055 crossref_primary_10_1109_TNSE_2022_3205303 crossref_primary_10_3389_fmars_2022_842946 crossref_primary_10_1109_ACCESS_2022_3187317 crossref_primary_10_1145_3596245 crossref_primary_10_1155_2022_2724842 crossref_primary_10_1109_JSEN_2023_3310658 crossref_primary_10_3389_fmars_2022_840088 crossref_primary_10_1007_s12145_021_00762_8 crossref_primary_10_1007_s12596_023_01494_2 crossref_primary_10_1049_cmu2_12305 crossref_primary_10_3390_su142315659 crossref_primary_10_1109_TAI_2022_3168246 crossref_primary_10_1145_3571072 crossref_primary_10_2478_aoas_2024_0075 crossref_primary_10_1109_TVT_2024_3367945 crossref_primary_10_1109_TVT_2022_3163529 crossref_primary_10_3390_jmse12081324 crossref_primary_10_3390_mca29040049 crossref_primary_10_1364_OE_534983 crossref_primary_10_3390_jmse12010146 crossref_primary_10_1109_TCOMM_2023_3244960 crossref_primary_10_1007_s42484_024_00206_8 crossref_primary_10_1016_j_nanoen_2024_109316 crossref_primary_10_1109_TVT_2024_3367935 crossref_primary_10_1016_j_aquaeng_2024_102391 crossref_primary_10_1155_2021_8944618 crossref_primary_10_1364_OE_453264 crossref_primary_10_1016_j_comcom_2023_07_024 crossref_primary_10_1155_2021_1608340 crossref_primary_10_1155_2021_2295130 crossref_primary_10_1016_j_ecoinf_2023_102303 crossref_primary_10_1016_j_comnet_2024_110621 crossref_primary_10_1109_IOTM_001_2200129 crossref_primary_10_1109_JSEN_2021_3128594 crossref_primary_10_1109_ACCESS_2024_3373791 crossref_primary_10_1155_2021_3138398 crossref_primary_10_1155_2021_4412294 crossref_primary_10_1155_2021_8548981 crossref_primary_10_1002_advs_202405165 crossref_primary_10_3390_electronics13030474 crossref_primary_10_3390_network3040025 crossref_primary_10_1016_j_adhoc_2023_103212 crossref_primary_10_1109_JSEN_2022_3162600 crossref_primary_10_1109_JIOT_2023_3319250 crossref_primary_10_1109_ACCESS_2021_3078703 crossref_primary_10_1109_TWC_2023_3268720 crossref_primary_10_1155_2022_4434971 crossref_primary_10_1109_JIOT_2022_3231329 crossref_primary_10_1109_JIOT_2022_3141402 crossref_primary_10_1155_2021_1778399 crossref_primary_10_1109_OJCOMS_2024_3401745 crossref_primary_10_1016_j_jnca_2023_103649 crossref_primary_10_3390_jmse10091279 crossref_primary_10_1007_s11804_024_00444_z crossref_primary_10_3390_jsan11040070 crossref_primary_10_1016_j_patcog_2024_110928 crossref_primary_10_3390_s22135050 crossref_primary_10_3390_jmse11010124 crossref_primary_10_1016_j_seta_2024_104056 crossref_primary_10_1109_JIOT_2022_3190268 crossref_primary_10_1016_j_aiia_2023_12_002 crossref_primary_10_1109_JIOT_2022_3219674 crossref_primary_10_1109_JSEN_2024_3383721 crossref_primary_10_1155_2022_6945310 crossref_primary_10_3390_computers13100272 crossref_primary_10_1515_corrrev_2024_0046 crossref_primary_10_1155_2021_7777181 crossref_primary_10_1371_journal_pone_0311021 crossref_primary_10_1109_JLT_2024_3485065 crossref_primary_10_1016_j_dcan_2021_08_001 crossref_primary_10_3390_s21165398 crossref_primary_10_1155_2022_1522657 crossref_primary_10_1016_j_comnet_2024_110631 crossref_primary_10_1109_JSEN_2024_3507755 crossref_primary_10_2478_pomr_2021_0044 crossref_primary_10_3390_jmse11112133 crossref_primary_10_3390_s22051949 crossref_primary_10_1109_JIOT_2024_3404666 crossref_primary_10_1007_s12596_024_02290_2 crossref_primary_10_1155_2021_3104772 crossref_primary_10_1109_JIOT_2024_3361850 crossref_primary_10_1109_TVT_2022_3158892 crossref_primary_10_3389_fmars_2023_1010761 crossref_primary_10_1016_j_ifacol_2024_09_018 crossref_primary_10_1109_JSEN_2022_3187372 crossref_primary_10_1007_s10452_023_10044_8 crossref_primary_10_3389_fmars_2022_866422 crossref_primary_10_1109_JIOT_2023_3280035 crossref_primary_10_7717_peerj_cs_659 crossref_primary_10_1155_2021_7965093 crossref_primary_10_1002_smll_202412507 crossref_primary_10_1007_s11276_023_03454_x crossref_primary_10_1109_COMST_2022_3211462 crossref_primary_10_1364_AO_499393 crossref_primary_10_1109_TITS_2023_3322192 crossref_primary_10_3389_fmars_2021_778452 crossref_primary_10_1007_s11082_023_05206_9 crossref_primary_10_1016_j_eswa_2025_126928 crossref_primary_10_3389_fmars_2022_1005959 crossref_primary_10_1109_TCOMM_2023_3292910 crossref_primary_10_1016_j_oceaneng_2024_119631 crossref_primary_10_1016_j_jnca_2021_103295 crossref_primary_10_1109_JIOT_2023_3322169 crossref_primary_10_1155_2021_8612814 crossref_primary_10_3390_jmse11091736 crossref_primary_10_1109_TITS_2024_3468383 crossref_primary_10_3390_s25061899 crossref_primary_10_1007_s10586_021_03513_y crossref_primary_10_1016_j_envsoft_2022_105311 crossref_primary_10_1109_JIOT_2021_3115800 crossref_primary_10_1155_2021_2221893 crossref_primary_10_3390_info16010019 crossref_primary_10_1016_j_mlwa_2022_100441 crossref_primary_10_1109_LWC_2022_3181239 crossref_primary_10_1016_j_procs_2024_04_166 crossref_primary_10_1016_j_comnet_2024_110557 crossref_primary_10_1155_2021_9723379 crossref_primary_10_1109_ACCESS_2022_3202975 crossref_primary_10_1109_ACCESS_2023_3319083 crossref_primary_10_3390_s23020578 crossref_primary_10_1109_MBITS_2023_3244908 crossref_primary_10_1109_TMC_2024_3389670 crossref_primary_10_1007_s10207_023_00683_1 crossref_primary_10_1155_2022_5083146 crossref_primary_10_1111_2041_210X_13898 crossref_primary_10_1155_2022_6216423 crossref_primary_10_1109_JSEN_2024_3396145 crossref_primary_10_1007_s12145_024_01258_x crossref_primary_10_1109_TMC_2023_3262514 crossref_primary_10_3390_systems11110529 crossref_primary_10_1016_j_optlastec_2023_109682 crossref_primary_10_1155_2022_4860006 crossref_primary_10_1109_JIOT_2023_3324311 crossref_primary_10_1109_JIOT_2022_3218766 crossref_primary_10_1016_j_iotcps_2023_10_004 crossref_primary_10_1109_JIOT_2022_3161817 crossref_primary_10_1109_OJCOMS_2022_3225590 crossref_primary_10_3389_fmars_2024_1468481 crossref_primary_10_1155_2021_6827961 crossref_primary_10_1525_elementa_2021_00064 |
ContentType | Journal Article |
DBID | 97E RIA RIE |
DOI | 10.1109/COMST.2021.3053118 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2373-745X |
EndPage | 956 |
ExternalDocumentID | 9328873 |
Genre | orig-research |
GrantInformation_xml | – fundername: Beijing Natural Science Foundation grantid: L182032 funderid: 10.13039/501100004826 – fundername: Engineering and Physical Sciences Research Council grantid: EP/N004558/1; EP/P034284/1; EP/P034284/1; EP/P003990/1 (COALESCE) funderid: 10.13039/501100000266 – fundername: Royal Society’s Global Challenges Research Fund Grant funderid: 10.13039/501100000288 – fundername: Australian Government Research Training Program Scholarship funderid: 10.13039/100015539 – fundername: European Research Council’s Advanced Fellow Grant QuantCom funderid: 10.13039/501100000781 |
GroupedDBID | 0R~ 29I 2WC 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ IES IFIPE IFJZH IPLJI JAVBF LAI O9- OCL P2P RIA RIE RNS |
ID | FETCH-LOGICAL-c361t-59e1341c45c6f2a2c9c8b77d13643fe679a6a29a7737e07d9989297c6dc6e8e63 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:51:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-59e1341c45c6f2a2c9c8b77d13643fe679a6a29a7737e07d9989297c6dc6e8e63 |
ORCID | 0000-0002-2636-5214 0000-0002-3609-9677 0000-0002-0608-065X 0000-0001-7975-3985 |
PageCount | 53 |
ParticipantIDs | ieee_primary_9328873 |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE Communications surveys and tutorials |
PublicationTitleAbbrev | COMST |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0042490 |
Score | 2.6859994 |
SecondaryResourceType | review_article |
Snippet | The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 904 |
SubjectTerms | Big Data data acquisition deep neural networks Distributed databases image and video processing Internet of Things Machine learning marine and underwater databases/datasets Sensors Tutorials underwater network architecture underwater wireless sensor network |
Title | Internet of Underwater Things and Big Marine Data Analytics-A Comprehensive Survey |
URI | https://ieeexplore.ieee.org/document/9328873 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qT3rwq4rf7MGjSfO5mz3WailCFWwLvZXJ7ERFSCUkiv56d5NWinjwtuSSMJPsvjeZeY-xS5WomDSA4wOCISiZdgAQnVRjoNDTlnXYbot7MZxGd7N41mJXP7MwRFQ3n5Frl_W_fL3AypbKugZrmG8i3GAbhrg1s1qrXTcyNMJbDcV4qtt_GI0nhv4Fvhva98yaeqzZp9Snx2CHjVb3bZpGXt2qTF38-iXJ-N8H22XbSxjJe03e91iL8n22tSYu2GGPTbGPSr7IeG1v9GFwZcEbp04OuebXL098BHb-j99ACbxWKLG6zU6P242ioOemv52Pq-KdPg_YdHA76Q-dpYOCg6HwSydWZAXbMIpRZAEEqDBJpdR-aIBIRkIqEBAokDKU5EltuJeBSxKFRkEJifCQtfNFTkeMR4kJsMggBfQjilAlCfmEZmEgZaCTY9axcZm_NSIZ82VITv6-fMo2bW6aWsYZa5dFRefmdC_Tizqt35Z1paU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGYCBr4L4xgMjSZsvOx5LoSrQFIm2UrfKOV8AIaUoSkDw67GTFlWIgc3Kkugusd-73HtHyIUIRYBKSsuRIDVBSZQlJYAVK3AFtJRhHabbYsB6Y_9uEkxq5PJHC4OIZfMZ2mZZ_stXMyhMqaypsYb-JrwVshoYMW6l1lrsu74mEq2FLKYlmp2HaDjSBNB1bM-8aWasx9IAlfL86G6RaHHnqm3k1S7y2IavX6aM_320bbI5B5K0XWV-h9Qw3SUbS_aCDfJYlfswp7OElgOOPjSyzGg1q5PKVNGrlycaSaMApNcyl7T0KDHOzVabmq0iw-eqw50Oi-wdP_fIuHsz6vSs-QwFCzzm5FYg0Fi2gR8AS1zpgoAw5lw5noYiCTIuJJOukJx7HFtcafalARMHpoBhiMzbJ_V0luIBoX6oA8wSGUtwfPRBhCE6CHqhQaWrwkPSMHGZvlU2GdN5SI7-vnxO1nqjqD_t3w7uj8m6yVNV2Tgh9Twr8FSf9Xl8Vqb4G2trqO0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Internet+of+Underwater+Things+and+Big+Marine+Data+Analytics-A+Comprehensive+Survey&rft.jtitle=IEEE+Communications+surveys+and+tutorials&rft.au=Jahanbakht%2C+Mohammad&rft.au=Xiang%2C+Wei&rft.au=Hanzo%2C+Lajos&rft.au=Rahimi+Azghadi%2C+Mostafa&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2373-745X&rft.volume=23&rft.issue=2&rft.spage=904&rft.epage=956&rft_id=info:doi/10.1109%2FCOMST.2021.3053118&rft.externalDocID=9328873 |