Internet of Underwater Things and Big Marine Data Analytics-A Comprehensive Survey

The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations,...

Full description

Saved in:
Bibliographic Details
Published inIEEE Communications surveys and tutorials Vol. 23; no. 2; pp. 904 - 956
Main Authors Jahanbakht, Mohammad, Xiang, Wei, Hanzo, Lajos, Rahimi Azghadi, Mostafa
Format Journal Article
LanguageEnglish
Published IEEE 01.01.2021
Subjects
Online AccessGet full text
ISSN2373-745X
DOI10.1109/COMST.2021.3053118

Cover

Loading…
Abstract The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a mid-sized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this article is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed. Accordingly, the reader will become familiar with the pivotal issues of IoUT and BMD processing, whilst gaining an insight into the state-of-the-art applications, tools, and techniques. Finally, we analyze the architectural challenges of the IoUT, followed by proposing a range of promising direction for research and innovation in the broad areas of IoUT and BMD. Our hope is to inspire researchers, engineers, data scientists, and governmental bodies to further progress the field, to develop new tools and techniques, as well as to make informed decisions and set regulations related to the maritime and underwater environments around the world.
AbstractList The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a mid-sized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this article is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed. Accordingly, the reader will become familiar with the pivotal issues of IoUT and BMD processing, whilst gaining an insight into the state-of-the-art applications, tools, and techniques. Finally, we analyze the architectural challenges of the IoUT, followed by proposing a range of promising direction for research and innovation in the broad areas of IoUT and BMD. Our hope is to inspire researchers, engineers, data scientists, and governmental bodies to further progress the field, to develop new tools and techniques, as well as to make informed decisions and set regulations related to the maritime and underwater environments around the world.
Author Xiang, Wei
Hanzo, Lajos
Jahanbakht, Mohammad
Rahimi Azghadi, Mostafa
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0002-3609-9677
  surname: Jahanbakht
  fullname: Jahanbakht, Mohammad
  email: mohammad.jahanbakht@my.jcu.edu.au
  organization: College of Science and Engineering, James Cook University, Queensland, Townsville, QLD, Australia
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-0608-065X
  surname: Xiang
  fullname: Xiang, Wei
  email: w.xiang@latrobe.edu.au
  organization: School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, VIC, Australia
– sequence: 3
  givenname: Lajos
  orcidid: 0000-0002-2636-5214
  surname: Hanzo
  fullname: Hanzo, Lajos
  email: lh@ecs.soton.ac.uk
  organization: School of Electronics and Computer Science, University of Southampton, Southampton, U.K
– sequence: 4
  givenname: Mostafa
  orcidid: 0000-0001-7975-3985
  surname: Rahimi Azghadi
  fullname: Rahimi Azghadi, Mostafa
  email: mostafa.rahimiazghadi@jcu.edu.au
  organization: College of Science and Engineering, James Cook University, Queensland, Townsville, QLD, Australia
BookMark eNotzN1KwzAYgOEgCm7TG9CT3EBnkq_Nz2GtTgcbA9eBZyOmX7fIlo6kTnr3Cnr0wnPwjsll6AIScsfZlHNmHqrVcl1PBRN8CqwAzvUFGQlQkKm8eL8m45Q-GctFbtiIvM1DjzFgT7uWbkKD8dv-Aq33PuwStaGhj35Hlzb6gPTJ9paWwR6G3ruUlbTqjqeIewzJn5Guv-IZhxty1dpDwtv_Tshm9lxXr9li9TKvykXmQPI-KwxyyLnLCydbYYUzTn8o1XCQObQolbHSCmOVAoVMNcZoI4xysnESNUqYkPu_r0fE7Sn6o43D1oDQWgH8APULTqM
CitedBy_id crossref_primary_10_1364_OE_439138
crossref_primary_10_3390_rs16081380
crossref_primary_10_1016_j_ocecoaman_2023_106713
crossref_primary_10_1109_IOTM_001_2200067
crossref_primary_10_1109_COMST_2022_3191697
crossref_primary_10_1364_OE_507955
crossref_primary_10_3390_jmse13010141
crossref_primary_10_1109_OJCOMS_2024_3474290
crossref_primary_10_1109_TGCN_2023_3270867
crossref_primary_10_1109_TITS_2022_3184314
crossref_primary_10_1155_2021_1690168
crossref_primary_10_1155_2021_1213978
crossref_primary_10_1109_TAES_2023_3281531
crossref_primary_10_1111_exsy_13425
crossref_primary_10_1007_s11276_022_03177_5
crossref_primary_10_1016_j_ecoinf_2024_102788
crossref_primary_10_1109_TCOMM_2024_3388501
crossref_primary_10_1109_TII_2024_3412160
crossref_primary_10_1016_j_comcom_2022_05_032
crossref_primary_10_3390_jmse12101731
crossref_primary_10_1016_j_cogr_2024_11_001
crossref_primary_10_1016_j_eswa_2023_121841
crossref_primary_10_1109_JSEN_2021_3104533
crossref_primary_10_1364_OE_541188
crossref_primary_10_1111_faf_12666
crossref_primary_10_1155_2021_7669449
crossref_primary_10_1155_2021_5269431
crossref_primary_10_1155_2021_5841822
crossref_primary_10_1109_COMST_2024_3389728
crossref_primary_10_1016_j_future_2024_107481
crossref_primary_10_1109_JPHOT_2022_3186702
crossref_primary_10_61186_crpase_9_4_2876
crossref_primary_10_1063_5_0171461
crossref_primary_10_1016_j_apor_2022_103385
crossref_primary_10_1109_JIOT_2023_3283252
crossref_primary_10_1016_j_jnca_2023_103594
crossref_primary_10_1155_2021_1979523
crossref_primary_10_1016_j_vehcom_2023_100625
crossref_primary_10_1145_3575801
crossref_primary_10_3390_s21165669
crossref_primary_10_3390_su14105938
crossref_primary_10_1051_e3sconf_202450701010
crossref_primary_10_1109_JSEN_2022_3182881
crossref_primary_10_1109_JSAC_2022_3227103
crossref_primary_10_1007_s11276_023_03555_7
crossref_primary_10_1016_j_ifacol_2022_07_586
crossref_primary_10_1109_JIOT_2023_3304488
crossref_primary_10_1109_TWC_2024_3381643
crossref_primary_10_1109_JIOT_2023_3325289
crossref_primary_10_1155_2021_2073881
crossref_primary_10_1016_j_nexres_2025_100225
crossref_primary_10_1109_TII_2022_3181986
crossref_primary_10_3389_fmars_2023_1093665
crossref_primary_10_1364_AO_526005
crossref_primary_10_1016_j_aej_2024_08_101
crossref_primary_10_1039_D3TC02646A
crossref_primary_10_1109_JIOT_2023_3336055
crossref_primary_10_1109_TNSE_2022_3205303
crossref_primary_10_3389_fmars_2022_842946
crossref_primary_10_1109_ACCESS_2022_3187317
crossref_primary_10_1145_3596245
crossref_primary_10_1155_2022_2724842
crossref_primary_10_1109_JSEN_2023_3310658
crossref_primary_10_3389_fmars_2022_840088
crossref_primary_10_1007_s12145_021_00762_8
crossref_primary_10_1007_s12596_023_01494_2
crossref_primary_10_1049_cmu2_12305
crossref_primary_10_3390_su142315659
crossref_primary_10_1109_TAI_2022_3168246
crossref_primary_10_1145_3571072
crossref_primary_10_2478_aoas_2024_0075
crossref_primary_10_1109_TVT_2024_3367945
crossref_primary_10_1109_TVT_2022_3163529
crossref_primary_10_3390_jmse12081324
crossref_primary_10_3390_mca29040049
crossref_primary_10_1364_OE_534983
crossref_primary_10_3390_jmse12010146
crossref_primary_10_1109_TCOMM_2023_3244960
crossref_primary_10_1007_s42484_024_00206_8
crossref_primary_10_1016_j_nanoen_2024_109316
crossref_primary_10_1109_TVT_2024_3367935
crossref_primary_10_1016_j_aquaeng_2024_102391
crossref_primary_10_1155_2021_8944618
crossref_primary_10_1364_OE_453264
crossref_primary_10_1016_j_comcom_2023_07_024
crossref_primary_10_1155_2021_1608340
crossref_primary_10_1155_2021_2295130
crossref_primary_10_1016_j_ecoinf_2023_102303
crossref_primary_10_1016_j_comnet_2024_110621
crossref_primary_10_1109_IOTM_001_2200129
crossref_primary_10_1109_JSEN_2021_3128594
crossref_primary_10_1109_ACCESS_2024_3373791
crossref_primary_10_1155_2021_3138398
crossref_primary_10_1155_2021_4412294
crossref_primary_10_1155_2021_8548981
crossref_primary_10_1002_advs_202405165
crossref_primary_10_3390_electronics13030474
crossref_primary_10_3390_network3040025
crossref_primary_10_1016_j_adhoc_2023_103212
crossref_primary_10_1109_JSEN_2022_3162600
crossref_primary_10_1109_JIOT_2023_3319250
crossref_primary_10_1109_ACCESS_2021_3078703
crossref_primary_10_1109_TWC_2023_3268720
crossref_primary_10_1155_2022_4434971
crossref_primary_10_1109_JIOT_2022_3231329
crossref_primary_10_1109_JIOT_2022_3141402
crossref_primary_10_1155_2021_1778399
crossref_primary_10_1109_OJCOMS_2024_3401745
crossref_primary_10_1016_j_jnca_2023_103649
crossref_primary_10_3390_jmse10091279
crossref_primary_10_1007_s11804_024_00444_z
crossref_primary_10_3390_jsan11040070
crossref_primary_10_1016_j_patcog_2024_110928
crossref_primary_10_3390_s22135050
crossref_primary_10_3390_jmse11010124
crossref_primary_10_1016_j_seta_2024_104056
crossref_primary_10_1109_JIOT_2022_3190268
crossref_primary_10_1016_j_aiia_2023_12_002
crossref_primary_10_1109_JIOT_2022_3219674
crossref_primary_10_1109_JSEN_2024_3383721
crossref_primary_10_1155_2022_6945310
crossref_primary_10_3390_computers13100272
crossref_primary_10_1515_corrrev_2024_0046
crossref_primary_10_1155_2021_7777181
crossref_primary_10_1371_journal_pone_0311021
crossref_primary_10_1109_JLT_2024_3485065
crossref_primary_10_1016_j_dcan_2021_08_001
crossref_primary_10_3390_s21165398
crossref_primary_10_1155_2022_1522657
crossref_primary_10_1016_j_comnet_2024_110631
crossref_primary_10_1109_JSEN_2024_3507755
crossref_primary_10_2478_pomr_2021_0044
crossref_primary_10_3390_jmse11112133
crossref_primary_10_3390_s22051949
crossref_primary_10_1109_JIOT_2024_3404666
crossref_primary_10_1007_s12596_024_02290_2
crossref_primary_10_1155_2021_3104772
crossref_primary_10_1109_JIOT_2024_3361850
crossref_primary_10_1109_TVT_2022_3158892
crossref_primary_10_3389_fmars_2023_1010761
crossref_primary_10_1016_j_ifacol_2024_09_018
crossref_primary_10_1109_JSEN_2022_3187372
crossref_primary_10_1007_s10452_023_10044_8
crossref_primary_10_3389_fmars_2022_866422
crossref_primary_10_1109_JIOT_2023_3280035
crossref_primary_10_7717_peerj_cs_659
crossref_primary_10_1155_2021_7965093
crossref_primary_10_1002_smll_202412507
crossref_primary_10_1007_s11276_023_03454_x
crossref_primary_10_1109_COMST_2022_3211462
crossref_primary_10_1364_AO_499393
crossref_primary_10_1109_TITS_2023_3322192
crossref_primary_10_3389_fmars_2021_778452
crossref_primary_10_1007_s11082_023_05206_9
crossref_primary_10_1016_j_eswa_2025_126928
crossref_primary_10_3389_fmars_2022_1005959
crossref_primary_10_1109_TCOMM_2023_3292910
crossref_primary_10_1016_j_oceaneng_2024_119631
crossref_primary_10_1016_j_jnca_2021_103295
crossref_primary_10_1109_JIOT_2023_3322169
crossref_primary_10_1155_2021_8612814
crossref_primary_10_3390_jmse11091736
crossref_primary_10_1109_TITS_2024_3468383
crossref_primary_10_3390_s25061899
crossref_primary_10_1007_s10586_021_03513_y
crossref_primary_10_1016_j_envsoft_2022_105311
crossref_primary_10_1109_JIOT_2021_3115800
crossref_primary_10_1155_2021_2221893
crossref_primary_10_3390_info16010019
crossref_primary_10_1016_j_mlwa_2022_100441
crossref_primary_10_1109_LWC_2022_3181239
crossref_primary_10_1016_j_procs_2024_04_166
crossref_primary_10_1016_j_comnet_2024_110557
crossref_primary_10_1155_2021_9723379
crossref_primary_10_1109_ACCESS_2022_3202975
crossref_primary_10_1109_ACCESS_2023_3319083
crossref_primary_10_3390_s23020578
crossref_primary_10_1109_MBITS_2023_3244908
crossref_primary_10_1109_TMC_2024_3389670
crossref_primary_10_1007_s10207_023_00683_1
crossref_primary_10_1155_2022_5083146
crossref_primary_10_1111_2041_210X_13898
crossref_primary_10_1155_2022_6216423
crossref_primary_10_1109_JSEN_2024_3396145
crossref_primary_10_1007_s12145_024_01258_x
crossref_primary_10_1109_TMC_2023_3262514
crossref_primary_10_3390_systems11110529
crossref_primary_10_1016_j_optlastec_2023_109682
crossref_primary_10_1155_2022_4860006
crossref_primary_10_1109_JIOT_2023_3324311
crossref_primary_10_1109_JIOT_2022_3218766
crossref_primary_10_1016_j_iotcps_2023_10_004
crossref_primary_10_1109_JIOT_2022_3161817
crossref_primary_10_1109_OJCOMS_2022_3225590
crossref_primary_10_3389_fmars_2024_1468481
crossref_primary_10_1155_2021_6827961
crossref_primary_10_1525_elementa_2021_00064
ContentType Journal Article
DBID 97E
RIA
RIE
DOI 10.1109/COMST.2021.3053118
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2373-745X
EndPage 956
ExternalDocumentID 9328873
Genre orig-research
GrantInformation_xml – fundername: Beijing Natural Science Foundation
  grantid: L182032
  funderid: 10.13039/501100004826
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/N004558/1; EP/P034284/1; EP/P034284/1; EP/P003990/1 (COALESCE)
  funderid: 10.13039/501100000266
– fundername: Royal Society’s Global Challenges Research Fund Grant
  funderid: 10.13039/501100000288
– fundername: Australian Government Research Training Program Scholarship
  funderid: 10.13039/100015539
– fundername: European Research Council’s Advanced Fellow Grant QuantCom
  funderid: 10.13039/501100000781
GroupedDBID 0R~
29I
2WC
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
O9-
OCL
P2P
RIA
RIE
RNS
ID FETCH-LOGICAL-c361t-59e1341c45c6f2a2c9c8b77d13643fe679a6a29a7737e07d9989297c6dc6e8e63
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-59e1341c45c6f2a2c9c8b77d13643fe679a6a29a7737e07d9989297c6dc6e8e63
ORCID 0000-0002-2636-5214
0000-0002-3609-9677
0000-0002-0608-065X
0000-0001-7975-3985
PageCount 53
ParticipantIDs ieee_primary_9328873
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE Communications surveys and tutorials
PublicationTitleAbbrev COMST
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0042490
Score 2.6859994
SecondaryResourceType review_article
Snippet The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater...
SourceID ieee
SourceType Publisher
StartPage 904
SubjectTerms Big Data
data acquisition
deep neural networks
Distributed databases
image and video processing
Internet of Things
Machine learning
marine and underwater databases/datasets
Sensors
Tutorials
underwater network architecture
underwater wireless sensor network
Title Internet of Underwater Things and Big Marine Data Analytics-A Comprehensive Survey
URI https://ieeexplore.ieee.org/document/9328873
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qT3rwq4rf7MGjSfO5mz3WailCFWwLvZXJ7ERFSCUkiv56d5NWinjwtuSSMJPsvjeZeY-xS5WomDSA4wOCISiZdgAQnVRjoNDTlnXYbot7MZxGd7N41mJXP7MwRFQ3n5Frl_W_fL3AypbKugZrmG8i3GAbhrg1s1qrXTcyNMJbDcV4qtt_GI0nhv4Fvhva98yaeqzZp9Snx2CHjVb3bZpGXt2qTF38-iXJ-N8H22XbSxjJe03e91iL8n22tSYu2GGPTbGPSr7IeG1v9GFwZcEbp04OuebXL098BHb-j99ACbxWKLG6zU6P242ioOemv52Pq-KdPg_YdHA76Q-dpYOCg6HwSydWZAXbMIpRZAEEqDBJpdR-aIBIRkIqEBAokDKU5EltuJeBSxKFRkEJifCQtfNFTkeMR4kJsMggBfQjilAlCfmEZmEgZaCTY9axcZm_NSIZ82VITv6-fMo2bW6aWsYZa5dFRefmdC_Tizqt35Z1paU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGYCBr4L4xgMjSZsvOx5LoSrQFIm2UrfKOV8AIaUoSkDw67GTFlWIgc3Kkugusd-73HtHyIUIRYBKSsuRIDVBSZQlJYAVK3AFtJRhHabbYsB6Y_9uEkxq5PJHC4OIZfMZ2mZZ_stXMyhMqaypsYb-JrwVshoYMW6l1lrsu74mEq2FLKYlmp2HaDjSBNB1bM-8aWasx9IAlfL86G6RaHHnqm3k1S7y2IavX6aM_320bbI5B5K0XWV-h9Qw3SUbS_aCDfJYlfswp7OElgOOPjSyzGg1q5PKVNGrlycaSaMApNcyl7T0KDHOzVabmq0iw-eqw50Oi-wdP_fIuHsz6vSs-QwFCzzm5FYg0Fi2gR8AS1zpgoAw5lw5noYiCTIuJJOukJx7HFtcafalARMHpoBhiMzbJ_V0luIBoX6oA8wSGUtwfPRBhCE6CHqhQaWrwkPSMHGZvlU2GdN5SI7-vnxO1nqjqD_t3w7uj8m6yVNV2Tgh9Twr8FSf9Xl8Vqb4G2trqO0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Internet+of+Underwater+Things+and+Big+Marine+Data+Analytics-A+Comprehensive+Survey&rft.jtitle=IEEE+Communications+surveys+and+tutorials&rft.au=Jahanbakht%2C+Mohammad&rft.au=Xiang%2C+Wei&rft.au=Hanzo%2C+Lajos&rft.au=Rahimi+Azghadi%2C+Mostafa&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2373-745X&rft.volume=23&rft.issue=2&rft.spage=904&rft.epage=956&rft_id=info:doi/10.1109%2FCOMST.2021.3053118&rft.externalDocID=9328873