A Switchable Deep Learning Approach for In-Loop Filtering in Video Coding

Deep learning provides a great potential for in-loop filtering to improve both coding efficiency and subjective quality in video coding. State-of-the-art work focuses on network structure design and employs a single powerful network to solve all problems. In contrast, this paper proposes a deep lear...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 30; no. 7; pp. 1871 - 1887
Main Authors Ding, Dandan, Kong, Lingyi, Chen, Guangyao, Liu, Zoe, Fang, Yong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning provides a great potential for in-loop filtering to improve both coding efficiency and subjective quality in video coding. State-of-the-art work focuses on network structure design and employs a single powerful network to solve all problems. In contrast, this paper proposes a deep learning based systematic approach that includes an effective Convolutional Neural Network (CNN) structure, a hierarchical training strategy, and a video codec oriented switchable mechanism. First, we propose a novel CNN structure, i.e., Squeeze-and-Excitation Filtering CNN (SEFCNN), as an optional in-loop filter. To capture the non-linear interaction between channels, the SEFCNN is comprised of two subnets, i.e., Feature EXtracting (FEX) subnet and Feature ENhancing (FEN) subnet. Then, we develop a hierarchical model training strategy to adapt the two subnets to different coding scenarios. For high-rate videos with small artifacts, we train a single global model using the FEX for all types of frames, whereas for low-rate videos with large artifacts, different models are trained using both FEX and FEN for different types of frames. Finally, we propose an adaptive enhancing mechanism which is switchable between the CNN-based and the conventional methods. We selectively apply the CNN model to some frames or some regions in a frame. Experimental results show that the proposed scheme outperforms state-of-the-art work in coding efficiency, while the computational complexity is acceptable after GPU acceleration.
AbstractList Deep learning provides a great potential for in-loop filtering to improve both coding efficiency and subjective quality in video coding. State-of-the-art work focuses on network structure design and employs a single powerful network to solve all problems. In contrast, this paper proposes a deep learning based systematic approach that includes an effective Convolutional Neural Network (CNN) structure, a hierarchical training strategy, and a video codec oriented switchable mechanism. First, we propose a novel CNN structure, i.e., Squeeze-and-Excitation Filtering CNN (SEFCNN), as an optional in-loop filter. To capture the non-linear interaction between channels, the SEFCNN is comprised of two subnets, i.e., Feature EXtracting (FEX) subnet and Feature ENhancing (FEN) subnet. Then, we develop a hierarchical model training strategy to adapt the two subnets to different coding scenarios. For high-rate videos with small artifacts, we train a single global model using the FEX for all types of frames, whereas for low-rate videos with large artifacts, different models are trained using both FEX and FEN for different types of frames. Finally, we propose an adaptive enhancing mechanism which is switchable between the CNN-based and the conventional methods. We selectively apply the CNN model to some frames or some regions in a frame. Experimental results show that the proposed scheme outperforms state-of-the-art work in coding efficiency, while the computational complexity is acceptable after GPU acceleration.
Author Ding, Dandan
Kong, Lingyi
Chen, Guangyao
Liu, Zoe
Fang, Yong
Author_xml – sequence: 1
  givenname: Dandan
  surname: Ding
  fullname: Ding, Dandan
  email: dandanding@hznu.edu.cn
  organization: School of Information Science and Engineering, Hangzhou Normal University, Hangzhou, China
– sequence: 2
  givenname: Lingyi
  surname: Kong
  fullname: Kong, Lingyi
  organization: School of Information Science and Engineering, Hangzhou Normal University, Hangzhou, China
– sequence: 3
  givenname: Guangyao
  surname: Chen
  fullname: Chen, Guangyao
  organization: School of Information Science and Engineering, Hangzhou Normal University, Hangzhou, China
– sequence: 4
  givenname: Zoe
  surname: Liu
  fullname: Liu, Zoe
  email: zoeliu@visionular.com
  organization: Visionular Inc., Mountain View, CA, USA
– sequence: 5
  givenname: Yong
  orcidid: 0000-0002-3345-8259
  surname: Fang
  fullname: Fang, Yong
  email: fy@chd.edu.cn
  organization: School of Information Engineering, Chang'an University, Xi'an, China
BookMark eNp9kDFPwzAQhS1UJErhD8BiiTnF58SxPVaFQqVIDC1dI9exqatgBycV4t-T0IqBgenudPe9d3qXaOSDNwjdAJkCEHm_nq826yklIKdUpowRcYbGwJhIKCVs1PeEQSIosAt02bZ7QiATGR-j5QyvPl2nd2pbG_xgTIMLo6J3_g3PmiYGpXfYhoiXPilCaPDC1Z2Jw9p5vHGVCXgeqn6-QudW1a25PtUJel08rufPSfHytJzPikSnOXQJgyyTORMVV9TkSgDPDNFWp1YP7wsB0upM5xk1ksut3VYpWCYUk1TxHGw6QXdH3f65j4Npu3IfDtH3liXNQPbihOf9lThe6RjaNhpbatepzgXfReXqEkg5BFf-BFcOzuUpuB6lf9AmuncVv_6Hbo-QM8b8AkIQEJyn3wTxeec
CODEN ITCTEM
CitedBy_id crossref_primary_10_1016_j_dcan_2023_09_001
crossref_primary_10_1109_TCSVT_2021_3096072
crossref_primary_10_3390_electronics13122422
crossref_primary_10_1109_LSP_2023_3277343
crossref_primary_10_1109_TCYB_2020_2998481
crossref_primary_10_1109_TIP_2021_3084345
crossref_primary_10_3390_app14188276
crossref_primary_10_1016_j_image_2023_117005
crossref_primary_10_1109_TCSVT_2024_3420435
crossref_primary_10_1109_TMM_2023_3316429
crossref_primary_10_1007_s11042_021_11214_2
crossref_primary_10_1109_TCSVT_2021_3089498
crossref_primary_10_1109_TMM_2023_3304895
crossref_primary_10_1109_TCSVT_2023_3270729
crossref_primary_10_1049_ipr2_12644
crossref_primary_10_1109_ACCESS_2021_3075623
crossref_primary_10_1109_OJSP_2021_3092598
crossref_primary_10_1109_TMM_2023_3269663
crossref_primary_10_1109_TVCG_2024_3375861
crossref_primary_10_3390_s24010299
crossref_primary_10_1016_j_image_2020_115956
crossref_primary_10_1016_j_image_2021_116409
crossref_primary_10_1145_3551641
crossref_primary_10_1109_ACCESS_2023_3301145
crossref_primary_10_1109_TCSVT_2023_3323483
crossref_primary_10_1109_TIP_2022_3152627
crossref_primary_10_1016_j_dsp_2021_103368
crossref_primary_10_1109_MMUL_2022_3159372
crossref_primary_10_1109_TDSC_2022_3140899
crossref_primary_10_1109_TIP_2021_3134465
crossref_primary_10_3390_s23052631
crossref_primary_10_3390_s24061907
crossref_primary_10_1109_TCSVT_2022_3213515
crossref_primary_10_1109_TBC_2022_3152064
crossref_primary_10_1145_3612925
crossref_primary_10_1109_TCSVT_2023_3260266
crossref_primary_10_1109_JPROC_2021_3059994
Cites_doi 10.1109/TCSVT.2003.815165
10.1109/CVPRW.2017.149
10.1109/PCS.2018.8456278
10.1109/ICCV.2015.73
10.1109/CVPRW.2017.151
10.1109/TCSVT.2018.2816932
10.1109/ISCAS.2017.8050458
10.1109/TCSVT.2012.2221529
10.1109/CVPR.2018.00262
10.1109/ICIP.2017.8296236
10.3115/v1/D14-1179
10.1109/ICME.2017.8019299
10.1109/TCSVT.2017.2727682
10.1109/TPAMI.2015.2439281
10.1109/ICASSP.2017.7952409
10.1007/978-3-319-73600-6_6
10.1007/978-3-319-06895-4
10.1109/VCIP.2017.8305149
10.1109/ICIP.2017.8296284
10.1109/TCSVT.2017.2734838
10.1109/CVPR.2018.00745
10.1109/DCC.2018.00027
10.1007/978-3-319-51811-4_3
10.5594/M001518
10.1109/DCC.2017.42
10.1109/ICIP.2018.8451589
10.1109/VCIP.2017.8305033
10.1109/IVMSPW.2016.7528223
10.1109/VCIP.2017.8305104
10.1109/PCS.2018.8456249
10.1109/ICIP.2018.8451086
10.1109/CVPR.2016.182
10.1109/TIP.2018.2815841
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2019.2935508
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1887
ExternalDocumentID 10_1109_TCSVT_2019_2935508
8801877
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Fund for the Central Universities of China
  grantid: 300102249304; 310824173601; 300102248303
  funderid: 10.13039/501100012226
– fundername: Google Chrome University Research Program
  funderid: 10.13039/100006785
– fundername: National Key Research and Development Program of China
  grantid: 2017YFB1002803
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-51449658d7a2e6a8174e0cfc3fc20198819fc4c642e979bfbd31f58a592a761f3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 04:31:23 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Tue Jul 01 00:41:13 EDT 2025
Wed Aug 27 02:02:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-51449658d7a2e6a8174e0cfc3fc20198819fc4c642e979bfbd31f58a592a761f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3345-8259
PQID 2419496076
PQPubID 85433
PageCount 17
ParticipantIDs crossref_primary_10_1109_TCSVT_2019_2935508
crossref_citationtrail_10_1109_TCSVT_2019_2935508
ieee_primary_8801877
proquest_journals_2419496076
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
hsiao (ref43) 2019
ref11
ref10
wang (ref45) 2019
ref17
ref16
(ref51) 0
ref19
bjøntegaard (ref41) 2001
ref18
wiegand (ref6) 2003; 13
ref50
ballé (ref12) 2017
ref42
sze (ref5) 2014
ref49
(ref2) 2013
ref7
ref4
ref3
ref40
valin (ref8) 2016
ref35
ref34
ref37
ref36
tsai (ref15) 2018
ref30
ref33
ref32
yao (ref44) 2019
ref39
ref38
yang (ref31) 2018
wang (ref47) 2019
theis (ref14) 2017
ref24
ref23
ref26
ref25
ref20
ref22
he (ref48) 2016
midtskogen (ref9) 2016
ref28
ref29
(ref1) 2003
yu (ref27) 2018
zhang (ref21) 2017
yin (ref46) 2019
References_xml – volume: 13
  start-page: 560
  year: 2003
  ident: ref6
  article-title: overview of the h.264/avc video coding standard
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2003.815165
– ident: ref50
  doi: 10.1109/CVPRW.2017.149
– ident: ref32
  doi: 10.1109/PCS.2018.8456278
– ident: ref28
  doi: 10.1109/ICCV.2015.73
– year: 2001
  ident: ref41
  publication-title: Calculation of average PSNR Differences between RDcurves
– ident: ref26
  doi: 10.1109/CVPRW.2017.151
– ident: ref11
  doi: 10.1109/TCSVT.2018.2816932
– start-page: 1
  year: 2017
  ident: ref21
  article-title: Learning a CNN for fractional interpolation in HEVC inter coding
  publication-title: Proc IEEE Vis Commun Image Process (VCIP)
– year: 2019
  ident: ref43
  publication-title: Convolutional Neural Network Loop Filter
– ident: ref22
  doi: 10.1109/ISCAS.2017.8050458
– start-page: 15
  year: 2017
  ident: ref12
  article-title: End-to-end optimized image compression
  publication-title: Proc Int Conf Learn Represent (ICLR)
– year: 2003
  ident: ref1
– start-page: 2621
  year: 2018
  ident: ref27
  article-title: Wide-activated deep residual networks based restoration for BPG-compressed images
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– year: 0
  ident: ref51
– start-page: 1
  year: 2018
  ident: ref15
  article-title: Learning binary residual representations for domain-specific video streaming
  publication-title: Proc Am Assoc for Artificial Intelligence (AAAI)
– year: 2019
  ident: ref45
  publication-title: CE13 Dense Residual Convolutional Neural Network based In-Loop Filter (Test 2 2 and 2 3)
– ident: ref7
  doi: 10.1109/TCSVT.2012.2221529
– ident: ref25
  doi: 10.1109/CVPR.2018.00262
– ident: ref37
  doi: 10.1109/ICIP.2017.8296236
– start-page: 1
  year: 2017
  ident: ref14
  article-title: Lossy image compression with compressive autoencoders
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref42
  doi: 10.3115/v1/D14-1179
– ident: ref30
  doi: 10.1109/ICME.2017.8019299
– ident: ref18
  doi: 10.1109/TCSVT.2017.2727682
– ident: ref23
  doi: 10.1109/TPAMI.2015.2439281
– ident: ref13
  doi: 10.1109/ICASSP.2017.7952409
– ident: ref19
  doi: 10.1007/978-3-319-73600-6_6
– year: 2014
  ident: ref5
  publication-title: High Efficiency Video Coding (HEVC) Algorithms and Architectures
  doi: 10.1007/978-3-319-06895-4
– ident: ref38
  doi: 10.1109/VCIP.2017.8305149
– start-page: 630
  year: 2016
  ident: ref48
  article-title: Identity mappings in deep residual networks
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref10
  doi: 10.1109/ICIP.2017.8296284
– year: 2019
  ident: ref47
  publication-title: CE13-Related In-Loop Filter With Only CNN-Based Filter
– ident: ref17
  doi: 10.1109/TCSVT.2017.2734838
– ident: ref49
  doi: 10.1109/CVPR.2018.00745
– ident: ref40
  doi: 10.1109/DCC.2018.00027
– ident: ref36
  doi: 10.1007/978-3-319-51811-4_3
– year: 2016
  ident: ref9
  publication-title: Constrained Low Pass Filter Network Working Group Internet Draft
– year: 2013
  ident: ref2
– ident: ref3
  doi: 10.5594/M001518
– ident: ref29
  doi: 10.1109/DCC.2017.42
– start-page: 1
  year: 2018
  ident: ref31
  article-title: Enhancing quality for HEVC compressed videos
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref33
  doi: 10.1109/ICIP.2018.8451589
– ident: ref16
  doi: 10.1109/VCIP.2017.8305033
– ident: ref35
  doi: 10.1109/IVMSPW.2016.7528223
– ident: ref20
  doi: 10.1109/VCIP.2017.8305104
– ident: ref4
  doi: 10.1109/PCS.2018.8456249
– year: 2019
  ident: ref44
  publication-title: CE13-2 1 Convolutional Neural Network Filter (CNNF) for Intra Frame
– ident: ref34
  doi: 10.1109/ICIP.2018.8451086
– year: 2016
  ident: ref8
  publication-title: A Deringing Filter for Daala... and Beyond
– ident: ref24
  doi: 10.1109/CVPR.2016.182
– ident: ref39
  doi: 10.1109/TIP.2018.2815841
– year: 2019
  ident: ref46
  publication-title: Adaptive Convolutional Neural Network Loop Filter
SSID ssj0014847
Score 2.5381255
Snippet Deep learning provides a great potential for in-loop filtering to improve both coding efficiency and subjective quality in video coding. State-of-the-art work...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1871
SubjectTerms Adaptation models
Artificial neural networks
CNN
Codec
Coding
Correlation
Deep learning
Encoding
enhancement
Feature extraction
Filtration
Frames (data processing)
in-loop filter
Machine learning
Structural hierarchy
Training
Video coding
Title A Switchable Deep Learning Approach for In-Loop Filtering in Video Coding
URI https://ieeexplore.ieee.org/document/8801877
https://www.proquest.com/docview/2419496076
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGTnDgjRgMlAM36OgzTY_TYNoQcGEgblWTOmgCtRNsQuLXE2dthQAhbpWaKKntNp9r-zPASRhJGXGlHDeQrhMqTsXKPHKEzLUxB5QCqXb45paP7sOrx-ixBWdNLQwi2uQz7NGljeXnpVrQr7JzY2ueiOMVWDGO27JWq4kYhMI2EzNwwTOreVFdIOMm55PB3cOEsriSnk904tRK8sshZLuq_PgU2_NluAE39c6WaSXPvcVc9tTHN9LG_259E9YroMn6S8vYghYW27D2hX5wB8Z9dvc-NWqj8il2gThjFd3qE-tXXOPMgFo2Lpzrspyx4ZRi63R7WrCHaY4lG5R0-O3C_fByMhg5VWsFRwXcmzsGJhFRvMjjzEeeCeOXoKu0CrQiOQmDE7Qymgt9TOJEapkHno5EFiV-FnNPB3vQLsoC94FlsYs8ybh5wDjUws2QgrmhDownkgU87IBXyzpVFe84tb94Sa3_4Sap1U9K66aVfjpw2syZLVk3_hy9QwJvRlay7kC3VmlavZhvqQEsiXlyN-YHv886hFWfXGqbkduF9vx1gUcGd8zlsTW4TxgE0UM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NTxsxEB1ROLQ9AC1FDV_1oT1VG_bTax84RIEoKYELAXHbrr3jKmq1G5VECH5L_0r_G2PHiVBbcUPqbaVd7649T55ne-YNwMc0UyrjWgdhosIg1dwmK_MsEKoyBAdUAm3u8Nk571-mX66z6xX4tcyFQUQXfIZte-nO8qtGz-xW2SFhLRJ57kMoT_HulhZoN0eDY7LmpzjunYy6_cDXEAh0wqNpQHzAKqKLKi9j5KUgAo6hNjoxmlyfFOQQjaZfTGOUuVRGVUlkMlFmMi5phW8Seu8LWCOekcXz7LDlGUUqXPkyIigR9S_KFik5oTwcdS-uRjZuTLZjK2Bui1c-cnuujstfk7_zaL0N-L0Yi3kgy_f2bKra-v4Pmcj_dbA2Yd1TadaZY_8NrGD9Fl4_EljcgkGHXdyOCZg2QYwdI06YF5T9xjpeTZ0RbWeDOhg2zYT1xjZ6wN4e1-xqXGHDuo117-_g8ln6sg2rdVPje2BlHiKXJacBzVMjwhLtcXVqElprlQlPWxAtbFtor6xuC3z8KNwKK5SFw0Nhv1t4PLTg87LNZK4r8uTTW9bAyye9bVuwt4BQ4aeem4IomaSehznf-XerD_CyPzobFsPB-ekuvIrtBoKLP96D1enPGe4Ty5qqAwd2Bl-fGzAPjLItqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Switchable+Deep+Learning+Approach+for+In-Loop+Filtering+in+Video+Coding&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Ding%2C+Dandan&rft.au=Kong%2C+Lingyi&rft.au=Chen%2C+Guangyao&rft.au=Liu%2C+Zoe&rft.date=2020-07-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=30&rft.issue=7&rft.spage=1871&rft.epage=1887&rft_id=info:doi/10.1109%2FTCSVT.2019.2935508&rft.externalDocID=8801877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon