Surface integrity and fatigue properties of Ti–6Al–4V alloy under the ultrasonic surface rolling process excited strain rate effect
Ultrasonic surface rolling process is a novel surface enhancement technique that significantly influences the surface integrity and fatigue performance of titanium alloys. In this study, the ultrasonic impact strengthening mechanism was researched by single-point ultrasonic impact strengthening expe...
Saved in:
Published in | Journal of materials research and technology Vol. 35; pp. 416 - 434 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2025
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2238-7854 |
DOI | 10.1016/j.jmrt.2025.01.024 |
Cover
Abstract | Ultrasonic surface rolling process is a novel surface enhancement technique that significantly influences the surface integrity and fatigue performance of titanium alloys. In this study, the ultrasonic impact strengthening mechanism was researched by single-point ultrasonic impact strengthening experiment and verified in ultrasonic surface rolling process under actual working conditions. The effects of different ultrasonic impact amplitudes on the deformation strain rate, surface morphology, microstructure, hardness field and residual compressive stress field of Ti–6Al–4V workpieces after USRP were investigated. In the process of single point ultrasonic impact, the impact kinetic energy applied to the workpiece surface is positively correlated with the ultrasonic amplitude, and this could lead to a high strain rate plastic deformation of the material surface. After USRP treatment, the hardness distribution of the workpiece in the depth direction shows a trend of first increasing and then decreasing until it reaches the hardness level of the substrate. Compared with the deeper layer deformed region, the number of low-angle grain boundaries (LAGB) was larger at the surface layer of workpiece, which indicates that the degree of grain refinement is significantly improved. The fatigue failure mechanisms and the characteristics of fatigue crack initiation and propagation were studied. Under the condition of ultrasonic amplitude of 4 μm, the fatigue life of Ti–6Al–4V workpiece after USRP could reach about 7,529,116 cycles. This study could provide effective guidance for the mechanisms of ultrasonic impact strengthening and the selection of appropriate ultrasonic impact parameters for titanium alloy workpiece. |
---|---|
AbstractList | Ultrasonic surface rolling process is a novel surface enhancement technique that significantly influences the surface integrity and fatigue performance of titanium alloys. In this study, the ultrasonic impact strengthening mechanism was researched by single-point ultrasonic impact strengthening experiment and verified in ultrasonic surface rolling process under actual working conditions. The effects of different ultrasonic impact amplitudes on the deformation strain rate, surface morphology, microstructure, hardness field and residual compressive stress field of Ti–6Al–4V workpieces after USRP were investigated. In the process of single point ultrasonic impact, the impact kinetic energy applied to the workpiece surface is positively correlated with the ultrasonic amplitude, and this could lead to a high strain rate plastic deformation of the material surface. After USRP treatment, the hardness distribution of the workpiece in the depth direction shows a trend of first increasing and then decreasing until it reaches the hardness level of the substrate. Compared with the deeper layer deformed region, the number of low-angle grain boundaries (LAGB) was larger at the surface layer of workpiece, which indicates that the degree of grain refinement is significantly improved. The fatigue failure mechanisms and the characteristics of fatigue crack initiation and propagation were studied. Under the condition of ultrasonic amplitude of 4 μm, the fatigue life of Ti–6Al–4V workpiece after USRP could reach about 7,529,116 cycles. This study could provide effective guidance for the mechanisms of ultrasonic impact strengthening and the selection of appropriate ultrasonic impact parameters for titanium alloy workpiece. |
Author | Qin, Hao Xi, Linqing Jiang, Feng Jiang, Qingshan Chen, Xiao Xu, Zhilong Zha, Xuming Li, Yi Yuan, Zhi |
Author_xml | – sequence: 1 givenname: Xuming surname: Zha fullname: Zha, Xuming email: xmzha@jmu.edu.cn organization: College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, China – sequence: 2 givenname: Hao surname: Qin fullname: Qin, Hao organization: College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, China – sequence: 3 givenname: Zhi surname: Yuan fullname: Yuan, Zhi organization: College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, China – sequence: 4 givenname: Linqing surname: Xi fullname: Xi, Linqing organization: College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, China – sequence: 5 givenname: Xiao surname: Chen fullname: Chen, Xiao organization: College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, China – sequence: 6 givenname: Yi surname: Li fullname: Li, Yi organization: College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, China – sequence: 7 givenname: Qingshan surname: Jiang fullname: Jiang, Qingshan organization: College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, China – sequence: 8 givenname: Zhilong surname: Xu fullname: Xu, Zhilong organization: College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, China – sequence: 9 givenname: Feng surname: Jiang fullname: Jiang, Feng email: jiangfeng@hqu.edu.cn organization: Institute of Manufacturing Engineering, Huaqiao University, Xiamen, 361021, China |
BookMark | eNp9kU1uFDEQhXsRJJKQC7DyBabxf7ulbKKIn0iRskhga1W7y4NbHXtkexCzY8cBuCEnwcNELNlUSaV6n-rVu-jOYorYdW8Z7Rll-t3SL8-59pxy1VPWUy7PunPOhdkMRsnX3VUpC6WUqVFTw867n4_77MEhCbHiNod6IBBn4qGG7R7JLqcd5hqwkOTJU_j945e-WVuVXwisazqQfZwxk_oVyX6tGUqKwZHyAs1pXUPcHjEOSyH43YWKMyltM0SSoSJB79HVN90rD2vBq5d-2X3-8P7p9tPm_uHj3e3N_cYJzepG-gmkocIPYnLgvXMMGPhRMTlqx6kZRjfoaRq1GoFR4xRMHJmkahiEo0pcdncn7pxgsbscniEfbIJg_w5S3lpoft2KlgLVQrH2LM2kEeOIXk9cCGG4cRJ1Y_ETy-VUSkb_j8eoPaZhF3tMwx7TsJTZlkYTXZ9E2Fx-C5htcQGjwznk9od2Rvif_A_jSZo7 |
Cites_doi | 10.1016/j.jmrt.2021.05.065 10.1016/j.ijfatigue.2016.11.034 10.1016/j.ijplas.2024.104128 10.1016/j.rcim.2022.102389 10.1016/j.jmrt.2023.09.225 10.1016/j.jmapro.2022.05.046 10.1016/j.surfcoat.2019.04.080 10.1016/j.ijmecsci.2019.105144 10.1016/j.matdes.2023.112156 10.1186/s10033-021-00631-x 10.3390/ma7127925 10.1080/21663831.2016.1153004 10.1016/S0142-1123(98)00002-4 10.1016/j.ijfatigue.2019.03.042 10.1016/j.ijfatigue.2023.107896 10.1126/science.1080216 10.1016/j.msea.2019.138696 10.1007/s40436-020-00329-8 10.1016/j.ijmecsci.2022.107987 10.1016/j.simpat.2020.102121 10.1016/j.jmapro.2023.01.023 10.1016/j.jacomc.2024.100019 10.1016/j.surfcoat.2021.127889 10.1016/j.actamat.2015.10.041 10.1016/j.jallcom.2022.167796 10.1016/j.jmapro.2023.07.014 10.1016/j.ijmecsci.2019.05.009 10.1016/j.matdes.2016.07.132 10.1016/j.jmrt.2020.10.088 10.1016/j.msea.2014.06.114 10.1016/j.jmrt.2024.03.107 10.1038/ncomms13434 10.1016/j.msea.2022.143260 10.1016/j.ijfatigue.2016.11.032 10.1016/j.surfcoat.2017.04.051 10.1088/2631-7990/ab263f 10.1016/j.msea.2021.141049 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jmrt.2025.01.024 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals (WRLC) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 434 |
ExternalDocumentID | oai_doaj_org_article_0a063510016148399ef6b2333828c4e6 10_1016_j_jmrt_2025_01_024 S2238785425000249 |
GroupedDBID | 0R~ 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ABXRA ACGFS ADBBV ADCUG ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB FNPLU GROUPED_DOAJ GX1 HH5 HZ~ IPNFZ IXB KQ8 M41 O9- OK1 RIG ROL SSZ AAYWO AAYXX CITATION |
ID | FETCH-LOGICAL-c361t-4fba4803f73bcaffcc1a1af951496c20879c76bb9659a108c5ab2e1405773c053 |
IEDL.DBID | IXB |
ISSN | 2238-7854 |
IngestDate | Wed Aug 27 01:32:26 EDT 2025 Tue Jul 01 05:03:25 EDT 2025 Sat Apr 12 15:20:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Surface integrity Ultrasonic surface rolling process Fatigue properties Strain rate effect Strengthening mechanism |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-4fba4803f73bcaffcc1a1af951496c20879c76bb9659a108c5ab2e1405773c053 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2238785425000249 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0a063510016148399ef6b2333828c4e6 crossref_primary_10_1016_j_jmrt_2025_01_024 elsevier_sciencedirect_doi_10_1016_j_jmrt_2025_01_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March-April 2025 2025-03-00 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March-April 2025 |
PublicationDecade | 2020 |
PublicationTitle | Journal of materials research and technology |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Tong, Tao, Wang (bib15) 2003; 299 Zhu, Gong, Zhang (bib22) 2022; 78 Ding, Zou, Hua (bib16) 2023; 242 Zhao, Sun, Xin (bib1) 2022; 845 Yuan, Li, Bi (bib20) 2024; 30 Zhang, Deng, Liu (bib25) 2019; 163 Wang, Men, Liu (bib26) 2020; 104 Cuddihy, Stapleton, Williams (bib3) 2017; 97 Cheng, Wang, Wang (bib24) 2023; 232 Smith, Esser, Antolin (bib12) 2016; 7 Gujba, Medraj (bib19) 2014; 7 Liu, Chen, He (bib5) 2021; 811 Li, Guo, Rui (bib11) 2023; 176 Teimouri, Skoczypiec (bib30) 2022; 80 Wang, Gao, Liu (bib38) 2020; 772 Yang, Pan, Yuan (bib17) 2016; 4 Hosseini, Vaghefi, Mirkoohi (bib10) 2023; 102 Liu, Liu, Zhang (bib40) 2019; 125 Wang, Hu, Cheng (bib21) 2021; 428 Liu, Suslov, Li (bib33) 2017; 325 Fitseva, Hanke, dos Santos (bib27) 2016; 110 Yang, He, Huang (bib6) 2017; 99 Zhang, He, Wang (bib7) 2024; 182 Luo, Ren, Jin (bib36) 2021; 13 Wu, Lv, Wang (bib31) 2022; vol. 215 Najafizadeh, Yazdi, Bozorg (bib2) 2024 Liu, Huang, Zhao (bib39) 2021; 34 Kobayashi, Matsui, Murakami (bib18) 1998; 20 Zhou, Yao, Zhao (bib28) 2021; 9 Wang, Xu, Zhai (bib9) 2023; 933 Ye, Telang, Gill (bib37) 2014; 613 Zhang, Liu, Wang (bib35) 2024 Yang, Zhang (bib29) 2019; 1 Vasylyev, Chenakin, Yatsenko (bib32) 2016; 103 Yumak, Aslantaş (bib14) 2020; 9 Meng, Cao, Wan (bib34) 2019; 157 Wang, Chen, Dai (bib4) 2023; 26 Liu, Liu, Zhang (bib23) 2019; 370 Wu, Zheng, Wang (bib8) 2023; 90 Yang, Pan, Yuan (bib13) 2016; 4 Yang (10.1016/j.jmrt.2025.01.024_bib6) 2017; 99 Gujba (10.1016/j.jmrt.2025.01.024_bib19) 2014; 7 Vasylyev (10.1016/j.jmrt.2025.01.024_bib32) 2016; 103 Wang (10.1016/j.jmrt.2025.01.024_bib4) 2023; 26 Yang (10.1016/j.jmrt.2025.01.024_bib17) 2016; 4 Zhou (10.1016/j.jmrt.2025.01.024_bib28) 2021; 9 Hosseini (10.1016/j.jmrt.2025.01.024_bib10) 2023; 102 Zhang (10.1016/j.jmrt.2025.01.024_bib25) 2019; 163 Luo (10.1016/j.jmrt.2025.01.024_bib36) 2021; 13 Wang (10.1016/j.jmrt.2025.01.024_bib9) 2023; 933 Zhang (10.1016/j.jmrt.2025.01.024_bib35) 2024 Fitseva (10.1016/j.jmrt.2025.01.024_bib27) 2016; 110 Ye (10.1016/j.jmrt.2025.01.024_bib37) 2014; 613 Zhang (10.1016/j.jmrt.2025.01.024_bib7) 2024; 182 Liu (10.1016/j.jmrt.2025.01.024_bib5) 2021; 811 Li (10.1016/j.jmrt.2025.01.024_bib11) 2023; 176 Tong (10.1016/j.jmrt.2025.01.024_bib15) 2003; 299 Kobayashi (10.1016/j.jmrt.2025.01.024_bib18) 1998; 20 Liu (10.1016/j.jmrt.2025.01.024_bib39) 2021; 34 Yang (10.1016/j.jmrt.2025.01.024_bib29) 2019; 1 Wu (10.1016/j.jmrt.2025.01.024_bib8) 2023; 90 Najafizadeh (10.1016/j.jmrt.2025.01.024_bib2) 2024 Yumak (10.1016/j.jmrt.2025.01.024_bib14) 2020; 9 Teimouri (10.1016/j.jmrt.2025.01.024_bib30) 2022; 80 Wu (10.1016/j.jmrt.2025.01.024_bib31) 2022; vol. 215 Smith (10.1016/j.jmrt.2025.01.024_bib12) 2016; 7 Yang (10.1016/j.jmrt.2025.01.024_bib13) 2016; 4 Zhu (10.1016/j.jmrt.2025.01.024_bib22) 2022; 78 Yuan (10.1016/j.jmrt.2025.01.024_bib20) 2024; 30 Ding (10.1016/j.jmrt.2025.01.024_bib16) 2023; 242 Liu (10.1016/j.jmrt.2025.01.024_bib23) 2019; 370 Cheng (10.1016/j.jmrt.2025.01.024_bib24) 2023; 232 Wang (10.1016/j.jmrt.2025.01.024_bib38) 2020; 772 Liu (10.1016/j.jmrt.2025.01.024_bib40) 2019; 125 Zhao (10.1016/j.jmrt.2025.01.024_bib1) 2022; 845 Wang (10.1016/j.jmrt.2025.01.024_bib26) 2020; 104 Meng (10.1016/j.jmrt.2025.01.024_bib34) 2019; 157 Cuddihy (10.1016/j.jmrt.2025.01.024_bib3) 2017; 97 Wang (10.1016/j.jmrt.2025.01.024_bib21) 2021; 428 Liu (10.1016/j.jmrt.2025.01.024_bib33) 2017; 325 |
References_xml | – volume: 9 start-page: 15360 year: 2020 end-page: 15380 ident: bib14 article-title: A review on heat treatment efficiency in metastable β titanium alloys: the role of treatment process and parameters publication-title: J Mater Res Technol – volume: 811 year: 2021 ident: bib5 article-title: Tensile and very high cycle fatigue behaviors of a compressor blade titanium alloy at room and high temperatures publication-title: Mater Sci Eng, A – volume: 26 start-page: 9419 year: 2023 end-page: 9436 ident: bib4 article-title: Simulation of residual stress and micro-plastic deformation induced by laser shock imprinting on TC4 titanium alloy aero-engine blade publication-title: J Mater Res Technol – volume: 13 start-page: 1586 year: 2021 end-page: 1598 ident: bib36 article-title: Microstructural evolution and surface integrity of ultrasonic surface rolling in Ti6Al4V alloy publication-title: J Mater Res Technol – volume: 299 start-page: 686 year: 2003 end-page: 688 ident: bib15 article-title: Nitriding iron at lower temperatures publication-title: Science – volume: 80 start-page: 116 year: 2022 end-page: 131 ident: bib30 article-title: Theoretical study including physic-based material model to identify underlying effect of vibration amplitude on residual stress distribution of ultrasonic burnishing process publication-title: J Manuf Process – volume: 325 start-page: 289 year: 2017 end-page: 298 ident: bib33 article-title: Effects of ultrasonic nanocrystal surface modification on the thermal oxidation behavior of Ti6Al4V publication-title: Surf Coating Technol – volume: 933 year: 2023 ident: bib9 article-title: Effect of surface stress concentration control and surface material strengthening on the fatigue performance of shot-peened single-crystal superalloy publication-title: J Alloys Compd – volume: 34 start-page: 1 year: 2021 end-page: 16 ident: bib39 article-title: Effect of machined surface integrity on fatigue performance of metal workpiece: a review publication-title: Chin J Mech Eng – volume: 4 start-page: 145 year: 2016 end-page: 151 ident: bib13 article-title: Back stress strengthening and strain hardening in gradient structure publication-title: Materials Research Letters – volume: 90 start-page: 357 year: 2023 end-page: 366 ident: bib8 article-title: Formation mechanism of nano-crystal on the blade surface produced by low-plasticity ultrasonic rolling strengthening process publication-title: J Manuf Process – year: 2024 ident: bib2 article-title: Classification and applications of titanium and its alloys: a review publication-title: Journal of Alloys and Compounds Communications – volume: 104 year: 2020 ident: bib26 article-title: Experiment and simulation study on influence of ultrasonic rolling parameters on residual stress of Ti-6Al-4V alloy publication-title: Simulat Model Pract Theor – volume: 4 start-page: 145 year: 2016 end-page: 151 ident: bib17 article-title: Back stress strengthening and strain hardening in gradient structure publication-title: Materials Research Letters – volume: vol. 215 year: 2022 ident: bib31 publication-title: Surface micro-morphology and residual stress formation mechanisms of near-net-shaped blade produced by low-plasticity ultrasonic rolling strengthening process – volume: 242 year: 2023 ident: bib16 article-title: Carburizing effect-inspired bending fatigue forecasting model for spiral bevel gears publication-title: Int J Mech Sci – volume: 30 start-page: 1319 year: 2024 end-page: 1340 ident: bib20 article-title: Review on numerical simulation of ultrasonic impact treatment (UIT): present situation and prospect publication-title: J Mater Res Technol – volume: 370 start-page: 24 year: 2019 end-page: 34 ident: bib23 article-title: On the influence of ultrasonic surface rolling process on surface integrity and fatigue performance of Ti-6Al-4V alloy publication-title: Surf Coating Technol – volume: 9 start-page: 160 year: 2021 end-page: 171 ident: bib28 article-title: Effect of ultrasonic impact treatment on the surface integrity of nickel alloy 718 publication-title: Advances in Manufacturing – volume: 102 start-page: 549 year: 2023 end-page: 563 ident: bib10 article-title: The role of defect structure and residual stress on fatigue failure mechanisms of Ti-6Al-4V manufactured via laser powder bed fusion: effect of process parameters and geometrical factors publication-title: J Manuf Process – volume: 176 year: 2023 ident: bib11 article-title: High-temperature fatigue behavior of TC17 titanium alloy and influence of surface oxidation publication-title: Int J Fatig – volume: 613 start-page: 274 year: 2014 end-page: 288 ident: bib37 article-title: Gradient nanostructure and residual stresses induced by Ultrasonic Nano-crystal Surface Modification in 304 austenitic stainless steel for high strength and high ductility publication-title: Mater Sci Eng, A – volume: 163 year: 2019 ident: bib25 article-title: Investigation into contributions of static and dynamic loads to compressive residual stress fields caused by ultrasonic surface rolling publication-title: Int J Mech Sci – volume: 772 year: 2020 ident: bib38 article-title: Investigation of microstructural evolution in a selective laser melted Ti6Al4V alloy induced by an ultrasonic surface rolling process publication-title: Mater Sci Eng, A – volume: 7 start-page: 7925 year: 2014 end-page: 7974 ident: bib19 article-title: Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening publication-title: J Mater – volume: 182 year: 2024 ident: bib7 article-title: Revealing the fatigue strengthening and damage mechanisms of surface-nanolaminated gradient structure publication-title: Int J Plast – volume: 110 start-page: 112 year: 2016 end-page: 123 ident: bib27 article-title: The role of process temperature and rotational speed in the microstructure evolution of Ti-6Al-4V friction surfacing coatings publication-title: Mater Des – volume: 78 year: 2022 ident: bib22 article-title: Robot-assisted ultrasonic impact strengthening strategy for aero-engine blades publication-title: Robot Comput Integrated Manuf – volume: 845 year: 2022 ident: bib1 article-title: High-strength titanium alloys for aerospace engineering applications: a review on melting-forging process publication-title: Mater Sci Eng, A – volume: 1 year: 2019 ident: bib29 article-title: Material embrittlement in high strain-rate loading publication-title: Int J Extrem Manuf – volume: 99 start-page: 35 year: 2017 end-page: 43 ident: bib6 article-title: Very high cycle fatigue behaviors of a turbine engine blade alloy at various stress ratios publication-title: Int J Fatig – volume: 7 year: 2016 ident: bib12 article-title: Phase transformation strengthening of high-temperature superalloys publication-title: Nat Commun – volume: 103 start-page: 761 year: 2016 end-page: 774 ident: bib32 article-title: Ultrasonic impact treatment induced oxidation of Ti6Al4V alloy publication-title: Acta Mater – volume: 20 start-page: 351 year: 1998 end-page: 357 ident: bib18 article-title: Mechanism of creation of compressive residual stress by shot peening publication-title: Int J Fatig – volume: 428 year: 2021 ident: bib21 article-title: Experimental investigation and numerical study on ultrasonic impact treatment of pure copper publication-title: Surf Coating Technol – volume: 232 year: 2023 ident: bib24 article-title: Ultrasonic surface rolling strengthening and its parameter optimization on bearing raceway publication-title: Mater Des – volume: 97 start-page: 177 year: 2017 end-page: 189 ident: bib3 article-title: On cold dwell facet fatigue in titanium alloy aero-engine components publication-title: Int J Fatig – year: 2024 ident: bib35 article-title: Effect of high-frequency dynamic characteristics in the ultrasonic surface rolling process on the surface properties publication-title: J Mater Process Technol – volume: 125 start-page: 249 year: 2019 end-page: 260 ident: bib40 article-title: Fretting fatigue characteristics of Ti-6Al-4V alloy with a gradient nanostructured surface layer induced by ultrasonic surface rolling process publication-title: Int J Fatig – volume: 157 start-page: 609 year: 2019 end-page: 618 ident: bib34 article-title: Constitutive behavior and microstructural evolution in ultrasonic vibration assisted deformation of ultrathin superalloy sheet publication-title: Int J Mech Sci – volume: 13 start-page: 1586 year: 2021 ident: 10.1016/j.jmrt.2025.01.024_bib36 article-title: Microstructural evolution and surface integrity of ultrasonic surface rolling in Ti6Al4V alloy publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2021.05.065 – year: 2024 ident: 10.1016/j.jmrt.2025.01.024_bib35 article-title: Effect of high-frequency dynamic characteristics in the ultrasonic surface rolling process on the surface properties publication-title: J Mater Process Technol – volume: 97 start-page: 177 year: 2017 ident: 10.1016/j.jmrt.2025.01.024_bib3 article-title: On cold dwell facet fatigue in titanium alloy aero-engine components publication-title: Int J Fatig doi: 10.1016/j.ijfatigue.2016.11.034 – volume: 182 year: 2024 ident: 10.1016/j.jmrt.2025.01.024_bib7 article-title: Revealing the fatigue strengthening and damage mechanisms of surface-nanolaminated gradient structure publication-title: Int J Plast doi: 10.1016/j.ijplas.2024.104128 – volume: 78 year: 2022 ident: 10.1016/j.jmrt.2025.01.024_bib22 article-title: Robot-assisted ultrasonic impact strengthening strategy for aero-engine blades publication-title: Robot Comput Integrated Manuf doi: 10.1016/j.rcim.2022.102389 – volume: 26 start-page: 9419 year: 2023 ident: 10.1016/j.jmrt.2025.01.024_bib4 article-title: Simulation of residual stress and micro-plastic deformation induced by laser shock imprinting on TC4 titanium alloy aero-engine blade publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2023.09.225 – volume: 80 start-page: 116 year: 2022 ident: 10.1016/j.jmrt.2025.01.024_bib30 article-title: Theoretical study including physic-based material model to identify underlying effect of vibration amplitude on residual stress distribution of ultrasonic burnishing process publication-title: J Manuf Process doi: 10.1016/j.jmapro.2022.05.046 – volume: 370 start-page: 24 year: 2019 ident: 10.1016/j.jmrt.2025.01.024_bib23 article-title: On the influence of ultrasonic surface rolling process on surface integrity and fatigue performance of Ti-6Al-4V alloy publication-title: Surf Coating Technol doi: 10.1016/j.surfcoat.2019.04.080 – volume: 163 year: 2019 ident: 10.1016/j.jmrt.2025.01.024_bib25 article-title: Investigation into contributions of static and dynamic loads to compressive residual stress fields caused by ultrasonic surface rolling publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2019.105144 – volume: 232 year: 2023 ident: 10.1016/j.jmrt.2025.01.024_bib24 article-title: Ultrasonic surface rolling strengthening and its parameter optimization on bearing raceway publication-title: Mater Des doi: 10.1016/j.matdes.2023.112156 – volume: 34 start-page: 1 year: 2021 ident: 10.1016/j.jmrt.2025.01.024_bib39 article-title: Effect of machined surface integrity on fatigue performance of metal workpiece: a review publication-title: Chin J Mech Eng doi: 10.1186/s10033-021-00631-x – volume: 7 start-page: 7925 issue: 12 year: 2014 ident: 10.1016/j.jmrt.2025.01.024_bib19 article-title: Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening publication-title: J Mater doi: 10.3390/ma7127925 – volume: 4 start-page: 145 issue: 3 year: 2016 ident: 10.1016/j.jmrt.2025.01.024_bib17 article-title: Back stress strengthening and strain hardening in gradient structure publication-title: Materials Research Letters doi: 10.1080/21663831.2016.1153004 – volume: 20 start-page: 351 issue: 5 year: 1998 ident: 10.1016/j.jmrt.2025.01.024_bib18 article-title: Mechanism of creation of compressive residual stress by shot peening publication-title: Int J Fatig doi: 10.1016/S0142-1123(98)00002-4 – volume: 125 start-page: 249 year: 2019 ident: 10.1016/j.jmrt.2025.01.024_bib40 article-title: Fretting fatigue characteristics of Ti-6Al-4V alloy with a gradient nanostructured surface layer induced by ultrasonic surface rolling process publication-title: Int J Fatig doi: 10.1016/j.ijfatigue.2019.03.042 – volume: 176 year: 2023 ident: 10.1016/j.jmrt.2025.01.024_bib11 article-title: High-temperature fatigue behavior of TC17 titanium alloy and influence of surface oxidation publication-title: Int J Fatig doi: 10.1016/j.ijfatigue.2023.107896 – volume: 299 start-page: 686 issue: 5607 year: 2003 ident: 10.1016/j.jmrt.2025.01.024_bib15 article-title: Nitriding iron at lower temperatures publication-title: Science doi: 10.1126/science.1080216 – volume: 772 year: 2020 ident: 10.1016/j.jmrt.2025.01.024_bib38 article-title: Investigation of microstructural evolution in a selective laser melted Ti6Al4V alloy induced by an ultrasonic surface rolling process publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2019.138696 – volume: 9 start-page: 160 year: 2021 ident: 10.1016/j.jmrt.2025.01.024_bib28 article-title: Effect of ultrasonic impact treatment on the surface integrity of nickel alloy 718 publication-title: Advances in Manufacturing doi: 10.1007/s40436-020-00329-8 – volume: 242 year: 2023 ident: 10.1016/j.jmrt.2025.01.024_bib16 article-title: Carburizing effect-inspired bending fatigue forecasting model for spiral bevel gears publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2022.107987 – volume: 104 year: 2020 ident: 10.1016/j.jmrt.2025.01.024_bib26 article-title: Experiment and simulation study on influence of ultrasonic rolling parameters on residual stress of Ti-6Al-4V alloy publication-title: Simulat Model Pract Theor doi: 10.1016/j.simpat.2020.102121 – volume: vol. 215 year: 2022 ident: 10.1016/j.jmrt.2025.01.024_bib31 – volume: 90 start-page: 357 year: 2023 ident: 10.1016/j.jmrt.2025.01.024_bib8 article-title: Formation mechanism of nano-crystal on the blade surface produced by low-plasticity ultrasonic rolling strengthening process publication-title: J Manuf Process doi: 10.1016/j.jmapro.2023.01.023 – year: 2024 ident: 10.1016/j.jmrt.2025.01.024_bib2 article-title: Classification and applications of titanium and its alloys: a review publication-title: Journal of Alloys and Compounds Communications doi: 10.1016/j.jacomc.2024.100019 – volume: 428 year: 2021 ident: 10.1016/j.jmrt.2025.01.024_bib21 article-title: Experimental investigation and numerical study on ultrasonic impact treatment of pure copper publication-title: Surf Coating Technol doi: 10.1016/j.surfcoat.2021.127889 – volume: 103 start-page: 761 year: 2016 ident: 10.1016/j.jmrt.2025.01.024_bib32 article-title: Ultrasonic impact treatment induced oxidation of Ti6Al4V alloy publication-title: Acta Mater doi: 10.1016/j.actamat.2015.10.041 – volume: 933 year: 2023 ident: 10.1016/j.jmrt.2025.01.024_bib9 article-title: Effect of surface stress concentration control and surface material strengthening on the fatigue performance of shot-peened single-crystal superalloy publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2022.167796 – volume: 102 start-page: 549 year: 2023 ident: 10.1016/j.jmrt.2025.01.024_bib10 article-title: The role of defect structure and residual stress on fatigue failure mechanisms of Ti-6Al-4V manufactured via laser powder bed fusion: effect of process parameters and geometrical factors publication-title: J Manuf Process doi: 10.1016/j.jmapro.2023.07.014 – volume: 157 start-page: 609 year: 2019 ident: 10.1016/j.jmrt.2025.01.024_bib34 article-title: Constitutive behavior and microstructural evolution in ultrasonic vibration assisted deformation of ultrathin superalloy sheet publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2019.05.009 – volume: 4 start-page: 145 issue: 3 year: 2016 ident: 10.1016/j.jmrt.2025.01.024_bib13 article-title: Back stress strengthening and strain hardening in gradient structure publication-title: Materials Research Letters doi: 10.1080/21663831.2016.1153004 – volume: 110 start-page: 112 year: 2016 ident: 10.1016/j.jmrt.2025.01.024_bib27 article-title: The role of process temperature and rotational speed in the microstructure evolution of Ti-6Al-4V friction surfacing coatings publication-title: Mater Des doi: 10.1016/j.matdes.2016.07.132 – volume: 9 start-page: 15360 issue: 6 year: 2020 ident: 10.1016/j.jmrt.2025.01.024_bib14 article-title: A review on heat treatment efficiency in metastable β titanium alloys: the role of treatment process and parameters publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2020.10.088 – volume: 613 start-page: 274 year: 2014 ident: 10.1016/j.jmrt.2025.01.024_bib37 article-title: Gradient nanostructure and residual stresses induced by Ultrasonic Nano-crystal Surface Modification in 304 austenitic stainless steel for high strength and high ductility publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2014.06.114 – volume: 30 start-page: 1319 year: 2024 ident: 10.1016/j.jmrt.2025.01.024_bib20 article-title: Review on numerical simulation of ultrasonic impact treatment (UIT): present situation and prospect publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2024.03.107 – volume: 7 issue: 1 year: 2016 ident: 10.1016/j.jmrt.2025.01.024_bib12 article-title: Phase transformation strengthening of high-temperature superalloys publication-title: Nat Commun doi: 10.1038/ncomms13434 – volume: 845 year: 2022 ident: 10.1016/j.jmrt.2025.01.024_bib1 article-title: High-strength titanium alloys for aerospace engineering applications: a review on melting-forging process publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2022.143260 – volume: 99 start-page: 35 year: 2017 ident: 10.1016/j.jmrt.2025.01.024_bib6 article-title: Very high cycle fatigue behaviors of a turbine engine blade alloy at various stress ratios publication-title: Int J Fatig doi: 10.1016/j.ijfatigue.2016.11.032 – volume: 325 start-page: 289 year: 2017 ident: 10.1016/j.jmrt.2025.01.024_bib33 article-title: Effects of ultrasonic nanocrystal surface modification on the thermal oxidation behavior of Ti6Al4V publication-title: Surf Coating Technol doi: 10.1016/j.surfcoat.2017.04.051 – volume: 1 issue: 2 year: 2019 ident: 10.1016/j.jmrt.2025.01.024_bib29 article-title: Material embrittlement in high strain-rate loading publication-title: Int J Extrem Manuf doi: 10.1088/2631-7990/ab263f – volume: 811 year: 2021 ident: 10.1016/j.jmrt.2025.01.024_bib5 article-title: Tensile and very high cycle fatigue behaviors of a compressor blade titanium alloy at room and high temperatures publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2021.141049 |
SSID | ssj0001596081 |
Score | 2.3514822 |
Snippet | Ultrasonic surface rolling process is a novel surface enhancement technique that significantly influences the surface integrity and fatigue performance of... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 416 |
SubjectTerms | Fatigue properties Strain rate effect Strengthening mechanism Surface integrity Ultrasonic surface rolling process |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (WRLC) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXc_AmxaZN0vao4iKCXnzgLSQxEUXXpbsLevPmD_Af-kucabpSL3rx0kMpkzIzZb6k33zD2K73MqSGZEMxQRJhQpFURtrEKCW9Mz7zhv7onp2rkytxeiNvOqO-iBMW5YGj4_bRENZE3kATgdW88kHZLMedVVY64Rux7bRKO5up2B-MyLyZUIrlr0yKUoq2YyaSux6eaiJSZq1mp_hRlRrx_k5x6hSc_iJbaJEiHMQ3XGIzfrDM5jv6gSvs_WJSB-M8RNEHBNRgBrcQ0Nt3Ew9DOmivSTEVngNc3n--faiDR7yKa6D_7a9AHWQ1IAaEyeO4NiPSyYVRa7SOet0wjL0E4F8c4VMYNWMlgDQmINJBVtlV__jy6CRpJyskLld8nIhgjSjTPBS5dSYE57jhJiDaEpVyWVoWlSuUtaQ2aHhaOmls5jmBuyJ3-N2usdnB88CvM7B5zk0qXMjLW4HBquhcVfJCCemsU77H9qae1cMooKGnzLIHTXHQFAedco1x6LFDcv73kyR-3dzAlNBtSui_UqLH5DR0usURER-gqftfFt_4j8U32RyZjDS1LTY7rid-G3HL2O40KfoFez3qEA priority: 102 providerName: Directory of Open Access Journals |
Title | Surface integrity and fatigue properties of Ti–6Al–4V alloy under the ultrasonic surface rolling process excited strain rate effect |
URI | https://dx.doi.org/10.1016/j.jmrt.2025.01.024 https://doaj.org/article/0a063510016148399ef6b2333828c4e6 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQJ3qoWlrEQovm0FsVbZzYTnIEBEKV4AJUe7NsY6NFdHeV3ZXgxo0H6Bv2STpje-ly4dBLpFj-iWYm48_2zGfGvnkvQ2mINhQNpBAmNEVnpC2MUtI74ytv6ET3_EKdXYsfIznaYMerXBgKq8y-P_n06K1zyTBLczgbj4eXOLG1TSvR6MpIfId-mLJKKYlvdPRvn0UiRo93lVL9ghrk3JkU5nX3q6eQyiqzd4pX81Ok8V-bptamntMP7H3GjHCYPusj2_CTbfZujUnwE3u-XPbBOA-J_gGhNZjJDQSU--3Sw4y23HviToVpgKvxn6ff6vAen-In0Mn7I1AuWQ-IBmF5v-jNnBhzYZ477RNzN8xSVgH4B0dIFebxggkgtglIgSGf2fXpydXxWZHvWChcrfiiEMEa0ZZ1aGrrTAjOccNNQNwlOuWqsm061yhriXfQ8LJ10tjKc4J5Te3wD95hm5PpxO8ysHXNTSlcqNsbgfrvaIdV8kYJ6axTfsC-rySrZ4lKQ69izO406UGTHnTJNephwI5I-C81iQY7Fkz7W53tQOMoCJh4xK0CoV7ng7JVjcvuqnXCqwGTK9XpV1aFXY3fGHzvP9vtsy16SzFqX9jmol_6rwhaFvYgLvYPom3-BSco7bI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwELVKORQOiNJWLBQ6B24o2jixneTYVq220PbSLdqbZbt2tVW7u8ruSnDjxgfwh3wJM7EXthcOXHJwYjuamXhexjPPjH3wXobcEG0oGkgmTKiyxkibGaWkd8YX3tCO7sWlGlyLTyM52mDHq1oYSqtMa39c07vVOrX0kzT7s_G4f4WOra5qiUaXd8R3T9hTRAOKCPTPRkd_Ay0SQXp3WCl1yKhHKp6JeV53Dy3lVBaJvlM8clAdj_-an1rzPacv2YsEGuEwvtc22_CTV-z5GpXgDvtxtWyDcR4i_wNiazCTGwgo-NulhxnF3FsiT4VpgOH41_ef6vAer-IL0Nb7N6BishYQDsLyftGaOVHmwjwN2kbqbpjFsgLwXx1BVZh3J0wA0U1AzAzZZdenJ8PjQZYOWchcqfgiE8EaUedlqErrTAjOccNNQOAlGuWKvK4aVylriXjQ8Lx20tjCc8J5VenwE95jm5PpxL9mYMuSm1y4UNY3Ag2goRCr5JUS0lmnfI99XElWzyKXhl4lmd1p0oMmPeica9RDjx2R8P88STzYXcO0vdXJEDTOgoiJd8BVINZrfFC2KPG_u6id8KrH5Ep1-pFZ4VDjf0z-5j_7HbCtwfDiXJ-fXX5-y57RnZiwts82F-3Sv0MEs7DvOwv9DZFb7-E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+integrity+and+fatigue+properties+of+Ti%E2%80%936Al%E2%80%934V+alloy+under+the+ultrasonic+surface+rolling+process+excited+strain+rate+effect&rft.jtitle=Journal+of+materials+research+and+technology&rft.au=Zha%2C+Xuming&rft.au=Qin%2C+Hao&rft.au=Yuan%2C+Zhi&rft.au=Xi%2C+Linqing&rft.date=2025-03-01&rft.pub=Elsevier+B.V&rft.issn=2238-7854&rft.volume=35&rft.spage=416&rft.epage=434&rft_id=info:doi/10.1016%2Fj.jmrt.2025.01.024&rft.externalDocID=S2238785425000249 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-7854&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-7854&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-7854&client=summon |