Machine Learning-Based Condition Monitoring for PV Systems: State of the Art and Future Prospects

To ensure the continuity of electric power generation for photovoltaic systems, condition monitoring frameworks are subject to major enhancements. The continuous uniform delivery of electric power depends entirely on a well-designed condition maintenance program. A just-in-time task to deal with sev...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 14; no. 19; p. 6316
Main Authors Berghout, Tarek, Benbouzid, Mohamed, Bentrcia, Toufik, Ma, Xiandong, Djurović, Siniša, Mouss, Leïla-Hayet
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2021
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en14196316

Cover

Abstract To ensure the continuity of electric power generation for photovoltaic systems, condition monitoring frameworks are subject to major enhancements. The continuous uniform delivery of electric power depends entirely on a well-designed condition maintenance program. A just-in-time task to deal with several naturally occurring faults can be correctly undertaken via the cooperation of effective detection, diagnosis, and prognostic analyses. Therefore, the present review first outlines different failure modes to which all photovoltaic systems are subjected, in addition to the essential integrated detection methods and technologies. Then, data-driven paradigms, and their contribution to solving this prediction problem, are also explored. Accordingly, this review primarily investigates the different learning architectures used (i.e., ordinary, hybrid, and ensemble) in relation to their learning frameworks (i.e., traditional and deep learning). It also discusses the extension of machine learning to knowledge-driven approaches, including generative models such as adversarial networks and transfer learning. Finally, this review provides insights into different works to highlight various operating conditions and different numbers and types of failures, and provides links to some publicly available datasets in the field. The clear organization of the abundant information on this subject may result in rigorous guidelines for the trends adopted in the future.
AbstractList To ensure the continuity of electric power generation for photovoltaic systems, condition monitoring frameworks are subject to major enhancements. The continuous uniform delivery of electric power depends entirely on a well-designed condition maintenance program. A just-in-time task to deal with several naturally occurring faults can be correctly undertaken via the cooperation of effective detection, diagnosis, and prognostic analyses. Therefore, the present review first outlines different failure modes to which all photovoltaic systems are subjected, in addition to the essential integrated detection methods and technologies. Then, data-driven paradigms, and their contribution to solving this prediction problem, are also explored. Accordingly, this review primarily investigates the different learning architectures used (i.e., ordinary, hybrid, and ensemble) in relation to their learning frameworks (i.e., traditional and deep learning). It also discusses the extension of machine learning to knowledge-driven approaches, including generative models such as adversarial networks and transfer learning. Finally, this review provides insights into different works to highlight various operating conditions and different numbers and types of failures, and provides links to some publicly available datasets in the field. The clear organization of the abundant information on this subject may result in rigorous guidelines for the trends adopted in the future.
Author Bentrcia, Toufik
Djurović, Siniša
Benbouzid, Mohamed
Mouss, Leïla-Hayet
Ma, Xiandong
Berghout, Tarek
Author_xml – sequence: 1
  givenname: Tarek
  orcidid: 0000-0003-4877-4200
  surname: Berghout
  fullname: Berghout, Tarek
– sequence: 2
  givenname: Mohamed
  orcidid: 0000-0002-4844-508X
  surname: Benbouzid
  fullname: Benbouzid, Mohamed
– sequence: 3
  givenname: Toufik
  surname: Bentrcia
  fullname: Bentrcia, Toufik
– sequence: 4
  givenname: Xiandong
  surname: Ma
  fullname: Ma, Xiandong
– sequence: 5
  givenname: Siniša
  orcidid: 0000-0001-7700-6492
  surname: Djurović
  fullname: Djurović, Siniša
– sequence: 6
  givenname: Leïla-Hayet
  surname: Mouss
  fullname: Mouss, Leïla-Hayet
BookMark eNptUctOXDEMjSqQoMCGL4jUXaULyXXuI93RES9pEEhAt1Fu4kBGQzJNMgv-nsBUgCq8sWUfHx_b38lWiAEJOeTsCECyYwxccNkD77-RXS5l33A2wNaneIcc5Lxg1QA4AOwSfaXNow9I56hT8OGh-a0zWjqLwfriY6BXMfgSUy1RFxO9-UNvn3PBp_yL3hZdkEZHyyPSk1SoDpaercs6Ib1JMa_QlLxPtp1eZjz45_fI_dnp3eyimV-fX85O5o2BnpdGGKsNYz0DLUecxk5YNFIKxyY9OKdNW_VOg-tkOzhwwkgmoRtsB5O0nW1hj1xueG3UC7VK_kmnZxW1V2-JmB6UTsWbJSpo-YhC1OZJCJimcWJtz0UPwrXgoK9cPzZcqxT_rjEXtYjrFKp81XYjk8Mwdqyifm5Qpu6aE7r3qZyp14-oj49UMPsPbHw9X71wSdovv2p5ARvsjco
CitedBy_id crossref_primary_10_1016_j_ijcip_2022_100547
crossref_primary_10_1186_s41601_023_00319_5
crossref_primary_10_1016_j_measurement_2024_114683
crossref_primary_10_3934_energy_2024034
crossref_primary_10_3390_app14052072
crossref_primary_10_1016_j_egyr_2023_07_019
crossref_primary_10_1016_j_solener_2022_11_017
crossref_primary_10_3390_en15093014
crossref_primary_10_1016_j_egyr_2023_05_163
crossref_primary_10_3390_s22239060
crossref_primary_10_3390_coatings14030257
crossref_primary_10_1016_j_ijepes_2022_108591
crossref_primary_10_3390_electronics11071125
crossref_primary_10_3390_s25010206
crossref_primary_10_3390_s25051295
crossref_primary_10_1038_s41598_024_81101_x
crossref_primary_10_3390_app14052083
crossref_primary_10_1016_j_engappai_2024_109503
crossref_primary_10_3390_en15093092
crossref_primary_10_25046_aj080505
crossref_primary_10_1016_j_seta_2022_102808
crossref_primary_10_1016_j_ijleo_2024_171627
crossref_primary_10_1016_j_jclepro_2022_132701
crossref_primary_10_1016_j_egyr_2024_09_012
crossref_primary_10_1109_OAJPE_2024_3497880
crossref_primary_10_3390_forecast5010012
crossref_primary_10_1016_j_eswa_2024_124111
Cites_doi 10.3390/en14092344
10.3390/en11092416
10.1109/TIE.2020.3047066
10.1109/JPHOTOV.2019.2955183
10.1007/s00170-020-05449-w
10.1016/j.solener.2020.08.027
10.3390/su13116194
10.1016/B978-0-12-804448-3.00019-0
10.1016/j.ijepes.2020.106457
10.1007/s10845-021-01817-9
10.3390/app10113802
10.1016/j.solener.2020.03.049
10.1016/j.solener.2020.01.055
10.3390/s21165668
10.3390/s20174688
10.1016/j.neunet.2014.09.003
10.1109/JPHOTOV.2020.3011068
10.1016/j.solmat.2020.110874
10.1016/j.energy.2019.116319
10.1109/JPHOTOV.2021.3057169
10.1016/j.oceaneng.2020.108525
10.3390/en11051053
10.3390/drones5020044
10.1016/j.jesit.2017.01.004
10.3390/en13246496
10.1109/JSEN.2020.3029707
10.1109/ACCESS.2020.3011553
10.3390/s20216106
10.1080/00207543.2019.1662133
10.1016/j.solmat.2013.09.019
10.1109/ACCESS.2019.2909267
10.3390/en11030616
10.1109/ACCESS.2020.2976843
10.1109/TKDE.2013.111
10.1016/j.solener.2021.05.032
10.1016/j.enconman.2017.09.019
10.3390/en12193631
10.1016/j.solener.2020.09.071
10.1016/j.ijepes.2021.107035
10.3390/en13246751
10.1155/2017/1356851
10.1088/1757-899X/1012/1/012030
10.1109/JPHOTOV.2014.2323714
10.3390/en14092521
10.3390/s20123537
10.1002/pip.3297
10.1016/j.rser.2021.110889
10.1016/j.enconman.2021.114315
10.1109/ACCESS.2019.2902949
10.3390/app9122551
10.1109/ACCESS.2021.3064360
10.1186/s40537-016-0043-6
10.1109/IECON48115.2021.9589423
10.1109/ACCESS.2020.2978621
10.1016/j.techfore.2021.120653
10.1109/MPEL.2020.3047718
10.1109/TPEL.2019.2956812
10.3390/electronics10111283
10.1109/ACCESS.2020.3020296
10.3390/en13102472
10.1016/j.dcan.2018.11.002
10.3390/en12091712
10.1109/TIE.2021.3094463
10.3390/en14154690
10.3390/s21124159
10.3390/electronics9101570
10.1109/TII.2019.2908992
10.3390/su12020608
10.4249/scholarpedia.5947
10.1109/TEC.2018.2873358
10.3390/en14144278
10.1007/978-981-16-0081-4_3
10.3390/en14185967
10.1016/j.solener.2021.05.029
10.3390/info8020043
10.3390/en12020202
10.1016/j.ejcon.2020.03.004
10.1109/ACCESS.2021.3063461
10.3390/en13030584
10.1007/s00138-021-01191-9
10.1016/j.solener.2019.07.063
10.3390/en14082163
10.1109/5.726791
10.1016/j.solener.2019.02.067
10.1109/ICCV.2013.100
10.1016/B978-0-08-098243-4.00005-6
10.3390/sym12122082
10.4236/cs.2016.710249
10.1016/j.csite.2021.100980
10.1016/j.enconman.2021.114603
10.3390/en11112966
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/en14196316
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_3218e447d5b443bb8b02614634f23f36
10_3390_en14196316
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c361t-4cdac00603a98eb854dec994f0ba7ffac2333b7f5927f3f4c909357d53b9d5d23
IEDL.DBID 8FG
ISSN 1996-1073
IngestDate Wed Aug 27 01:28:07 EDT 2025
Mon Jun 30 11:16:35 EDT 2025
Tue Jul 01 01:18:23 EDT 2025
Thu Apr 24 22:50:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-4cdac00603a98eb854dec994f0ba7ffac2333b7f5927f3f4c909357d53b9d5d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4844-508X
0000-0003-4877-4200
0000-0001-7700-6492
OpenAccessLink https://www.proquest.com/docview/2580977850?pq-origsite=%requestingapplication%
PQID 2580977850
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_3218e447d5b443bb8b02614634f23f36
proquest_journals_2580977850
crossref_primary_10_3390_en14196316
crossref_citationtrail_10_3390_en14196316
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_93
ref_92
ref_91
ref_90
ref_13
Lee (ref_10) 2021; 167
ref_96
ref_19
ref_17
Hajji (ref_68) 2021; 59
Kusiak (ref_94) 2020; 58
Bakdi (ref_18) 2021; 125
Liu (ref_76) 2021; 245
Arani (ref_21) 2016; 2016
ref_25
ref_24
ref_23
ref_20
Rao (ref_59) 2021; 5
Paul (ref_44) 2016; 7
Rahman (ref_49) 2020; 8
ref_29
ref_28
Lu (ref_99) 2019; 7
ref_27
ref_26
Padilla (ref_37) 2014; 120
LeCun (ref_75) 1998; 86
Lu (ref_100) 2021; 130
Schmidhuber (ref_58) 2015; 61
Hwang (ref_81) 2021; 9
ref_72
ref_73
Garoudja (ref_6) 2017; 151
Edun (ref_67) 2021; 21
Weiss (ref_97) 2016; 3
Niazi (ref_104) 2019; 190
Momeni (ref_60) 2020; 16
Kandeal (ref_14) 2021; 223
ref_89
ref_88
ref_87
ref_86
ref_85
Eskandari (ref_65) 2020; 211
Serin (ref_95) 2020; 109
Xiao (ref_48) 2020; 28
Manno (ref_84) 2021; 241
Gao (ref_78) 2020; 8
Sizkouhi (ref_83) 2021; 223
ref_55
ref_54
ref_53
Kyi (ref_16) 2020; 6
Malavya (ref_22) 2021; Volume 63
Dhimish (ref_71) 2021; 25
Akram (ref_102) 2020; 198
ref_61
Venkatesh (ref_82) 2021; 1012
Deitsch (ref_52) 2021; 32
ref_62
Prasad (ref_36) 2018; 5
Quater (ref_56) 2014; 4
Zitouni (ref_5) 2021; 221
Daliento (ref_32) 2017; 2017
Eskandari (ref_66) 2021; 68
ref_34
ref_33
ref_31
ref_30
Sundaram (ref_11) 2021; 9
ref_39
ref_38
Berghout (ref_57) 2021; 221
Harrou (ref_69) 2021; 11
Appiah (ref_77) 2019; 7
Deitsch (ref_51) 2019; 185
Dhibi (ref_63) 2020; 10
Ali (ref_70) 2020; 208
Alammari (ref_45) 2020; 8
ref_103
Li (ref_80) 2019; 10
Huang (ref_64) 2020; 35
Mellit (ref_15) 2021; 143
ref_47
ref_46
Zhao (ref_12) 2021; 8
Hinton (ref_74) 2009; 4
Akram (ref_50) 2019; 189
Tang (ref_101) 2020; 201
ref_43
ref_42
ref_41
ref_40
Khadka (ref_1) 2020; 8
ref_3
ref_2
Li (ref_79) 2019; 34
ref_9
ref_8
Long (ref_98) 2014; 26
Kumari (ref_35) 2016; 4
ref_4
ref_7
References_xml – ident: ref_9
– ident: ref_42
  doi: 10.3390/en14092344
– ident: ref_38
  doi: 10.3390/en11092416
– volume: 68
  start-page: 12750
  year: 2021
  ident: ref_66
  article-title: Fault Detection and Classification for Photovoltaic Systems Based on Hierarchical Classification and Machine Learning Technique
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.3047066
– volume: 10
  start-page: 568
  year: 2019
  ident: ref_80
  article-title: An Unmanned Inspection System for Multiple Defects Detection in Photovoltaic Plants
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2019.2955183
– volume: 109
  start-page: 953
  year: 2020
  ident: ref_95
  article-title: Review of tool condition monitoring in machining and opportunities for deep learning
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-020-05449-w
– volume: 208
  start-page: 643
  year: 2020
  ident: ref_70
  article-title: A machine learning framework to identify the hotspot in photovoltaic module using infrared thermography
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.08.027
– ident: ref_40
  doi: 10.3390/su13116194
– ident: ref_39
  doi: 10.1016/B978-0-12-804448-3.00019-0
– volume: 125
  start-page: 106457
  year: 2021
  ident: ref_18
  article-title: Real-time fault detection in PV systems under MPPT using PMU and high-frequency multi-sensor data through online PCA-KDE-based multivariate KL divergence
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2020.106457
– ident: ref_7
  doi: 10.1007/s10845-021-01817-9
– ident: ref_55
  doi: 10.3390/app10113802
– volume: 201
  start-page: 453
  year: 2020
  ident: ref_101
  article-title: Deep learning based automatic defect identification of photovoltaic module using electroluminescence images
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.03.049
– volume: 198
  start-page: 175
  year: 2020
  ident: ref_102
  article-title: Automatic detection of photovoltaic module defects in infrared images with isolated and develop-model transfer deep learning
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.01.055
– ident: ref_47
  doi: 10.3390/s21165668
– ident: ref_73
  doi: 10.3390/s20174688
– volume: 61
  start-page: 85
  year: 2015
  ident: ref_58
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 10
  start-page: 1864
  year: 2020
  ident: ref_63
  article-title: Reduced Kernel Random Forest Technique for Fault Detection and Classification in Grid-Tied PV Systems
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2020.3011068
– volume: 221
  start-page: 110874
  year: 2021
  ident: ref_5
  article-title: Experimental investigation and modeling of photovoltaic soiling loss as a function of environmental variables: A case study of semi-arid climate
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2020.110874
– volume: 189
  start-page: 116319
  year: 2019
  ident: ref_50
  article-title: CNN based automatic detection of photovoltaic cell defects in electroluminescence images
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116319
– ident: ref_103
– volume: 11
  start-page: 806
  year: 2021
  ident: ref_69
  article-title: Monitoring of Photovoltaic Systems Using Improved Kernel-Based Learning Schemes
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2021.3057169
– volume: 221
  start-page: 108525
  year: 2021
  ident: ref_57
  article-title: A deep supervised learning approach for condition-based maintenance of naval propulsion systems
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108525
– ident: ref_87
  doi: 10.3390/en11051053
– ident: ref_3
– ident: ref_17
  doi: 10.3390/drones5020044
– volume: 5
  start-page: 48
  year: 2018
  ident: ref_36
  article-title: A review on fault classification methodologies in power transmission systems: Part—I
  publication-title: J. Electr. Syst. Inf. Technol.
  doi: 10.1016/j.jesit.2017.01.004
– ident: ref_46
  doi: 10.3390/en13246496
– volume: 21
  start-page: 4855
  year: 2021
  ident: ref_67
  article-title: Finding Faults in PV Systems: Supervised and Unsupervised Dictionary Learning with SSTDR
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3029707
– ident: ref_86
– volume: 8
  start-page: 135948
  year: 2020
  ident: ref_1
  article-title: Current Practices of Solar Photovoltaic Panel Cleaning System and Future Prospects of Machine Learning Implementation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011553
– volume: 2016
  start-page: 8712960
  year: 2016
  ident: ref_21
  article-title: The Comprehensive Study of Electrical Faults in PV Arrays
  publication-title: J. Electr. Comput. Eng.
– ident: ref_53
  doi: 10.3390/s20216106
– volume: 58
  start-page: 1594
  year: 2020
  ident: ref_94
  article-title: Convolutional and generative adversarial neural networks in manufacturing
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2019.1662133
– volume: 120
  start-page: 282
  year: 2014
  ident: ref_37
  article-title: Short-circuit current density mapping for solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2013.09.019
– volume: 7
  start-page: 45831
  year: 2019
  ident: ref_99
  article-title: DA-DCGAN: An Effective Methodology for DC Series Arc Fault Diagnosis in Photovoltaic Systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909267
– ident: ref_30
  doi: 10.3390/en11030616
– volume: 8
  start-page: 40547
  year: 2020
  ident: ref_49
  article-title: Defects Inspection in Polycrystalline Solar Cells Electroluminescence Images Using Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2976843
– volume: 26
  start-page: 1076
  year: 2014
  ident: ref_98
  article-title: Adaptation Regularization: A General Framework for Transfer Learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.111
– volume: 223
  start-page: 33
  year: 2021
  ident: ref_14
  article-title: Infrared thermography-based condition monitoring of solar photovoltaic systems: A mini review of recent advances
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.05.032
– volume: 151
  start-page: 496
  year: 2017
  ident: ref_6
  article-title: An enhanced machine learning based approach for failures detection and diagnosis of PV systems
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.09.019
– ident: ref_89
– ident: ref_29
  doi: 10.3390/en12193631
– volume: 211
  start-page: 354
  year: 2020
  ident: ref_65
  article-title: Line-line fault detection and classification for photovoltaic systems using ensemble learning model based on I-V characteristics
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.09.071
– volume: 130
  start-page: 107035
  year: 2021
  ident: ref_100
  article-title: Lightweight transfer nets and adversarial data augmentation for photovoltaic series arc fault detection with limited fault data
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107035
– ident: ref_28
  doi: 10.3390/en13246751
– volume: 2017
  start-page: 1356851
  year: 2017
  ident: ref_32
  article-title: Monitoring, Diagnosis, and Power Forecasting for Photovoltaic Fields: A Review
  publication-title: Int. J. Photoenergy
  doi: 10.1155/2017/1356851
– volume: 1012
  start-page: 012030
  year: 2021
  ident: ref_82
  article-title: Fault Detection in aerial images of photovoltaic modules based on Deep learning
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/1012/1/012030
– volume: 4
  start-page: 1107
  year: 2014
  ident: ref_56
  article-title: Light Unmanned Aerial Vehicles (UAVs) for Cooperative Inspection of PV Plants
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2014.2323714
– ident: ref_25
  doi: 10.3390/en14092521
– ident: ref_54
  doi: 10.3390/s20123537
– volume: 28
  start-page: 909
  year: 2020
  ident: ref_48
  article-title: Failure analysis of field-failed bypass diodes
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.3297
– volume: 143
  start-page: 110889
  year: 2021
  ident: ref_15
  article-title: Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.110889
– volume: 241
  start-page: 114315
  year: 2021
  ident: ref_84
  article-title: Deep learning strategies for automatic fault diagnosis in photovoltaic systems by thermographic images
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114315
– volume: 7
  start-page: 30089
  year: 2019
  ident: ref_77
  article-title: Long Short-Term Memory Networks Based Automatic Feature Extraction for Photovoltaic Array Fault Diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902949
– ident: ref_92
  doi: 10.3390/app9122551
– ident: ref_90
– volume: 9
  start-page: 41246
  year: 2021
  ident: ref_11
  article-title: Deep Learning for Fault Diagnostics in Bearings, Insulators, PV Panels, Power Lines, and Electric Vehicle Applications—The State-of-the-Art Approaches
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3064360
– volume: 3
  start-page: 1
  year: 2016
  ident: ref_97
  article-title: A survey of transfer learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-016-0043-6
– ident: ref_20
  doi: 10.1109/IECON48115.2021.9589423
– volume: 8
  start-page: 47619
  year: 2020
  ident: ref_45
  article-title: Computation of Power Extraction from Photovoltaic Arrays Under Various Fault Conditions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2978621
– volume: 167
  start-page: 120653
  year: 2021
  ident: ref_10
  article-title: From technological development to social advance: A review of Industry 4.0 through machine learning
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2021.120653
– volume: 8
  start-page: 18
  year: 2021
  ident: ref_12
  article-title: Enabling Data-Driven Condition Monitoring of Power Electronic Systems with Artificial Intelligence: Concepts, Tools, and Developments
  publication-title: IEEE Power Electron. Mag.
  doi: 10.1109/MPEL.2020.3047718
– volume: 35
  start-page: 7086
  year: 2020
  ident: ref_64
  article-title: Design of Hybrid Artificial Bee Colony Algorithm and Semi-Supervised Extreme Learning Machine for PV Fault Diagnoses by Considering Dust Impact
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2019.2956812
– ident: ref_43
  doi: 10.3390/electronics10111283
– ident: ref_62
  doi: 10.3390/s20174688
– volume: 8
  start-page: 159493
  year: 2020
  ident: ref_78
  article-title: A Novel Fault Identification Method for Photovoltaic Array via Convolutional Neural Network and Residual Gated Recurrent Unit
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3020296
– ident: ref_27
  doi: 10.3390/en13102472
– volume: 6
  start-page: 51
  year: 2020
  ident: ref_16
  article-title: Wireless sensing for a solar power system
  publication-title: Digit. Commun. Netw.
  doi: 10.1016/j.dcan.2018.11.002
– ident: ref_72
– ident: ref_31
  doi: 10.3390/en12091712
– ident: ref_41
  doi: 10.1109/TIE.2021.3094463
– ident: ref_13
  doi: 10.3390/en14154690
– ident: ref_33
  doi: 10.3390/s21124159
– ident: ref_34
  doi: 10.3390/electronics9101570
– volume: 16
  start-page: 5300
  year: 2020
  ident: ref_60
  article-title: Fault Diagnosis in Photovoltaic Arrays Using GBSSL Method and Proposing a Fault Correction System
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2908992
– ident: ref_19
  doi: 10.3390/su12020608
– volume: 4
  start-page: 5947
  year: 2009
  ident: ref_74
  article-title: Deep belief networks
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.5947
– volume: 34
  start-page: 520
  year: 2019
  ident: ref_79
  article-title: Deep Learning Based Module Defect Analysis for Large-Scale Photovoltaic Farms
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2018.2873358
– ident: ref_4
  doi: 10.3390/en14144278
– volume: Volume 63
  start-page: 17
  year: 2021
  ident: ref_22
  article-title: A Simple Method to Detect Partial Shading in PV Systems
  publication-title: Data Engineering and Communication Technology
  doi: 10.1007/978-981-16-0081-4_3
– ident: ref_2
  doi: 10.3390/en14185967
– volume: 223
  start-page: 217
  year: 2021
  ident: ref_83
  article-title: A deep convolutional encoder-decoder architecture for autonomous fault detection of PV plants using multi-copters
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.05.029
– ident: ref_93
  doi: 10.3390/info8020043
– ident: ref_24
  doi: 10.3390/en12020202
– volume: 59
  start-page: 313
  year: 2021
  ident: ref_68
  article-title: Multivariate feature extraction based supervised machine learning for fault detection and diagnosis in photovoltaic systems
  publication-title: Eur. J. Control.
  doi: 10.1016/j.ejcon.2020.03.004
– volume: 9
  start-page: 37210
  year: 2021
  ident: ref_81
  article-title: Detection of Malfunctioning Photovoltaic Modules Based on Machine Learning Algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3063461
– volume: 5
  start-page: 17
  year: 2021
  ident: ref_59
  article-title: The Role of Artificial Intelligence (AI) in Condition Monitoring and Diagnostic Engineering Management (COMADEM): A Literature Survey
  publication-title: Am. J. Artif. Intell.
– ident: ref_61
  doi: 10.3390/en13030584
– ident: ref_96
– volume: 32
  start-page: 84
  year: 2021
  ident: ref_52
  article-title: Segmentation of photovoltaic module cells in uncalibrated electroluminescence images
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-021-01191-9
– volume: 190
  start-page: 34
  year: 2019
  ident: ref_104
  article-title: Hotspot diagnosis for solar photovoltaic modules using a Naive Bayes classifier
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.07.063
– ident: ref_88
  doi: 10.3390/en14082163
– volume: 4
  start-page: 1
  year: 2016
  ident: ref_35
  article-title: Power System Faults: A Review
  publication-title: Ijert
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_75
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 185
  start-page: 455
  year: 2019
  ident: ref_51
  article-title: Automatic classification of defective photovoltaic module cells in electroluminescence images
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.02.067
– ident: ref_85
– ident: ref_91
  doi: 10.1109/ICCV.2013.100
– ident: ref_8
  doi: 10.1016/B978-0-08-098243-4.00005-6
– ident: ref_23
  doi: 10.3390/sym12122082
– volume: 7
  start-page: 2904
  year: 2016
  ident: ref_44
  article-title: Fault Identification and Islanding in DC Grid Connected PV System
  publication-title: Circuits Syst.
  doi: 10.4236/cs.2016.710249
– volume: 25
  start-page: 100980
  year: 2021
  ident: ref_71
  article-title: Defining the best-fit machine learning classifier to early diagnose photovoltaic solar cells hot-spots
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.100980
– volume: 245
  start-page: 114603
  year: 2021
  ident: ref_76
  article-title: Fault diagnosis approach for photovoltaic array based on the stacked auto-encoder and clustering with I-V curves
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114603
– ident: ref_26
  doi: 10.3390/en11112966
SSID ssj0000331333
Score 2.453474
SecondaryResourceType review_article
Snippet To ensure the continuity of electric power generation for photovoltaic systems, condition monitoring frameworks are subject to major enhancements. The...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 6316
SubjectTerms Alternative energy sources
Artificial intelligence
condition monitoring
deep learning
Failure
fault detection
faults diagnosis
Internet of Things
Machine learning
Optimization
Photovoltaic cells
photovoltaic systems
Radiation
Renewable resources
Sensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeD7KQH8SdOpwT04qGszY-m8ebEMYTJDk52K_npRVrZ5v9vXtrNgoIXr-VByvclee816echdGMIEU4wn3DnacKE8IksUp4oYXObEatV_A45fc4nc_a04ItOqy-4E9bggRvhhjTEIMeYsFwzRrUuNFQNLKfME-pphG2nMu0UU3EPpjQUX7ThkdJQ1w9dlTGYbdDYvBOBIqj_xz4cg8v4AO23WSG-b97mEO246gjtdViBx0hN47VHh1si6lsyCgHI4ocaDp2DurhZnmCNQyaKZ6-4xZHf4ZhS4trjkO7BKFhVFo8jTgTPlnX83XJ1gubjx5eHSdL2R0gMzbN1woxVBoAqVMnC6YIz64yUzKdaCe-VIUECLTyXRHjqmZFw6hmUpFpabgk9Rb2qrtwZwkxlFnpJ-pwDGBQ6EPtQCbG0kNpYr_vodqNZaVp4OPSweC9DEQH6lt_69tH11vajQWb8ajUC6bcWgLmOD4Lzy9b55V_O76PBxnFlu_ZWJeFFGrLagqfn_zHGBdolcI8lXuAboN56-ekuQyKy1ldxzn0BdN3YUg
  priority: 102
  providerName: Directory of Open Access Journals
Title Machine Learning-Based Condition Monitoring for PV Systems: State of the Art and Future Prospects
URI https://www.proquest.com/docview/2580977850
https://doaj.org/article/3218e447d5b443bb8b02614634f23f36
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8QwFA4uFz2IK65DQC8egm2WpvUijsyMCMogKnMrWb1IqzPj_zcvkxkFxUsP7aMtLy95S16-D6EzQ6l0knsinGeES-lJVWaCKGkLm1OrVaxD3j8Ut8_8biRGqeA2SW2V8zUxLtS2NVAjv6CizEKsUors6v2DAGsU7K4mCo1ltJoHTwN2XvYHixpLxlhIwdgMlZSF7P7CNTkHmwN68x9-KML1_1qNo4vpb6KNFBvi69lgbqEl12yj9R-IgTtI3cfmR4cTLuor6QY3ZPFNC1vPQcd4NklBGod4FA9fcAIlv8QxsMStxyHog69g1Vjcj6AieDhu46HLyS567veebm5JYkkghhX5lHBjlQFYFaaq0ulScOtMVXGfaSW9V4YGFWjpRUWlZ56bCvY-pRVMV1ZYyvbQStM2bh9hrnILjJK-EAAPCjzEPuRDPCsrbazXB-h8rrPaJAhxYLJ4q0MqAfqtv_V7gE4Xsu8z4Iw_pbqg-oUEgF3HG-34tU5zp2YhDHGch1_WnDOtSw2JIy8Y95R5Fl5yPB-4Os3ASf1tL4f_Pz5CaxT6VGKD3jFamY4_3UkINKa6E62pg1a7vYfhYyem6-E6GOVfc4bU2A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWq7QE4IMqHKJTWEnDgEDXrseMYCaFu6WpLu6sValFvwZ-9VEnZXYT4U_xGPE6yrQTi1msySqLxZPzGHr9HyBvLmPSSh0z4ABmXMmSqzEWmpSvckDmj0zrkdFZMzvnnC3GxQX73Z2GwrbLPiSlRu8biGvk-E2UesUop8o_X3zNUjcLd1V5Cow2LE__rZyzZlh-OP8XxfcvY-OjscJJ1qgKZhWK4yrh12iINCWhVelMK7rxViofcaBmCtgwAjAxCMRkgcKtwr1A6AUY54ZDoIKb8TY4nWgdkc3Q0m39Zr-rkALHog5YHFUDl-74ecoxyFFS_NfMlgYC_8n-a1MaPyMMOjdKDNny2yIavH5MHtzgKnxA9Te2WnnZMrJfZKE58jh42uNkdR5W2aQGtaUTAdP6VdjTo72mCsrQJNMJMfAvVtaPjRGNC54smHfNcPiXnd-LBZ2RQN7V_TijXQ4calqEQSEiKyschVmA8L5WxLpht8q73WWU70nLUzriqYvGC_q1u_LtNXq9tr1uqjn9ajdD1awuk104XmsVl1f2tFUTg4zmPn2w4B2NKg6UqL4AHBgHiQ3b6gau6f35Z3UToi__f3iP3JmfT0-r0eHbyktxn2CWT2gN3yGC1-OFfRZizMrtdbFHy7a7D-Q80NBBW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIiE4IJ5ioYAl4MDB2qzHjmMkhGhLaCmt9kCr3lI_e0FJ2V2E-Gv8OjxOsq0E4tZrMnKi8Xge9vj7CHnlOFdBichkiMCEUpHpqpDMKF_6GffW5H3Iw6Ny71h8PpWnG-T3eBcG2ypHn5gdte8c7pFPuayKlKtUspjGoS1ivlu_v_jOkEEKT1pHOo3eRA7Cr5-pfFu-299Nc_2a8_rj1509NjAMMAflbMWE88YhJAkYXQVbSeGD01rEwhoVo3EcAKyKUnMVIQqn8dxQeQlWe-kR9CC5_xsKlMbCr6o_rfd3CoBU_kGPiAqgi2loZwLtHanVr8TATBXwVyTI4a2-S-4MeSn90BvSPbIR2vvk9hW0wgfEHObGy0AHTNZztp1CoKc7HR57p_mlvYNAaZpyYTo_oQMg-luak1raRZoSTvwKNa2ndQY0ofNFly98Lh-S42vR3yOy2XZteEyoMDOPbJaxlAhNihzIMdVioqi0dT7aCXkz6qxxA3w5smh8a1IZg_ptLvU7IS_Xshc9aMc_pbZR9WsJBNrOD7rFeTOs2wZSChSESL9shQBrK4tFqyhBRA4R0iBb48Q1w-pfNpe2-uT_r1-Qm8mImy_7RwdPyS2O7TK5T3CLbK4WP8KzlO-s7PNsWJScXbcl_wH0cBMm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Condition+Monitoring+for+PV+Systems%3A+State+of+the+Art+and+Future+Prospects&rft.jtitle=Energies+%28Basel%29&rft.au=Berghout%2C+Tarek&rft.au=Benbouzid%2C+Mohamed&rft.au=Bentrcia%2C+Toufik&rft.au=Ma%2C+Xiandong&rft.date=2021-10-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=14&rft.issue=19&rft.spage=6316&rft_id=info:doi/10.3390%2Fen14196316&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en14196316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon