Machine Learning-Based Condition Monitoring for PV Systems: State of the Art and Future Prospects
To ensure the continuity of electric power generation for photovoltaic systems, condition monitoring frameworks are subject to major enhancements. The continuous uniform delivery of electric power depends entirely on a well-designed condition maintenance program. A just-in-time task to deal with sev...
Saved in:
Published in | Energies (Basel) Vol. 14; no. 19; p. 6316 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1996-1073 1996-1073 |
DOI | 10.3390/en14196316 |
Cover
Abstract | To ensure the continuity of electric power generation for photovoltaic systems, condition monitoring frameworks are subject to major enhancements. The continuous uniform delivery of electric power depends entirely on a well-designed condition maintenance program. A just-in-time task to deal with several naturally occurring faults can be correctly undertaken via the cooperation of effective detection, diagnosis, and prognostic analyses. Therefore, the present review first outlines different failure modes to which all photovoltaic systems are subjected, in addition to the essential integrated detection methods and technologies. Then, data-driven paradigms, and their contribution to solving this prediction problem, are also explored. Accordingly, this review primarily investigates the different learning architectures used (i.e., ordinary, hybrid, and ensemble) in relation to their learning frameworks (i.e., traditional and deep learning). It also discusses the extension of machine learning to knowledge-driven approaches, including generative models such as adversarial networks and transfer learning. Finally, this review provides insights into different works to highlight various operating conditions and different numbers and types of failures, and provides links to some publicly available datasets in the field. The clear organization of the abundant information on this subject may result in rigorous guidelines for the trends adopted in the future. |
---|---|
AbstractList | To ensure the continuity of electric power generation for photovoltaic systems, condition monitoring frameworks are subject to major enhancements. The continuous uniform delivery of electric power depends entirely on a well-designed condition maintenance program. A just-in-time task to deal with several naturally occurring faults can be correctly undertaken via the cooperation of effective detection, diagnosis, and prognostic analyses. Therefore, the present review first outlines different failure modes to which all photovoltaic systems are subjected, in addition to the essential integrated detection methods and technologies. Then, data-driven paradigms, and their contribution to solving this prediction problem, are also explored. Accordingly, this review primarily investigates the different learning architectures used (i.e., ordinary, hybrid, and ensemble) in relation to their learning frameworks (i.e., traditional and deep learning). It also discusses the extension of machine learning to knowledge-driven approaches, including generative models such as adversarial networks and transfer learning. Finally, this review provides insights into different works to highlight various operating conditions and different numbers and types of failures, and provides links to some publicly available datasets in the field. The clear organization of the abundant information on this subject may result in rigorous guidelines for the trends adopted in the future. |
Author | Bentrcia, Toufik Djurović, Siniša Benbouzid, Mohamed Mouss, Leïla-Hayet Ma, Xiandong Berghout, Tarek |
Author_xml | – sequence: 1 givenname: Tarek orcidid: 0000-0003-4877-4200 surname: Berghout fullname: Berghout, Tarek – sequence: 2 givenname: Mohamed orcidid: 0000-0002-4844-508X surname: Benbouzid fullname: Benbouzid, Mohamed – sequence: 3 givenname: Toufik surname: Bentrcia fullname: Bentrcia, Toufik – sequence: 4 givenname: Xiandong surname: Ma fullname: Ma, Xiandong – sequence: 5 givenname: Siniša orcidid: 0000-0001-7700-6492 surname: Djurović fullname: Djurović, Siniša – sequence: 6 givenname: Leïla-Hayet surname: Mouss fullname: Mouss, Leïla-Hayet |
BookMark | eNptUctOXDEMjSqQoMCGL4jUXaULyXXuI93RES9pEEhAt1Fu4kBGQzJNMgv-nsBUgCq8sWUfHx_b38lWiAEJOeTsCECyYwxccNkD77-RXS5l33A2wNaneIcc5Lxg1QA4AOwSfaXNow9I56hT8OGh-a0zWjqLwfriY6BXMfgSUy1RFxO9-UNvn3PBp_yL3hZdkEZHyyPSk1SoDpaercs6Ib1JMa_QlLxPtp1eZjz45_fI_dnp3eyimV-fX85O5o2BnpdGGKsNYz0DLUecxk5YNFIKxyY9OKdNW_VOg-tkOzhwwkgmoRtsB5O0nW1hj1xueG3UC7VK_kmnZxW1V2-JmB6UTsWbJSpo-YhC1OZJCJimcWJtz0UPwrXgoK9cPzZcqxT_rjEXtYjrFKp81XYjk8Mwdqyifm5Qpu6aE7r3qZyp14-oj49UMPsPbHw9X71wSdovv2p5ARvsjco |
CitedBy_id | crossref_primary_10_1016_j_ijcip_2022_100547 crossref_primary_10_1186_s41601_023_00319_5 crossref_primary_10_1016_j_measurement_2024_114683 crossref_primary_10_3934_energy_2024034 crossref_primary_10_3390_app14052072 crossref_primary_10_1016_j_egyr_2023_07_019 crossref_primary_10_1016_j_solener_2022_11_017 crossref_primary_10_3390_en15093014 crossref_primary_10_1016_j_egyr_2023_05_163 crossref_primary_10_3390_s22239060 crossref_primary_10_3390_coatings14030257 crossref_primary_10_1016_j_ijepes_2022_108591 crossref_primary_10_3390_electronics11071125 crossref_primary_10_3390_s25010206 crossref_primary_10_3390_s25051295 crossref_primary_10_1038_s41598_024_81101_x crossref_primary_10_3390_app14052083 crossref_primary_10_1016_j_engappai_2024_109503 crossref_primary_10_3390_en15093092 crossref_primary_10_25046_aj080505 crossref_primary_10_1016_j_seta_2022_102808 crossref_primary_10_1016_j_ijleo_2024_171627 crossref_primary_10_1016_j_jclepro_2022_132701 crossref_primary_10_1016_j_egyr_2024_09_012 crossref_primary_10_1109_OAJPE_2024_3497880 crossref_primary_10_3390_forecast5010012 crossref_primary_10_1016_j_eswa_2024_124111 |
Cites_doi | 10.3390/en14092344 10.3390/en11092416 10.1109/TIE.2020.3047066 10.1109/JPHOTOV.2019.2955183 10.1007/s00170-020-05449-w 10.1016/j.solener.2020.08.027 10.3390/su13116194 10.1016/B978-0-12-804448-3.00019-0 10.1016/j.ijepes.2020.106457 10.1007/s10845-021-01817-9 10.3390/app10113802 10.1016/j.solener.2020.03.049 10.1016/j.solener.2020.01.055 10.3390/s21165668 10.3390/s20174688 10.1016/j.neunet.2014.09.003 10.1109/JPHOTOV.2020.3011068 10.1016/j.solmat.2020.110874 10.1016/j.energy.2019.116319 10.1109/JPHOTOV.2021.3057169 10.1016/j.oceaneng.2020.108525 10.3390/en11051053 10.3390/drones5020044 10.1016/j.jesit.2017.01.004 10.3390/en13246496 10.1109/JSEN.2020.3029707 10.1109/ACCESS.2020.3011553 10.3390/s20216106 10.1080/00207543.2019.1662133 10.1016/j.solmat.2013.09.019 10.1109/ACCESS.2019.2909267 10.3390/en11030616 10.1109/ACCESS.2020.2976843 10.1109/TKDE.2013.111 10.1016/j.solener.2021.05.032 10.1016/j.enconman.2017.09.019 10.3390/en12193631 10.1016/j.solener.2020.09.071 10.1016/j.ijepes.2021.107035 10.3390/en13246751 10.1155/2017/1356851 10.1088/1757-899X/1012/1/012030 10.1109/JPHOTOV.2014.2323714 10.3390/en14092521 10.3390/s20123537 10.1002/pip.3297 10.1016/j.rser.2021.110889 10.1016/j.enconman.2021.114315 10.1109/ACCESS.2019.2902949 10.3390/app9122551 10.1109/ACCESS.2021.3064360 10.1186/s40537-016-0043-6 10.1109/IECON48115.2021.9589423 10.1109/ACCESS.2020.2978621 10.1016/j.techfore.2021.120653 10.1109/MPEL.2020.3047718 10.1109/TPEL.2019.2956812 10.3390/electronics10111283 10.1109/ACCESS.2020.3020296 10.3390/en13102472 10.1016/j.dcan.2018.11.002 10.3390/en12091712 10.1109/TIE.2021.3094463 10.3390/en14154690 10.3390/s21124159 10.3390/electronics9101570 10.1109/TII.2019.2908992 10.3390/su12020608 10.4249/scholarpedia.5947 10.1109/TEC.2018.2873358 10.3390/en14144278 10.1007/978-981-16-0081-4_3 10.3390/en14185967 10.1016/j.solener.2021.05.029 10.3390/info8020043 10.3390/en12020202 10.1016/j.ejcon.2020.03.004 10.1109/ACCESS.2021.3063461 10.3390/en13030584 10.1007/s00138-021-01191-9 10.1016/j.solener.2019.07.063 10.3390/en14082163 10.1109/5.726791 10.1016/j.solener.2019.02.067 10.1109/ICCV.2013.100 10.1016/B978-0-08-098243-4.00005-6 10.3390/sym12122082 10.4236/cs.2016.710249 10.1016/j.csite.2021.100980 10.1016/j.enconman.2021.114603 10.3390/en11112966 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/en14196316 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_3218e447d5b443bb8b02614634f23f36 10_3390_en14196316 |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c361t-4cdac00603a98eb854dec994f0ba7ffac2333b7f5927f3f4c909357d53b9d5d23 |
IEDL.DBID | 8FG |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:28:07 EDT 2025 Mon Jun 30 11:16:35 EDT 2025 Tue Jul 01 01:18:23 EDT 2025 Thu Apr 24 22:50:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-4cdac00603a98eb854dec994f0ba7ffac2333b7f5927f3f4c909357d53b9d5d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4844-508X 0000-0003-4877-4200 0000-0001-7700-6492 |
OpenAccessLink | https://www.proquest.com/docview/2580977850?pq-origsite=%requestingapplication% |
PQID | 2580977850 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3218e447d5b443bb8b02614634f23f36 proquest_journals_2580977850 crossref_primary_10_3390_en14196316 crossref_citationtrail_10_3390_en14196316 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_93 ref_92 ref_91 ref_90 ref_13 Lee (ref_10) 2021; 167 ref_96 ref_19 ref_17 Hajji (ref_68) 2021; 59 Kusiak (ref_94) 2020; 58 Bakdi (ref_18) 2021; 125 Liu (ref_76) 2021; 245 Arani (ref_21) 2016; 2016 ref_25 ref_24 ref_23 ref_20 Rao (ref_59) 2021; 5 Paul (ref_44) 2016; 7 Rahman (ref_49) 2020; 8 ref_29 ref_28 Lu (ref_99) 2019; 7 ref_27 ref_26 Padilla (ref_37) 2014; 120 LeCun (ref_75) 1998; 86 Lu (ref_100) 2021; 130 Schmidhuber (ref_58) 2015; 61 Hwang (ref_81) 2021; 9 ref_72 ref_73 Garoudja (ref_6) 2017; 151 Edun (ref_67) 2021; 21 Weiss (ref_97) 2016; 3 Niazi (ref_104) 2019; 190 Momeni (ref_60) 2020; 16 Kandeal (ref_14) 2021; 223 ref_89 ref_88 ref_87 ref_86 ref_85 Eskandari (ref_65) 2020; 211 Serin (ref_95) 2020; 109 Xiao (ref_48) 2020; 28 Manno (ref_84) 2021; 241 Gao (ref_78) 2020; 8 Sizkouhi (ref_83) 2021; 223 ref_55 ref_54 ref_53 Kyi (ref_16) 2020; 6 Malavya (ref_22) 2021; Volume 63 Dhimish (ref_71) 2021; 25 Akram (ref_102) 2020; 198 ref_61 Venkatesh (ref_82) 2021; 1012 Deitsch (ref_52) 2021; 32 ref_62 Prasad (ref_36) 2018; 5 Quater (ref_56) 2014; 4 Zitouni (ref_5) 2021; 221 Daliento (ref_32) 2017; 2017 Eskandari (ref_66) 2021; 68 ref_34 ref_33 ref_31 ref_30 Sundaram (ref_11) 2021; 9 ref_39 ref_38 Berghout (ref_57) 2021; 221 Harrou (ref_69) 2021; 11 Appiah (ref_77) 2019; 7 Deitsch (ref_51) 2019; 185 Dhibi (ref_63) 2020; 10 Ali (ref_70) 2020; 208 Alammari (ref_45) 2020; 8 ref_103 Li (ref_80) 2019; 10 Huang (ref_64) 2020; 35 Mellit (ref_15) 2021; 143 ref_47 ref_46 Zhao (ref_12) 2021; 8 Hinton (ref_74) 2009; 4 Akram (ref_50) 2019; 189 Tang (ref_101) 2020; 201 ref_43 ref_42 ref_41 ref_40 Khadka (ref_1) 2020; 8 ref_3 ref_2 Li (ref_79) 2019; 34 ref_9 ref_8 Long (ref_98) 2014; 26 Kumari (ref_35) 2016; 4 ref_4 ref_7 |
References_xml | – ident: ref_9 – ident: ref_42 doi: 10.3390/en14092344 – ident: ref_38 doi: 10.3390/en11092416 – volume: 68 start-page: 12750 year: 2021 ident: ref_66 article-title: Fault Detection and Classification for Photovoltaic Systems Based on Hierarchical Classification and Machine Learning Technique publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.3047066 – volume: 10 start-page: 568 year: 2019 ident: ref_80 article-title: An Unmanned Inspection System for Multiple Defects Detection in Photovoltaic Plants publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2019.2955183 – volume: 109 start-page: 953 year: 2020 ident: ref_95 article-title: Review of tool condition monitoring in machining and opportunities for deep learning publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-020-05449-w – volume: 208 start-page: 643 year: 2020 ident: ref_70 article-title: A machine learning framework to identify the hotspot in photovoltaic module using infrared thermography publication-title: Sol. Energy doi: 10.1016/j.solener.2020.08.027 – ident: ref_40 doi: 10.3390/su13116194 – ident: ref_39 doi: 10.1016/B978-0-12-804448-3.00019-0 – volume: 125 start-page: 106457 year: 2021 ident: ref_18 article-title: Real-time fault detection in PV systems under MPPT using PMU and high-frequency multi-sensor data through online PCA-KDE-based multivariate KL divergence publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2020.106457 – ident: ref_7 doi: 10.1007/s10845-021-01817-9 – ident: ref_55 doi: 10.3390/app10113802 – volume: 201 start-page: 453 year: 2020 ident: ref_101 article-title: Deep learning based automatic defect identification of photovoltaic module using electroluminescence images publication-title: Sol. Energy doi: 10.1016/j.solener.2020.03.049 – volume: 198 start-page: 175 year: 2020 ident: ref_102 article-title: Automatic detection of photovoltaic module defects in infrared images with isolated and develop-model transfer deep learning publication-title: Sol. Energy doi: 10.1016/j.solener.2020.01.055 – ident: ref_47 doi: 10.3390/s21165668 – ident: ref_73 doi: 10.3390/s20174688 – volume: 61 start-page: 85 year: 2015 ident: ref_58 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 10 start-page: 1864 year: 2020 ident: ref_63 article-title: Reduced Kernel Random Forest Technique for Fault Detection and Classification in Grid-Tied PV Systems publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2020.3011068 – volume: 221 start-page: 110874 year: 2021 ident: ref_5 article-title: Experimental investigation and modeling of photovoltaic soiling loss as a function of environmental variables: A case study of semi-arid climate publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2020.110874 – volume: 189 start-page: 116319 year: 2019 ident: ref_50 article-title: CNN based automatic detection of photovoltaic cell defects in electroluminescence images publication-title: Energy doi: 10.1016/j.energy.2019.116319 – ident: ref_103 – volume: 11 start-page: 806 year: 2021 ident: ref_69 article-title: Monitoring of Photovoltaic Systems Using Improved Kernel-Based Learning Schemes publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2021.3057169 – volume: 221 start-page: 108525 year: 2021 ident: ref_57 article-title: A deep supervised learning approach for condition-based maintenance of naval propulsion systems publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108525 – ident: ref_87 doi: 10.3390/en11051053 – ident: ref_3 – ident: ref_17 doi: 10.3390/drones5020044 – volume: 5 start-page: 48 year: 2018 ident: ref_36 article-title: A review on fault classification methodologies in power transmission systems: Part—I publication-title: J. Electr. Syst. Inf. Technol. doi: 10.1016/j.jesit.2017.01.004 – ident: ref_46 doi: 10.3390/en13246496 – volume: 21 start-page: 4855 year: 2021 ident: ref_67 article-title: Finding Faults in PV Systems: Supervised and Unsupervised Dictionary Learning with SSTDR publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3029707 – ident: ref_86 – volume: 8 start-page: 135948 year: 2020 ident: ref_1 article-title: Current Practices of Solar Photovoltaic Panel Cleaning System and Future Prospects of Machine Learning Implementation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011553 – volume: 2016 start-page: 8712960 year: 2016 ident: ref_21 article-title: The Comprehensive Study of Electrical Faults in PV Arrays publication-title: J. Electr. Comput. Eng. – ident: ref_53 doi: 10.3390/s20216106 – volume: 58 start-page: 1594 year: 2020 ident: ref_94 article-title: Convolutional and generative adversarial neural networks in manufacturing publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2019.1662133 – volume: 120 start-page: 282 year: 2014 ident: ref_37 article-title: Short-circuit current density mapping for solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2013.09.019 – volume: 7 start-page: 45831 year: 2019 ident: ref_99 article-title: DA-DCGAN: An Effective Methodology for DC Series Arc Fault Diagnosis in Photovoltaic Systems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909267 – ident: ref_30 doi: 10.3390/en11030616 – volume: 8 start-page: 40547 year: 2020 ident: ref_49 article-title: Defects Inspection in Polycrystalline Solar Cells Electroluminescence Images Using Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2976843 – volume: 26 start-page: 1076 year: 2014 ident: ref_98 article-title: Adaptation Regularization: A General Framework for Transfer Learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2013.111 – volume: 223 start-page: 33 year: 2021 ident: ref_14 article-title: Infrared thermography-based condition monitoring of solar photovoltaic systems: A mini review of recent advances publication-title: Sol. Energy doi: 10.1016/j.solener.2021.05.032 – volume: 151 start-page: 496 year: 2017 ident: ref_6 article-title: An enhanced machine learning based approach for failures detection and diagnosis of PV systems publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.09.019 – ident: ref_89 – ident: ref_29 doi: 10.3390/en12193631 – volume: 211 start-page: 354 year: 2020 ident: ref_65 article-title: Line-line fault detection and classification for photovoltaic systems using ensemble learning model based on I-V characteristics publication-title: Sol. Energy doi: 10.1016/j.solener.2020.09.071 – volume: 130 start-page: 107035 year: 2021 ident: ref_100 article-title: Lightweight transfer nets and adversarial data augmentation for photovoltaic series arc fault detection with limited fault data publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2021.107035 – ident: ref_28 doi: 10.3390/en13246751 – volume: 2017 start-page: 1356851 year: 2017 ident: ref_32 article-title: Monitoring, Diagnosis, and Power Forecasting for Photovoltaic Fields: A Review publication-title: Int. J. Photoenergy doi: 10.1155/2017/1356851 – volume: 1012 start-page: 012030 year: 2021 ident: ref_82 article-title: Fault Detection in aerial images of photovoltaic modules based on Deep learning publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/1012/1/012030 – volume: 4 start-page: 1107 year: 2014 ident: ref_56 article-title: Light Unmanned Aerial Vehicles (UAVs) for Cooperative Inspection of PV Plants publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2014.2323714 – ident: ref_25 doi: 10.3390/en14092521 – ident: ref_54 doi: 10.3390/s20123537 – volume: 28 start-page: 909 year: 2020 ident: ref_48 article-title: Failure analysis of field-failed bypass diodes publication-title: Prog. Photovolt. Res. Appl. doi: 10.1002/pip.3297 – volume: 143 start-page: 110889 year: 2021 ident: ref_15 article-title: Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.110889 – volume: 241 start-page: 114315 year: 2021 ident: ref_84 article-title: Deep learning strategies for automatic fault diagnosis in photovoltaic systems by thermographic images publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114315 – volume: 7 start-page: 30089 year: 2019 ident: ref_77 article-title: Long Short-Term Memory Networks Based Automatic Feature Extraction for Photovoltaic Array Fault Diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2902949 – ident: ref_92 doi: 10.3390/app9122551 – ident: ref_90 – volume: 9 start-page: 41246 year: 2021 ident: ref_11 article-title: Deep Learning for Fault Diagnostics in Bearings, Insulators, PV Panels, Power Lines, and Electric Vehicle Applications—The State-of-the-Art Approaches publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3064360 – volume: 3 start-page: 1 year: 2016 ident: ref_97 article-title: A survey of transfer learning publication-title: J. Big Data doi: 10.1186/s40537-016-0043-6 – ident: ref_20 doi: 10.1109/IECON48115.2021.9589423 – volume: 8 start-page: 47619 year: 2020 ident: ref_45 article-title: Computation of Power Extraction from Photovoltaic Arrays Under Various Fault Conditions publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2978621 – volume: 167 start-page: 120653 year: 2021 ident: ref_10 article-title: From technological development to social advance: A review of Industry 4.0 through machine learning publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2021.120653 – volume: 8 start-page: 18 year: 2021 ident: ref_12 article-title: Enabling Data-Driven Condition Monitoring of Power Electronic Systems with Artificial Intelligence: Concepts, Tools, and Developments publication-title: IEEE Power Electron. Mag. doi: 10.1109/MPEL.2020.3047718 – volume: 35 start-page: 7086 year: 2020 ident: ref_64 article-title: Design of Hybrid Artificial Bee Colony Algorithm and Semi-Supervised Extreme Learning Machine for PV Fault Diagnoses by Considering Dust Impact publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2019.2956812 – ident: ref_43 doi: 10.3390/electronics10111283 – ident: ref_62 doi: 10.3390/s20174688 – volume: 8 start-page: 159493 year: 2020 ident: ref_78 article-title: A Novel Fault Identification Method for Photovoltaic Array via Convolutional Neural Network and Residual Gated Recurrent Unit publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3020296 – ident: ref_27 doi: 10.3390/en13102472 – volume: 6 start-page: 51 year: 2020 ident: ref_16 article-title: Wireless sensing for a solar power system publication-title: Digit. Commun. Netw. doi: 10.1016/j.dcan.2018.11.002 – ident: ref_72 – ident: ref_31 doi: 10.3390/en12091712 – ident: ref_41 doi: 10.1109/TIE.2021.3094463 – ident: ref_13 doi: 10.3390/en14154690 – ident: ref_33 doi: 10.3390/s21124159 – ident: ref_34 doi: 10.3390/electronics9101570 – volume: 16 start-page: 5300 year: 2020 ident: ref_60 article-title: Fault Diagnosis in Photovoltaic Arrays Using GBSSL Method and Proposing a Fault Correction System publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2908992 – ident: ref_19 doi: 10.3390/su12020608 – volume: 4 start-page: 5947 year: 2009 ident: ref_74 article-title: Deep belief networks publication-title: Scholarpedia doi: 10.4249/scholarpedia.5947 – volume: 34 start-page: 520 year: 2019 ident: ref_79 article-title: Deep Learning Based Module Defect Analysis for Large-Scale Photovoltaic Farms publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2018.2873358 – ident: ref_4 doi: 10.3390/en14144278 – volume: Volume 63 start-page: 17 year: 2021 ident: ref_22 article-title: A Simple Method to Detect Partial Shading in PV Systems publication-title: Data Engineering and Communication Technology doi: 10.1007/978-981-16-0081-4_3 – ident: ref_2 doi: 10.3390/en14185967 – volume: 223 start-page: 217 year: 2021 ident: ref_83 article-title: A deep convolutional encoder-decoder architecture for autonomous fault detection of PV plants using multi-copters publication-title: Sol. Energy doi: 10.1016/j.solener.2021.05.029 – ident: ref_93 doi: 10.3390/info8020043 – ident: ref_24 doi: 10.3390/en12020202 – volume: 59 start-page: 313 year: 2021 ident: ref_68 article-title: Multivariate feature extraction based supervised machine learning for fault detection and diagnosis in photovoltaic systems publication-title: Eur. J. Control. doi: 10.1016/j.ejcon.2020.03.004 – volume: 9 start-page: 37210 year: 2021 ident: ref_81 article-title: Detection of Malfunctioning Photovoltaic Modules Based on Machine Learning Algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3063461 – volume: 5 start-page: 17 year: 2021 ident: ref_59 article-title: The Role of Artificial Intelligence (AI) in Condition Monitoring and Diagnostic Engineering Management (COMADEM): A Literature Survey publication-title: Am. J. Artif. Intell. – ident: ref_61 doi: 10.3390/en13030584 – ident: ref_96 – volume: 32 start-page: 84 year: 2021 ident: ref_52 article-title: Segmentation of photovoltaic module cells in uncalibrated electroluminescence images publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-021-01191-9 – volume: 190 start-page: 34 year: 2019 ident: ref_104 article-title: Hotspot diagnosis for solar photovoltaic modules using a Naive Bayes classifier publication-title: Sol. Energy doi: 10.1016/j.solener.2019.07.063 – ident: ref_88 doi: 10.3390/en14082163 – volume: 4 start-page: 1 year: 2016 ident: ref_35 article-title: Power System Faults: A Review publication-title: Ijert – volume: 86 start-page: 2278 year: 1998 ident: ref_75 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 185 start-page: 455 year: 2019 ident: ref_51 article-title: Automatic classification of defective photovoltaic module cells in electroluminescence images publication-title: Sol. Energy doi: 10.1016/j.solener.2019.02.067 – ident: ref_85 – ident: ref_91 doi: 10.1109/ICCV.2013.100 – ident: ref_8 doi: 10.1016/B978-0-08-098243-4.00005-6 – ident: ref_23 doi: 10.3390/sym12122082 – volume: 7 start-page: 2904 year: 2016 ident: ref_44 article-title: Fault Identification and Islanding in DC Grid Connected PV System publication-title: Circuits Syst. doi: 10.4236/cs.2016.710249 – volume: 25 start-page: 100980 year: 2021 ident: ref_71 article-title: Defining the best-fit machine learning classifier to early diagnose photovoltaic solar cells hot-spots publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.100980 – volume: 245 start-page: 114603 year: 2021 ident: ref_76 article-title: Fault diagnosis approach for photovoltaic array based on the stacked auto-encoder and clustering with I-V curves publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114603 – ident: ref_26 doi: 10.3390/en11112966 |
SSID | ssj0000331333 |
Score | 2.453474 |
SecondaryResourceType | review_article |
Snippet | To ensure the continuity of electric power generation for photovoltaic systems, condition monitoring frameworks are subject to major enhancements. The... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 6316 |
SubjectTerms | Alternative energy sources Artificial intelligence condition monitoring deep learning Failure fault detection faults diagnosis Internet of Things Machine learning Optimization Photovoltaic cells photovoltaic systems Radiation Renewable resources Sensors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeD7KQH8SdOpwT04qGszY-m8ebEMYTJDk52K_npRVrZ5v9vXtrNgoIXr-VByvclee816echdGMIEU4wn3DnacKE8IksUp4oYXObEatV_A45fc4nc_a04ItOqy-4E9bggRvhhjTEIMeYsFwzRrUuNFQNLKfME-pphG2nMu0UU3EPpjQUX7ThkdJQ1w9dlTGYbdDYvBOBIqj_xz4cg8v4AO23WSG-b97mEO246gjtdViBx0hN47VHh1si6lsyCgHI4ocaDp2DurhZnmCNQyaKZ6-4xZHf4ZhS4trjkO7BKFhVFo8jTgTPlnX83XJ1gubjx5eHSdL2R0gMzbN1woxVBoAqVMnC6YIz64yUzKdaCe-VIUECLTyXRHjqmZFw6hmUpFpabgk9Rb2qrtwZwkxlFnpJ-pwDGBQ6EPtQCbG0kNpYr_vodqNZaVp4OPSweC9DEQH6lt_69tH11vajQWb8ajUC6bcWgLmOD4Lzy9b55V_O76PBxnFlu_ZWJeFFGrLagqfn_zHGBdolcI8lXuAboN56-ekuQyKy1ldxzn0BdN3YUg priority: 102 providerName: Directory of Open Access Journals |
Title | Machine Learning-Based Condition Monitoring for PV Systems: State of the Art and Future Prospects |
URI | https://www.proquest.com/docview/2580977850 https://doaj.org/article/3218e447d5b443bb8b02614634f23f36 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8QwFA4uFz2IK65DQC8egm2WpvUijsyMCMogKnMrWb1IqzPj_zcvkxkFxUsP7aMtLy95S16-D6EzQ6l0knsinGeES-lJVWaCKGkLm1OrVaxD3j8Ut8_8biRGqeA2SW2V8zUxLtS2NVAjv6CizEKsUors6v2DAGsU7K4mCo1ltJoHTwN2XvYHixpLxlhIwdgMlZSF7P7CNTkHmwN68x9-KML1_1qNo4vpb6KNFBvi69lgbqEl12yj9R-IgTtI3cfmR4cTLuor6QY3ZPFNC1vPQcd4NklBGod4FA9fcAIlv8QxsMStxyHog69g1Vjcj6AieDhu46HLyS567veebm5JYkkghhX5lHBjlQFYFaaq0ulScOtMVXGfaSW9V4YGFWjpRUWlZ56bCvY-pRVMV1ZYyvbQStM2bh9hrnILjJK-EAAPCjzEPuRDPCsrbazXB-h8rrPaJAhxYLJ4q0MqAfqtv_V7gE4Xsu8z4Iw_pbqg-oUEgF3HG-34tU5zp2YhDHGch1_WnDOtSw2JIy8Y95R5Fl5yPB-4Os3ASf1tL4f_Pz5CaxT6VGKD3jFamY4_3UkINKa6E62pg1a7vYfhYyem6-E6GOVfc4bU2A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWq7QE4IMqHKJTWEnDgEDXrseMYCaFu6WpLu6sValFvwZ-9VEnZXYT4U_xGPE6yrQTi1msySqLxZPzGHr9HyBvLmPSSh0z4ABmXMmSqzEWmpSvckDmj0zrkdFZMzvnnC3GxQX73Z2GwrbLPiSlRu8biGvk-E2UesUop8o_X3zNUjcLd1V5Cow2LE__rZyzZlh-OP8XxfcvY-OjscJJ1qgKZhWK4yrh12iINCWhVelMK7rxViofcaBmCtgwAjAxCMRkgcKtwr1A6AUY54ZDoIKb8TY4nWgdkc3Q0m39Zr-rkALHog5YHFUDl-74ecoxyFFS_NfMlgYC_8n-a1MaPyMMOjdKDNny2yIavH5MHtzgKnxA9Te2WnnZMrJfZKE58jh42uNkdR5W2aQGtaUTAdP6VdjTo72mCsrQJNMJMfAvVtaPjRGNC54smHfNcPiXnd-LBZ2RQN7V_TijXQ4calqEQSEiKyschVmA8L5WxLpht8q73WWU70nLUzriqYvGC_q1u_LtNXq9tr1uqjn9ajdD1awuk104XmsVl1f2tFUTg4zmPn2w4B2NKg6UqL4AHBgHiQ3b6gau6f35Z3UToi__f3iP3JmfT0-r0eHbyktxn2CWT2gN3yGC1-OFfRZizMrtdbFHy7a7D-Q80NBBW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIiE4IJ5ioYAl4MDB2qzHjmMkhGhLaCmt9kCr3lI_e0FJ2V2E-Gv8OjxOsq0E4tZrMnKi8Xge9vj7CHnlOFdBichkiMCEUpHpqpDMKF_6GffW5H3Iw6Ny71h8PpWnG-T3eBcG2ypHn5gdte8c7pFPuayKlKtUspjGoS1ivlu_v_jOkEEKT1pHOo3eRA7Cr5-pfFu-299Nc_2a8_rj1509NjAMMAflbMWE88YhJAkYXQVbSeGD01rEwhoVo3EcAKyKUnMVIQqn8dxQeQlWe-kR9CC5_xsKlMbCr6o_rfd3CoBU_kGPiAqgi2loZwLtHanVr8TATBXwVyTI4a2-S-4MeSn90BvSPbIR2vvk9hW0wgfEHObGy0AHTNZztp1CoKc7HR57p_mlvYNAaZpyYTo_oQMg-luak1raRZoSTvwKNa2ndQY0ofNFly98Lh-S42vR3yOy2XZteEyoMDOPbJaxlAhNihzIMdVioqi0dT7aCXkz6qxxA3w5smh8a1IZg_ptLvU7IS_Xshc9aMc_pbZR9WsJBNrOD7rFeTOs2wZSChSESL9shQBrK4tFqyhBRA4R0iBb48Q1w-pfNpe2-uT_r1-Qm8mImy_7RwdPyS2O7TK5T3CLbK4WP8KzlO-s7PNsWJScXbcl_wH0cBMm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Condition+Monitoring+for+PV+Systems%3A+State+of+the+Art+and+Future+Prospects&rft.jtitle=Energies+%28Basel%29&rft.au=Berghout%2C+Tarek&rft.au=Benbouzid%2C+Mohamed&rft.au=Bentrcia%2C+Toufik&rft.au=Ma%2C+Xiandong&rft.date=2021-10-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=14&rft.issue=19&rft.spage=6316&rft_id=info:doi/10.3390%2Fen14196316&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en14196316 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |