Machine Learning Framework for Early Detection of Chronic Kidney Disease Stages Using Optimized Estimated Glomerular Filtration Rate

Chronic Kidney Disease (CKD) is a progressive condition that requires accurate diagnosis and staging for effective clinical management. Conventional CKD diagnosis relies on estimated Glomerular Filtration Rate (eGFR), a measure of kidney function derived from serum biomarkers such as serum creatinin...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 78057 - 78072
Main Authors Ghosh, Samit Kumar, Widatalla, Namareq, Khandoker, Ahsan H.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2025.3565549

Cover

Loading…
Abstract Chronic Kidney Disease (CKD) is a progressive condition that requires accurate diagnosis and staging for effective clinical management. Conventional CKD diagnosis relies on estimated Glomerular Filtration Rate (eGFR), a measure of kidney function derived from serum biomarkers such as serum creatinine (SCr) and cystatin C (SCysC). However, eGFR calculations may be inaccurate when applied to diverse patient populations. This study proposes a machine learning (ML) system that integrates regression-based eGFR estimation, metaheuristic optimization using the Grey Wolf Optimizer (GWO), and multi-class classification with various ML models to enhance CKD staging and classification. The model estimates eGFR using three established CKD Epidemiology Collaboration (CKD-EPI) equations incorporating SCr, SCysC, and their combined values. Regression models assess predictive performance, specifically Linear Regression (LR) and Support Vector Regression (SVR). SVR demonstrates superior performance compared to LR for <inline-formula> <tex-math notation="LaTeX">\text {CKD-EPI}_{\text {SCr-SCysC}} </tex-math></inline-formula> achieved a root mean squared error (RMSE) of 3.03, a mean absolute percentage error (MAPE) of 2.97%, and a coefficient of determination (<inline-formula> <tex-math notation="LaTeX">\text {R}^{2} </tex-math></inline-formula>) score of 0.97. The application of GWO for hyperparameter tuning has resulted in a 37.3% reduction in root mean square error (RMSE), a 37.4% drop in mean absolute percentage error (MAPE), and a 2.06% improvement in <inline-formula> <tex-math notation="LaTeX">\text {R}^{2} </tex-math></inline-formula> to improve the precision of prediction. Once the model fine-tunes the eGFR estimations, it feeds them into various algorithms for CKD stage classification, including Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). Among these, XGBoost achieves the highest classification accuracy of 97.76%, along with an F1-score of 97.45%, demonstrating its effectiveness in CKD staging. Shapley Additive Explanations (SHAP) provide global and local feature importance insights, enhancing clinical decision-making and model transparency. Future research will validate the model using more extensive and more diverse datasets. Additionally, it will incorporate extra clinical parameters, including biomarkers and genetic data, to enhance the precision of CKD risk prediction. This research enhances AI-driven nephrology by providing a scalable, interpretable, and highly accurate solution for diagnosing and managing CKD.
AbstractList Chronic Kidney Disease (CKD) is a progressive condition that requires accurate diagnosis and staging for effective clinical management. Conventional CKD diagnosis relies on estimated Glomerular Filtration Rate (eGFR), a measure of kidney function derived from serum biomarkers such as serum creatinine (SCr) and cystatin C (SCysC). However, eGFR calculations may be inaccurate when applied to diverse patient populations. This study proposes a machine learning (ML) system that integrates regression-based eGFR estimation, metaheuristic optimization using the Grey Wolf Optimizer (GWO), and multi-class classification with various ML models to enhance CKD staging and classification. The model estimates eGFR using three established CKD Epidemiology Collaboration (CKD-EPI) equations incorporating SCr, SCysC, and their combined values. Regression models assess predictive performance, specifically Linear Regression (LR) and Support Vector Regression (SVR). SVR demonstrates superior performance compared to LR for <tex-math notation="LaTeX">$\text {CKD-EPI}_{\text {SCr-SCysC}}$ </tex-math> achieved a root mean squared error (RMSE) of 3.03, a mean absolute percentage error (MAPE) of 2.97%, and a coefficient of determination ( <tex-math notation="LaTeX">$\text {R}^{2}$ </tex-math>) score of 0.97. The application of GWO for hyperparameter tuning has resulted in a 37.3% reduction in root mean square error (RMSE), a 37.4% drop in mean absolute percentage error (MAPE), and a 2.06% improvement in <tex-math notation="LaTeX">$\text {R}^{2}$ </tex-math> to improve the precision of prediction. Once the model fine-tunes the eGFR estimations, it feeds them into various algorithms for CKD stage classification, including Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). Among these, XGBoost achieves the highest classification accuracy of 97.76%, along with an F1-score of 97.45%, demonstrating its effectiveness in CKD staging. Shapley Additive Explanations (SHAP) provide global and local feature importance insights, enhancing clinical decision-making and model transparency. Future research will validate the model using more extensive and more diverse datasets. Additionally, it will incorporate extra clinical parameters, including biomarkers and genetic data, to enhance the precision of CKD risk prediction. This research enhances AI-driven nephrology by providing a scalable, interpretable, and highly accurate solution for diagnosing and managing CKD.
Chronic Kidney Disease (CKD) is a progressive condition that requires accurate diagnosis and staging for effective clinical management. Conventional CKD diagnosis relies on estimated Glomerular Filtration Rate (eGFR), a measure of kidney function derived from serum biomarkers such as serum creatinine (SCr) and cystatin C (SCysC). However, eGFR calculations may be inaccurate when applied to diverse patient populations. This study proposes a machine learning (ML) system that integrates regression-based eGFR estimation, metaheuristic optimization using the Grey Wolf Optimizer (GWO), and multi-class classification with various ML models to enhance CKD staging and classification. The model estimates eGFR using three established CKD Epidemiology Collaboration (CKD-EPI) equations incorporating SCr, SCysC, and their combined values. Regression models assess predictive performance, specifically Linear Regression (LR) and Support Vector Regression (SVR). SVR demonstrates superior performance compared to LR for [Formula Omitted] achieved a root mean squared error (RMSE) of 3.03, a mean absolute percentage error (MAPE) of 2.97%, and a coefficient of determination ([Formula Omitted]) score of 0.97. The application of GWO for hyperparameter tuning has resulted in a 37.3% reduction in root mean square error (RMSE), a 37.4% drop in mean absolute percentage error (MAPE), and a 2.06% improvement in [Formula Omitted] to improve the precision of prediction. Once the model fine-tunes the eGFR estimations, it feeds them into various algorithms for CKD stage classification, including Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). Among these, XGBoost achieves the highest classification accuracy of 97.76%, along with an F1-score of 97.45%, demonstrating its effectiveness in CKD staging. Shapley Additive Explanations (SHAP) provide global and local feature importance insights, enhancing clinical decision-making and model transparency. Future research will validate the model using more extensive and more diverse datasets. Additionally, it will incorporate extra clinical parameters, including biomarkers and genetic data, to enhance the precision of CKD risk prediction. This research enhances AI-driven nephrology by providing a scalable, interpretable, and highly accurate solution for diagnosing and managing CKD.
Chronic Kidney Disease (CKD) is a progressive condition that requires accurate diagnosis and staging for effective clinical management. Conventional CKD diagnosis relies on estimated Glomerular Filtration Rate (eGFR), a measure of kidney function derived from serum biomarkers such as serum creatinine (SCr) and cystatin C (SCysC). However, eGFR calculations may be inaccurate when applied to diverse patient populations. This study proposes a machine learning (ML) system that integrates regression-based eGFR estimation, metaheuristic optimization using the Grey Wolf Optimizer (GWO), and multi-class classification with various ML models to enhance CKD staging and classification. The model estimates eGFR using three established CKD Epidemiology Collaboration (CKD-EPI) equations incorporating SCr, SCysC, and their combined values. Regression models assess predictive performance, specifically Linear Regression (LR) and Support Vector Regression (SVR). SVR demonstrates superior performance compared to LR for <inline-formula> <tex-math notation="LaTeX">\text {CKD-EPI}_{\text {SCr-SCysC}} </tex-math></inline-formula> achieved a root mean squared error (RMSE) of 3.03, a mean absolute percentage error (MAPE) of 2.97%, and a coefficient of determination (<inline-formula> <tex-math notation="LaTeX">\text {R}^{2} </tex-math></inline-formula>) score of 0.97. The application of GWO for hyperparameter tuning has resulted in a 37.3% reduction in root mean square error (RMSE), a 37.4% drop in mean absolute percentage error (MAPE), and a 2.06% improvement in <inline-formula> <tex-math notation="LaTeX">\text {R}^{2} </tex-math></inline-formula> to improve the precision of prediction. Once the model fine-tunes the eGFR estimations, it feeds them into various algorithms for CKD stage classification, including Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). Among these, XGBoost achieves the highest classification accuracy of 97.76%, along with an F1-score of 97.45%, demonstrating its effectiveness in CKD staging. Shapley Additive Explanations (SHAP) provide global and local feature importance insights, enhancing clinical decision-making and model transparency. Future research will validate the model using more extensive and more diverse datasets. Additionally, it will incorporate extra clinical parameters, including biomarkers and genetic data, to enhance the precision of CKD risk prediction. This research enhances AI-driven nephrology by providing a scalable, interpretable, and highly accurate solution for diagnosing and managing CKD.
Author Widatalla, Namareq
Khandoker, Ahsan H.
Ghosh, Samit Kumar
Author_xml – sequence: 1
  givenname: Samit Kumar
  orcidid: 0000-0003-2267-7314
  surname: Ghosh
  fullname: Ghosh, Samit Kumar
  email: samitnitrkl@gmail.com
  organization: Department of Biomedical Engineering and Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
– sequence: 2
  givenname: Namareq
  orcidid: 0000-0001-9848-8531
  surname: Widatalla
  fullname: Widatalla, Namareq
  organization: Department of Biomedical Engineering and Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
– sequence: 3
  givenname: Ahsan H.
  orcidid: 0000-0002-0636-1646
  surname: Khandoker
  fullname: Khandoker, Ahsan H.
  organization: Department of Biomedical Engineering and Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
BookMark eNpNUU1PGzEQtSqQSim_gB4s9ZzUXu-Xj2ibUEQqJAJna9YeB6ebdWo7qui5P7wOixC--GnG894bv0_kZPQjEnLJ2ZxzJr9ddd1ivZ4XrKjmoqqrqpQfyFnBazkTlahP3uGP5CLGLcunzaWqOSP_foJ-ciPSFUIY3bihywA7_OPDL2p9oAsIwzP9jgl1cn6k3tLuKfjRaXrrzIi55yJCRLpOsMFIH-OR5G6f3M79RUMXMSNIGV0PfofhMECgSzekAC-E97n3mZxaGCJevN7n5HG5eOh-zFZ31zfd1WqmRc3TrJS21qwoedPYSmisJHAUHMBIY0xvhTaamzbvWdn8DbIXPZQgGwutbnsQ4pzcTLzGw1btQzYWnpUHp14KPmwUhOT0gEo2fcGbgksOdckk9mUrOWZJVte8R5a5vk5c--B_HzAmtfWHMGb7ShQsW5RcHBXF9EoHH2NA-6bKmTqmp6b01DE99ZpenvoyTTlEfDchGymFFP8BDRuZKg
CODEN IAECCG
Cites_doi 10.1053/j.ajkd.2012.11.044
10.1093/ije/dym276
10.1016/j.semnephrol.2016.05.005
10.1016/j.xkme.2023.100727
10.1007/s41999-018-0076-9
10.1371/journal.pmed.1001779
10.1136/bmj.l886
10.1016/S0140-6736(86)90837-8
10.29172/7c2a6982-6d72-4cd8-bba6-2fccb06a7011
10.1038/nrneph.2011.86
10.1097/MNH.0b013e32833893e2
10.1038/nrneph.2015.85
10.1186/s40537-022-00657-5
10.1109/ACCESS.2023.3264270
10.1186/s12967-019-1860-0
10.1093/clinchem/hvab282
10.1038/s41598-024-77618-w
10.1053/j.ajkd.2013.06.002
10.4236/ojs.2015.57075
10.1038/ki.2010.462
10.1186/s12882-020-01932-4
10.1613/jair.953
10.1016/j.advengsoft.2013.12.007
10.1053/j.ajkd.2019.02.016
10.1016/S0140-6736(18)31694-5
10.1016/B978-0-12-815739-8.00007-9
10.1056/NEJMoa1114248
10.1093/ndt/gfy278
10.1038/s41598-024-54375-4
10.1016/B978-0-12-815739-8.00006-7
10.1053/j.ajkd.2012.12.022
10.1053/ajkd.2001.27691
10.1109/ACCESS.2024.3416838
10.1053/j.ackd.2017.09.003
10.1016/B978-0-12-815739-8.00004-3
10.5001/omj.2012.23
10.1161/JAHA.122.027079
10.1016/S2214-109X(23)00570-3
10.1186/s12882-024-03466-5
10.1016/j.bspc.2023.105368
10.1053/j.ajkd.2013.03.027
10.1681/ASN.2013050557
10.1093/ckj/sfad188
10.1016/j.csbj.2022.06.003
10.1515/CCLM.2006.239
10.1056/nejmoa2102953
10.1016/j.imu.2019.100178
10.1016/j.transproceed.2017.03.050
10.3390/diagnostics10060415
10.1007/s12291-023-01125-4
10.3389/fnano.2022.972421
10.7326/0003-4819-145-4-200608150-00004
10.1016/j.clinbiochem.2014.05.060
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3565549
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 78072
ExternalDocumentID oai_doaj_org_article_97b2172191a6409eb4891ee590661be0
10_1109_ACCESS_2025_3565549
10979939
Genre orig-research
GrantInformation_xml – fundername: Khalifa University, Abu Dhabi, United Arab Emirates
  grantid: 8474000408; 8474000132
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-49f6c024177f53ce59a1e31aad9dddbf3cdc1d85365f6559b3ba4a97fa8c8ba33
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:29:37 EDT 2025
Mon Jun 30 07:44:00 EDT 2025
Tue Jul 01 04:57:51 EDT 2025
Wed Aug 27 01:53:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-49f6c024177f53ce59a1e31aad9dddbf3cdc1d85365f6559b3ba4a97fa8c8ba33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9848-8531
0000-0002-0636-1646
0000-0003-2267-7314
OpenAccessLink https://doaj.org/article/97b2172191a6409eb4891ee590661be0
PQID 3201779133
PQPubID 4845423
PageCount 16
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3565549
doaj_primary_oai_doaj_org_article_97b2172191a6409eb4891ee590661be0
ieee_primary_10979939
proquest_journals_3201779133
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Lundberg (ref38)
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
Stevens (ref15) 2011; 79
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Eknoyan (ref46) 2013; 3
ref28
ref27
ref29
References_xml – ident: ref24
  doi: 10.1053/j.ajkd.2012.11.044
– ident: ref42
  doi: 10.1093/ije/dym276
– ident: ref8
  doi: 10.1016/j.semnephrol.2016.05.005
– ident: ref22
  doi: 10.1016/j.xkme.2023.100727
– volume-title: U.K.Biobank, Biospecimens Manual: Collection of Biological Samples, Processing and Storage
  ident: ref41
– ident: ref19
  doi: 10.1007/s41999-018-0076-9
– ident: ref40
  doi: 10.1371/journal.pmed.1001779
– ident: ref37
  doi: 10.1136/bmj.l886
– ident: ref47
  doi: 10.1016/S0140-6736(86)90837-8
– ident: ref53
  doi: 10.29172/7c2a6982-6d72-4cd8-bba6-2fccb06a7011
– ident: ref3
  doi: 10.1038/nrneph.2011.86
– ident: ref7
  doi: 10.1097/MNH.0b013e32833893e2
– ident: ref6
  doi: 10.1038/nrneph.2015.85
– ident: ref32
  doi: 10.1186/s40537-022-00657-5
– ident: ref4
  doi: 10.1109/ACCESS.2023.3264270
– ident: ref31
  doi: 10.1186/s12967-019-1860-0
– ident: ref43
  doi: 10.1093/clinchem/hvab282
– ident: ref29
  doi: 10.1038/s41598-024-77618-w
– ident: ref9
  doi: 10.1053/j.ajkd.2013.06.002
– ident: ref55
  doi: 10.4236/ojs.2015.57075
– volume: 79
  start-page: 555
  issue: 5
  year: 2011
  ident: ref15
  article-title: Evaluation of the CKD-EPI equation in multiple races and ethnicities
  publication-title: Kidney Int.
  doi: 10.1038/ki.2010.462
– ident: ref18
  doi: 10.1186/s12882-020-01932-4
– volume-title: U.K. Biobank: Protocol for a Large-Scale Prospective Epidemiological Resource
  ident: ref39
– ident: ref56
  doi: 10.1613/jair.953
– ident: ref50
  doi: 10.1016/j.advengsoft.2013.12.007
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref38
  article-title: A unified approach to interpreting model predictions
– ident: ref54
  doi: 10.1053/j.ajkd.2019.02.016
– ident: ref2
  doi: 10.1016/S0140-6736(18)31694-5
– ident: ref49
  doi: 10.1016/B978-0-12-815739-8.00007-9
– ident: ref44
  doi: 10.1056/NEJMoa1114248
– ident: ref12
  doi: 10.1093/ndt/gfy278
– ident: ref33
  doi: 10.1038/s41598-024-54375-4
– ident: ref51
  doi: 10.1016/B978-0-12-815739-8.00006-7
– ident: ref27
  doi: 10.1053/j.ajkd.2012.12.022
– ident: ref14
  doi: 10.1053/ajkd.2001.27691
– ident: ref52
  doi: 10.1109/ACCESS.2024.3416838
– ident: ref10
  doi: 10.1053/j.ackd.2017.09.003
– ident: ref48
  doi: 10.1016/B978-0-12-815739-8.00004-3
– ident: ref23
  doi: 10.5001/omj.2012.23
– ident: ref21
  doi: 10.1161/JAHA.122.027079
– ident: ref1
  doi: 10.1016/S2214-109X(23)00570-3
– ident: ref5
  doi: 10.1186/s12882-024-03466-5
– ident: ref30
  doi: 10.1016/j.bspc.2023.105368
– volume: 3
  start-page: 5
  issue: 1
  year: 2013
  ident: ref46
  article-title: KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease
  publication-title: Kidney Int.
– ident: ref28
  doi: 10.1053/j.ajkd.2013.03.027
– ident: ref13
  doi: 10.1681/ASN.2013050557
– ident: ref20
  doi: 10.1093/ckj/sfad188
– ident: ref36
  doi: 10.1016/j.csbj.2022.06.003
– ident: ref11
  doi: 10.1515/CCLM.2006.239
– ident: ref45
  doi: 10.1056/nejmoa2102953
– ident: ref34
  doi: 10.1016/j.imu.2019.100178
– ident: ref26
  doi: 10.1016/j.transproceed.2017.03.050
– ident: ref35
  doi: 10.3390/diagnostics10060415
– ident: ref17
  doi: 10.1007/s12291-023-01125-4
– ident: ref57
  doi: 10.3389/fnano.2022.972421
– ident: ref16
  doi: 10.7326/0003-4819-145-4-200608150-00004
– ident: ref25
  doi: 10.1016/j.clinbiochem.2014.05.060
SSID ssj0000816957
Score 2.3340154
Snippet Chronic Kidney Disease (CKD) is a progressive condition that requires accurate diagnosis and staging for effective clinical management. Conventional CKD...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 78057
SubjectTerms Accuracy
Algorithms
Biological system modeling
Biomarkers
Chronic kidney disease
Chronic kidney diseases
CKD-EPI equation
Classification
Creatinine
cystatin C
Decision trees
Diagnosis
Diseases
Effectiveness
Explainable AI
Filtration
glomerular filtration rate
Heuristic methods
Kidney diseases
Machine learning
Mathematical models
Predictive models
Regression models
Robot learning
Root-mean-square errors
serum creatinine
Support vector machines
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB0VTuVAaQGRQisfemRDHO-u4yMEUtSqICGQuFn-GKMI2CDYXDjzwxl7HRQVVerNWnu19o49fmPPvAH4EQjjB2FiAmJpipKHUJh6GIrgBiN0wkaMHb0tzurTq_LXdXWdg9VTLAwiJucz7Mdiusv3MzePR2UH8baU9lO1AitkuXXBWm8HKjGDhKpkZhaipgeH4zENgmzAYdUXBFyqSJi5tPskkv6cVeWdKk77y-QTnC161rmV3Pbnre27579IG_-76xuwnpEmO-ymxmf4gM0XWFviH9yElz_JlRJZZlm9YZOFrxYjMMsS-zE7xjb5azVsFlgm02W_p75Bquvudxhh1ht8YskBgZ2TGrqfPqNnJ6RACBJT6efd7B4fo88rm0zvMlcvu6C6LbianFyOT4uclqFwouZtUapQO9rauZShEjGMy3AU3BivvPc2COcd9wQD6irQT1dWWFMaJYMZuZE1QmzDajNrcAeYJRPZkT5WymPpSXkMxFDIitfWKRdk3YP9hbj0Q8e-oZPVMlC6k66O0tVZuj04iiJ9axqps9MDEoXOK1EraWNSLrJTTU3GLdpypDjSKAh8cYuDHmxF8S19r5NcD_YWM0Tndf6kBeEnKRUZ-l__8doufIxd7E5t9mC1fZzjN8Ixrf2e5u8rdC3xOg
  priority: 102
  providerName: IEEE
Title Machine Learning Framework for Early Detection of Chronic Kidney Disease Stages Using Optimized Estimated Glomerular Filtration Rate
URI https://ieeexplore.ieee.org/document/10979939
https://www.proquest.com/docview/3201779133
https://doaj.org/article/97b2172191a6409eb4891ee590661be0
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EolQdGAnWd2PFYCqECARICic3yE1WiKYKyMPPDOTsuisTAwhbFURz7znffxefvEDrygPE9VaEAMVdZTrzPFBv6zJtB6QzVAWOHbItbNnnMr56Kp1apr5AT1tADNxN3KrgONZQgrFAMYhGn81IQ5woBvpJoF6N18HmtYCra4JIwUfBEM0QG4nQ0HsOIICAcFicUUEwR2DNbrigy9qcSK7_scnQ21QZaTygRj5qv20Qrrt5Cay3uwG30dRPTIB1ODKnPuFrmWWEAojgyF-Nzt4i5VjWee5yIcPH11NYO2pq9GQx489m945g8gO_AhMymn87iC1j8AGfh6vJlPnNvIV8VV9OXxLOL76FtBz1WFw_jSZZKKmSGMrLIcuGZAbdMOPcFDUewFHGUKGWFtVZ7aqwhFlw4KzzMkdBUq1wJ7lVpSq0o3UWdel67PYQ1hLcGbKkQ1uUWFv6ADikvCNNGGM9ZFx0vZ1e-NswZMkYcAyEbYcggDJmE0UVnQQI_jwba63gDlEEmZZB_KUMX7QT5tfoLu5YUXt5bClSmNfouKWAfzgUE6fv_0fcBWg3jaX7P9FBn8fbhDgGwLHQ_6mY_ni38BmoS5pw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5BOUAPPIuaUsAHjmwax7vr-FjShkDbIKFW6s3yY1xFtJuq3Vx65ocz9jpVRIXEzVp7tfaOPf7GnvkG4FMgjB-EiQmIpSlKHkJh6mEoghuM0AkbMXb0tpjV07Py-3l1noPVUywMIibnM-zHYrrL9wu3jEdle_G2lPZT9RieVDEatwvXuj9SiTkkVCUztxA13tsfj2kYZAUOq74g6FJFysy1_SfR9Oe8Kg-UcdphJi9gtupb51jyq79sbd_d_UXb-N-dfwnPM9Zk-93keAWPsHkNm2sMhG_g90lypkSWeVYv2GTlrcUIzrLEf8wOsE0eWw1bBJbpdNnR3DdIdd0NDyPUeoG3LLkgsB-kiK7md-jZIakQAsVU-nq5uMKb6PXKJvPLzNbLflLdFpxNDk_H0yInZiicqHlblCrUjjZ3LmWoRAzkMhwFN8Yr770NwnnHPQGBugr005UV1pRGyWBGbmSNEG9ho1k0uA3MkpHsSCMr5bH0pD4GYihkxWvrlAuy7sHnlbj0dce_oZPdMlC6k66O0tVZuj34EkV63zSSZ6cHJAqd16JW0sa0XGSpmprMW7TlSHGkURD84hYHPdiK4lv7Xie5HuyuZojOK_1WC0JQUioy9Xf-8dpHeDo9PTnWx99mR-_gWexud4azCxvtzRLfE6pp7Yc0l_8AKHH0gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Framework+for+Early+Detection+of+Chronic+Kidney+Disease+Stages+Using+Optimized+Estimated+Glomerular+Filtration+Rate&rft.jtitle=IEEE+access&rft.au=Ghosh%2C+Samit+Kumar&rft.au=Widatalla%2C+Namareq&rft.au=Khandoker%2C+Ahsan+H.&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=78057&rft.epage=78072&rft_id=info:doi/10.1109%2FACCESS.2025.3565549&rft.externalDocID=10979939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon