Machine Learning Framework for Early Detection of Chronic Kidney Disease Stages Using Optimized Estimated Glomerular Filtration Rate
Chronic Kidney Disease (CKD) is a progressive condition that requires accurate diagnosis and staging for effective clinical management. Conventional CKD diagnosis relies on estimated Glomerular Filtration Rate (eGFR), a measure of kidney function derived from serum biomarkers such as serum creatinin...
Saved in:
Published in | IEEE access Vol. 13; pp. 78057 - 78072 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2025.3565549 |
Cover
Loading…
Abstract | Chronic Kidney Disease (CKD) is a progressive condition that requires accurate diagnosis and staging for effective clinical management. Conventional CKD diagnosis relies on estimated Glomerular Filtration Rate (eGFR), a measure of kidney function derived from serum biomarkers such as serum creatinine (SCr) and cystatin C (SCysC). However, eGFR calculations may be inaccurate when applied to diverse patient populations. This study proposes a machine learning (ML) system that integrates regression-based eGFR estimation, metaheuristic optimization using the Grey Wolf Optimizer (GWO), and multi-class classification with various ML models to enhance CKD staging and classification. The model estimates eGFR using three established CKD Epidemiology Collaboration (CKD-EPI) equations incorporating SCr, SCysC, and their combined values. Regression models assess predictive performance, specifically Linear Regression (LR) and Support Vector Regression (SVR). SVR demonstrates superior performance compared to LR for <inline-formula> <tex-math notation="LaTeX">\text {CKD-EPI}_{\text {SCr-SCysC}} </tex-math></inline-formula> achieved a root mean squared error (RMSE) of 3.03, a mean absolute percentage error (MAPE) of 2.97%, and a coefficient of determination (<inline-formula> <tex-math notation="LaTeX">\text {R}^{2} </tex-math></inline-formula>) score of 0.97. The application of GWO for hyperparameter tuning has resulted in a 37.3% reduction in root mean square error (RMSE), a 37.4% drop in mean absolute percentage error (MAPE), and a 2.06% improvement in <inline-formula> <tex-math notation="LaTeX">\text {R}^{2} </tex-math></inline-formula> to improve the precision of prediction. Once the model fine-tunes the eGFR estimations, it feeds them into various algorithms for CKD stage classification, including Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). Among these, XGBoost achieves the highest classification accuracy of 97.76%, along with an F1-score of 97.45%, demonstrating its effectiveness in CKD staging. Shapley Additive Explanations (SHAP) provide global and local feature importance insights, enhancing clinical decision-making and model transparency. Future research will validate the model using more extensive and more diverse datasets. Additionally, it will incorporate extra clinical parameters, including biomarkers and genetic data, to enhance the precision of CKD risk prediction. This research enhances AI-driven nephrology by providing a scalable, interpretable, and highly accurate solution for diagnosing and managing CKD. |
---|---|
AbstractList | Chronic Kidney Disease (CKD) is a progressive condition that requires accurate diagnosis and staging for effective clinical management. Conventional CKD diagnosis relies on estimated Glomerular Filtration Rate (eGFR), a measure of kidney function derived from serum biomarkers such as serum creatinine (SCr) and cystatin C (SCysC). However, eGFR calculations may be inaccurate when applied to diverse patient populations. This study proposes a machine learning (ML) system that integrates regression-based eGFR estimation, metaheuristic optimization using the Grey Wolf Optimizer (GWO), and multi-class classification with various ML models to enhance CKD staging and classification. The model estimates eGFR using three established CKD Epidemiology Collaboration (CKD-EPI) equations incorporating SCr, SCysC, and their combined values. Regression models assess predictive performance, specifically Linear Regression (LR) and Support Vector Regression (SVR). SVR demonstrates superior performance compared to LR for <tex-math notation="LaTeX">$\text {CKD-EPI}_{\text {SCr-SCysC}}$ </tex-math> achieved a root mean squared error (RMSE) of 3.03, a mean absolute percentage error (MAPE) of 2.97%, and a coefficient of determination ( <tex-math notation="LaTeX">$\text {R}^{2}$ </tex-math>) score of 0.97. The application of GWO for hyperparameter tuning has resulted in a 37.3% reduction in root mean square error (RMSE), a 37.4% drop in mean absolute percentage error (MAPE), and a 2.06% improvement in <tex-math notation="LaTeX">$\text {R}^{2}$ </tex-math> to improve the precision of prediction. Once the model fine-tunes the eGFR estimations, it feeds them into various algorithms for CKD stage classification, including Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). Among these, XGBoost achieves the highest classification accuracy of 97.76%, along with an F1-score of 97.45%, demonstrating its effectiveness in CKD staging. Shapley Additive Explanations (SHAP) provide global and local feature importance insights, enhancing clinical decision-making and model transparency. Future research will validate the model using more extensive and more diverse datasets. Additionally, it will incorporate extra clinical parameters, including biomarkers and genetic data, to enhance the precision of CKD risk prediction. This research enhances AI-driven nephrology by providing a scalable, interpretable, and highly accurate solution for diagnosing and managing CKD. Chronic Kidney Disease (CKD) is a progressive condition that requires accurate diagnosis and staging for effective clinical management. Conventional CKD diagnosis relies on estimated Glomerular Filtration Rate (eGFR), a measure of kidney function derived from serum biomarkers such as serum creatinine (SCr) and cystatin C (SCysC). However, eGFR calculations may be inaccurate when applied to diverse patient populations. This study proposes a machine learning (ML) system that integrates regression-based eGFR estimation, metaheuristic optimization using the Grey Wolf Optimizer (GWO), and multi-class classification with various ML models to enhance CKD staging and classification. The model estimates eGFR using three established CKD Epidemiology Collaboration (CKD-EPI) equations incorporating SCr, SCysC, and their combined values. Regression models assess predictive performance, specifically Linear Regression (LR) and Support Vector Regression (SVR). SVR demonstrates superior performance compared to LR for [Formula Omitted] achieved a root mean squared error (RMSE) of 3.03, a mean absolute percentage error (MAPE) of 2.97%, and a coefficient of determination ([Formula Omitted]) score of 0.97. The application of GWO for hyperparameter tuning has resulted in a 37.3% reduction in root mean square error (RMSE), a 37.4% drop in mean absolute percentage error (MAPE), and a 2.06% improvement in [Formula Omitted] to improve the precision of prediction. Once the model fine-tunes the eGFR estimations, it feeds them into various algorithms for CKD stage classification, including Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). Among these, XGBoost achieves the highest classification accuracy of 97.76%, along with an F1-score of 97.45%, demonstrating its effectiveness in CKD staging. Shapley Additive Explanations (SHAP) provide global and local feature importance insights, enhancing clinical decision-making and model transparency. Future research will validate the model using more extensive and more diverse datasets. Additionally, it will incorporate extra clinical parameters, including biomarkers and genetic data, to enhance the precision of CKD risk prediction. This research enhances AI-driven nephrology by providing a scalable, interpretable, and highly accurate solution for diagnosing and managing CKD. Chronic Kidney Disease (CKD) is a progressive condition that requires accurate diagnosis and staging for effective clinical management. Conventional CKD diagnosis relies on estimated Glomerular Filtration Rate (eGFR), a measure of kidney function derived from serum biomarkers such as serum creatinine (SCr) and cystatin C (SCysC). However, eGFR calculations may be inaccurate when applied to diverse patient populations. This study proposes a machine learning (ML) system that integrates regression-based eGFR estimation, metaheuristic optimization using the Grey Wolf Optimizer (GWO), and multi-class classification with various ML models to enhance CKD staging and classification. The model estimates eGFR using three established CKD Epidemiology Collaboration (CKD-EPI) equations incorporating SCr, SCysC, and their combined values. Regression models assess predictive performance, specifically Linear Regression (LR) and Support Vector Regression (SVR). SVR demonstrates superior performance compared to LR for <inline-formula> <tex-math notation="LaTeX">\text {CKD-EPI}_{\text {SCr-SCysC}} </tex-math></inline-formula> achieved a root mean squared error (RMSE) of 3.03, a mean absolute percentage error (MAPE) of 2.97%, and a coefficient of determination (<inline-formula> <tex-math notation="LaTeX">\text {R}^{2} </tex-math></inline-formula>) score of 0.97. The application of GWO for hyperparameter tuning has resulted in a 37.3% reduction in root mean square error (RMSE), a 37.4% drop in mean absolute percentage error (MAPE), and a 2.06% improvement in <inline-formula> <tex-math notation="LaTeX">\text {R}^{2} </tex-math></inline-formula> to improve the precision of prediction. Once the model fine-tunes the eGFR estimations, it feeds them into various algorithms for CKD stage classification, including Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). Among these, XGBoost achieves the highest classification accuracy of 97.76%, along with an F1-score of 97.45%, demonstrating its effectiveness in CKD staging. Shapley Additive Explanations (SHAP) provide global and local feature importance insights, enhancing clinical decision-making and model transparency. Future research will validate the model using more extensive and more diverse datasets. Additionally, it will incorporate extra clinical parameters, including biomarkers and genetic data, to enhance the precision of CKD risk prediction. This research enhances AI-driven nephrology by providing a scalable, interpretable, and highly accurate solution for diagnosing and managing CKD. |
Author | Widatalla, Namareq Khandoker, Ahsan H. Ghosh, Samit Kumar |
Author_xml | – sequence: 1 givenname: Samit Kumar orcidid: 0000-0003-2267-7314 surname: Ghosh fullname: Ghosh, Samit Kumar email: samitnitrkl@gmail.com organization: Department of Biomedical Engineering and Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates – sequence: 2 givenname: Namareq orcidid: 0000-0001-9848-8531 surname: Widatalla fullname: Widatalla, Namareq organization: Department of Biomedical Engineering and Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates – sequence: 3 givenname: Ahsan H. orcidid: 0000-0002-0636-1646 surname: Khandoker fullname: Khandoker, Ahsan H. organization: Department of Biomedical Engineering and Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates |
BookMark | eNpNUU1PGzEQtSqQSim_gB4s9ZzUXu-Xj2ibUEQqJAJna9YeB6ebdWo7qui5P7wOixC--GnG894bv0_kZPQjEnLJ2ZxzJr9ddd1ivZ4XrKjmoqqrqpQfyFnBazkTlahP3uGP5CLGLcunzaWqOSP_foJ-ciPSFUIY3bihywA7_OPDL2p9oAsIwzP9jgl1cn6k3tLuKfjRaXrrzIi55yJCRLpOsMFIH-OR5G6f3M79RUMXMSNIGV0PfofhMECgSzekAC-E97n3mZxaGCJevN7n5HG5eOh-zFZ31zfd1WqmRc3TrJS21qwoedPYSmisJHAUHMBIY0xvhTaamzbvWdn8DbIXPZQgGwutbnsQ4pzcTLzGw1btQzYWnpUHp14KPmwUhOT0gEo2fcGbgksOdckk9mUrOWZJVte8R5a5vk5c--B_HzAmtfWHMGb7ShQsW5RcHBXF9EoHH2NA-6bKmTqmp6b01DE99ZpenvoyTTlEfDchGymFFP8BDRuZKg |
CODEN | IAECCG |
Cites_doi | 10.1053/j.ajkd.2012.11.044 10.1093/ije/dym276 10.1016/j.semnephrol.2016.05.005 10.1016/j.xkme.2023.100727 10.1007/s41999-018-0076-9 10.1371/journal.pmed.1001779 10.1136/bmj.l886 10.1016/S0140-6736(86)90837-8 10.29172/7c2a6982-6d72-4cd8-bba6-2fccb06a7011 10.1038/nrneph.2011.86 10.1097/MNH.0b013e32833893e2 10.1038/nrneph.2015.85 10.1186/s40537-022-00657-5 10.1109/ACCESS.2023.3264270 10.1186/s12967-019-1860-0 10.1093/clinchem/hvab282 10.1038/s41598-024-77618-w 10.1053/j.ajkd.2013.06.002 10.4236/ojs.2015.57075 10.1038/ki.2010.462 10.1186/s12882-020-01932-4 10.1613/jair.953 10.1016/j.advengsoft.2013.12.007 10.1053/j.ajkd.2019.02.016 10.1016/S0140-6736(18)31694-5 10.1016/B978-0-12-815739-8.00007-9 10.1056/NEJMoa1114248 10.1093/ndt/gfy278 10.1038/s41598-024-54375-4 10.1016/B978-0-12-815739-8.00006-7 10.1053/j.ajkd.2012.12.022 10.1053/ajkd.2001.27691 10.1109/ACCESS.2024.3416838 10.1053/j.ackd.2017.09.003 10.1016/B978-0-12-815739-8.00004-3 10.5001/omj.2012.23 10.1161/JAHA.122.027079 10.1016/S2214-109X(23)00570-3 10.1186/s12882-024-03466-5 10.1016/j.bspc.2023.105368 10.1053/j.ajkd.2013.03.027 10.1681/ASN.2013050557 10.1093/ckj/sfad188 10.1016/j.csbj.2022.06.003 10.1515/CCLM.2006.239 10.1056/nejmoa2102953 10.1016/j.imu.2019.100178 10.1016/j.transproceed.2017.03.050 10.3390/diagnostics10060415 10.1007/s12291-023-01125-4 10.3389/fnano.2022.972421 10.7326/0003-4819-145-4-200608150-00004 10.1016/j.clinbiochem.2014.05.060 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2025.3565549 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 78072 |
ExternalDocumentID | oai_doaj_org_article_97b2172191a6409eb4891ee590661be0 10_1109_ACCESS_2025_3565549 10979939 |
Genre | orig-research |
GrantInformation_xml | – fundername: Khalifa University, Abu Dhabi, United Arab Emirates grantid: 8474000408; 8474000132 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c361t-49f6c024177f53ce59a1e31aad9dddbf3cdc1d85365f6559b3ba4a97fa8c8ba33 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:29:37 EDT 2025 Mon Jun 30 07:44:00 EDT 2025 Tue Jul 01 04:57:51 EDT 2025 Wed Aug 27 01:53:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-49f6c024177f53ce59a1e31aad9dddbf3cdc1d85365f6559b3ba4a97fa8c8ba33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9848-8531 0000-0002-0636-1646 0000-0003-2267-7314 |
OpenAccessLink | https://doaj.org/article/97b2172191a6409eb4891ee590661be0 |
PQID | 3201779133 |
PQPubID | 4845423 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2025_3565549 doaj_primary_oai_doaj_org_article_97b2172191a6409eb4891ee590661be0 ieee_primary_10979939 proquest_journals_3201779133 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Lundberg (ref38) ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 Stevens (ref15) 2011; 79 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Eknoyan (ref46) 2013; 3 ref28 ref27 ref29 |
References_xml | – ident: ref24 doi: 10.1053/j.ajkd.2012.11.044 – ident: ref42 doi: 10.1093/ije/dym276 – ident: ref8 doi: 10.1016/j.semnephrol.2016.05.005 – ident: ref22 doi: 10.1016/j.xkme.2023.100727 – volume-title: U.K.Biobank, Biospecimens Manual: Collection of Biological Samples, Processing and Storage ident: ref41 – ident: ref19 doi: 10.1007/s41999-018-0076-9 – ident: ref40 doi: 10.1371/journal.pmed.1001779 – ident: ref37 doi: 10.1136/bmj.l886 – ident: ref47 doi: 10.1016/S0140-6736(86)90837-8 – ident: ref53 doi: 10.29172/7c2a6982-6d72-4cd8-bba6-2fccb06a7011 – ident: ref3 doi: 10.1038/nrneph.2011.86 – ident: ref7 doi: 10.1097/MNH.0b013e32833893e2 – ident: ref6 doi: 10.1038/nrneph.2015.85 – ident: ref32 doi: 10.1186/s40537-022-00657-5 – ident: ref4 doi: 10.1109/ACCESS.2023.3264270 – ident: ref31 doi: 10.1186/s12967-019-1860-0 – ident: ref43 doi: 10.1093/clinchem/hvab282 – ident: ref29 doi: 10.1038/s41598-024-77618-w – ident: ref9 doi: 10.1053/j.ajkd.2013.06.002 – ident: ref55 doi: 10.4236/ojs.2015.57075 – volume: 79 start-page: 555 issue: 5 year: 2011 ident: ref15 article-title: Evaluation of the CKD-EPI equation in multiple races and ethnicities publication-title: Kidney Int. doi: 10.1038/ki.2010.462 – ident: ref18 doi: 10.1186/s12882-020-01932-4 – volume-title: U.K. Biobank: Protocol for a Large-Scale Prospective Epidemiological Resource ident: ref39 – ident: ref56 doi: 10.1613/jair.953 – ident: ref50 doi: 10.1016/j.advengsoft.2013.12.007 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref38 article-title: A unified approach to interpreting model predictions – ident: ref54 doi: 10.1053/j.ajkd.2019.02.016 – ident: ref2 doi: 10.1016/S0140-6736(18)31694-5 – ident: ref49 doi: 10.1016/B978-0-12-815739-8.00007-9 – ident: ref44 doi: 10.1056/NEJMoa1114248 – ident: ref12 doi: 10.1093/ndt/gfy278 – ident: ref33 doi: 10.1038/s41598-024-54375-4 – ident: ref51 doi: 10.1016/B978-0-12-815739-8.00006-7 – ident: ref27 doi: 10.1053/j.ajkd.2012.12.022 – ident: ref14 doi: 10.1053/ajkd.2001.27691 – ident: ref52 doi: 10.1109/ACCESS.2024.3416838 – ident: ref10 doi: 10.1053/j.ackd.2017.09.003 – ident: ref48 doi: 10.1016/B978-0-12-815739-8.00004-3 – ident: ref23 doi: 10.5001/omj.2012.23 – ident: ref21 doi: 10.1161/JAHA.122.027079 – ident: ref1 doi: 10.1016/S2214-109X(23)00570-3 – ident: ref5 doi: 10.1186/s12882-024-03466-5 – ident: ref30 doi: 10.1016/j.bspc.2023.105368 – volume: 3 start-page: 5 issue: 1 year: 2013 ident: ref46 article-title: KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease publication-title: Kidney Int. – ident: ref28 doi: 10.1053/j.ajkd.2013.03.027 – ident: ref13 doi: 10.1681/ASN.2013050557 – ident: ref20 doi: 10.1093/ckj/sfad188 – ident: ref36 doi: 10.1016/j.csbj.2022.06.003 – ident: ref11 doi: 10.1515/CCLM.2006.239 – ident: ref45 doi: 10.1056/nejmoa2102953 – ident: ref34 doi: 10.1016/j.imu.2019.100178 – ident: ref26 doi: 10.1016/j.transproceed.2017.03.050 – ident: ref35 doi: 10.3390/diagnostics10060415 – ident: ref17 doi: 10.1007/s12291-023-01125-4 – ident: ref57 doi: 10.3389/fnano.2022.972421 – ident: ref16 doi: 10.7326/0003-4819-145-4-200608150-00004 – ident: ref25 doi: 10.1016/j.clinbiochem.2014.05.060 |
SSID | ssj0000816957 |
Score | 2.3340154 |
Snippet | Chronic Kidney Disease (CKD) is a progressive condition that requires accurate diagnosis and staging for effective clinical management. Conventional CKD... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 78057 |
SubjectTerms | Accuracy Algorithms Biological system modeling Biomarkers Chronic kidney disease Chronic kidney diseases CKD-EPI equation Classification Creatinine cystatin C Decision trees Diagnosis Diseases Effectiveness Explainable AI Filtration glomerular filtration rate Heuristic methods Kidney diseases Machine learning Mathematical models Predictive models Regression models Robot learning Root-mean-square errors serum creatinine Support vector machines |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB0VTuVAaQGRQisfemRDHO-u4yMEUtSqICGQuFn-GKMI2CDYXDjzwxl7HRQVVerNWnu19o49fmPPvAH4EQjjB2FiAmJpipKHUJh6GIrgBiN0wkaMHb0tzurTq_LXdXWdg9VTLAwiJucz7Mdiusv3MzePR2UH8baU9lO1AitkuXXBWm8HKjGDhKpkZhaipgeH4zENgmzAYdUXBFyqSJi5tPskkv6cVeWdKk77y-QTnC161rmV3Pbnre27579IG_-76xuwnpEmO-ymxmf4gM0XWFviH9yElz_JlRJZZlm9YZOFrxYjMMsS-zE7xjb5azVsFlgm02W_p75Bquvudxhh1ht8YskBgZ2TGrqfPqNnJ6RACBJT6efd7B4fo88rm0zvMlcvu6C6LbianFyOT4uclqFwouZtUapQO9rauZShEjGMy3AU3BivvPc2COcd9wQD6irQT1dWWFMaJYMZuZE1QmzDajNrcAeYJRPZkT5WymPpSXkMxFDIitfWKRdk3YP9hbj0Q8e-oZPVMlC6k66O0tVZuj04iiJ9axqps9MDEoXOK1EraWNSLrJTTU3GLdpypDjSKAh8cYuDHmxF8S19r5NcD_YWM0Tndf6kBeEnKRUZ-l__8doufIxd7E5t9mC1fZzjN8Ixrf2e5u8rdC3xOg priority: 102 providerName: IEEE |
Title | Machine Learning Framework for Early Detection of Chronic Kidney Disease Stages Using Optimized Estimated Glomerular Filtration Rate |
URI | https://ieeexplore.ieee.org/document/10979939 https://www.proquest.com/docview/3201779133 https://doaj.org/article/97b2172191a6409eb4891ee590661be0 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EolQdGAnWd2PFYCqECARICic3yE1WiKYKyMPPDOTsuisTAwhbFURz7znffxefvEDrygPE9VaEAMVdZTrzPFBv6zJtB6QzVAWOHbItbNnnMr56Kp1apr5AT1tADNxN3KrgONZQgrFAMYhGn81IQ5woBvpJoF6N18HmtYCra4JIwUfBEM0QG4nQ0HsOIICAcFicUUEwR2DNbrigy9qcSK7_scnQ21QZaTygRj5qv20Qrrt5Cay3uwG30dRPTIB1ODKnPuFrmWWEAojgyF-Nzt4i5VjWee5yIcPH11NYO2pq9GQx489m945g8gO_AhMymn87iC1j8AGfh6vJlPnNvIV8VV9OXxLOL76FtBz1WFw_jSZZKKmSGMrLIcuGZAbdMOPcFDUewFHGUKGWFtVZ7aqwhFlw4KzzMkdBUq1wJ7lVpSq0o3UWdel67PYQ1hLcGbKkQ1uUWFv6ADikvCNNGGM9ZFx0vZ1e-NswZMkYcAyEbYcggDJmE0UVnQQI_jwba63gDlEEmZZB_KUMX7QT5tfoLu5YUXt5bClSmNfouKWAfzgUE6fv_0fcBWg3jaX7P9FBn8fbhDgGwLHQ_6mY_ni38BmoS5pw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5BOUAPPIuaUsAHjmwax7vr-FjShkDbIKFW6s3yY1xFtJuq3Vx65ocz9jpVRIXEzVp7tfaOPf7GnvkG4FMgjB-EiQmIpSlKHkJh6mEoghuM0AkbMXb0tpjV07Py-3l1noPVUywMIibnM-zHYrrL9wu3jEdle_G2lPZT9RieVDEatwvXuj9SiTkkVCUztxA13tsfj2kYZAUOq74g6FJFysy1_SfR9Oe8Kg-UcdphJi9gtupb51jyq79sbd_d_UXb-N-dfwnPM9Zk-93keAWPsHkNm2sMhG_g90lypkSWeVYv2GTlrcUIzrLEf8wOsE0eWw1bBJbpdNnR3DdIdd0NDyPUeoG3LLkgsB-kiK7md-jZIakQAsVU-nq5uMKb6PXKJvPLzNbLflLdFpxNDk_H0yInZiicqHlblCrUjjZ3LmWoRAzkMhwFN8Yr770NwnnHPQGBugr005UV1pRGyWBGbmSNEG9ho1k0uA3MkpHsSCMr5bH0pD4GYihkxWvrlAuy7sHnlbj0dce_oZPdMlC6k66O0tVZuj34EkV63zSSZ6cHJAqd16JW0sa0XGSpmprMW7TlSHGkURD84hYHPdiK4lv7Xie5HuyuZojOK_1WC0JQUioy9Xf-8dpHeDo9PTnWx99mR-_gWexud4azCxvtzRLfE6pp7Yc0l_8AKHH0gg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Framework+for+Early+Detection+of+Chronic+Kidney+Disease+Stages+Using+Optimized+Estimated+Glomerular+Filtration+Rate&rft.jtitle=IEEE+access&rft.au=Ghosh%2C+Samit+Kumar&rft.au=Widatalla%2C+Namareq&rft.au=Khandoker%2C+Ahsan+H.&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=78057&rft.epage=78072&rft_id=info:doi/10.1109%2FACCESS.2025.3565549&rft.externalDocID=10979939 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |