Local Path Planning for Autonomous Vehicles Based on the Natural Behavior of the Biological Action-Perception Motion
Local path planning is a key task for the motion planners of autonomous vehicles since it commands the vehicle across its environment while avoiding any obstacles. To perform this task, the local path planner generates a trajectory and a velocity profile, which are then sent to the vehicle’s actuato...
Saved in:
Published in | Energies (Basel) Vol. 15; no. 5; p. 1769 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Local path planning is a key task for the motion planners of autonomous vehicles since it commands the vehicle across its environment while avoiding any obstacles. To perform this task, the local path planner generates a trajectory and a velocity profile, which are then sent to the vehicle’s actuators. This paper proposes a new local path planner for autonomous vehicles based on the Attractor Dynamic Approach (ADA), which was inspired by the behavior of movement of living beings, along with an algorithm that takes into account four acceleration policies, the ST dynamic vehicle model, and several constraints regarding the comfort and security. The original functions that define the ADA were modified in order to adapt it to the non-holonomic vehicle’s constraints and to improve its response when an impact scenario is detected. The present approach is validated in a well-known simulator for autonomous vehicles under three representative cases of study where the vehicle was capable of generating local paths that ensure the security of the vehicle in such cases. The results show that the approach proposed in this paper is a promising tool for the local path planning of autonomous vehicles since it is able to generate trajectories that are both safe and efficient. |
---|---|
AbstractList | Local path planning is a key task for the motion planners of autonomous vehicles since it commands the vehicle across its environment while avoiding any obstacles. To perform this task, the local path planner generates a trajectory and a velocity profile, which are then sent to the vehicle’s actuators. This paper proposes a new local path planner for autonomous vehicles based on the Attractor Dynamic Approach (ADA), which was inspired by the behavior of movement of living beings, along with an algorithm that takes into account four acceleration policies, the ST dynamic vehicle model, and several constraints regarding the comfort and security. The original functions that define the ADA were modified in order to adapt it to the non-holonomic vehicle’s constraints and to improve its response when an impact scenario is detected. The present approach is validated in a well-known simulator for autonomous vehicles under three representative cases of study where the vehicle was capable of generating local paths that ensure the security of the vehicle in such cases. The results show that the approach proposed in this paper is a promising tool for the local path planning of autonomous vehicles since it is able to generate trajectories that are both safe and efficient. |
Author | Bautista-Camino, Pedro Rodríguez-Licea, Martin Barranco-Gutiérrez, Alejandro Prado-Olivarez, Juan Cervantes, Ilse Pérez-Pinal, Francisco |
Author_xml | – sequence: 1 givenname: Pedro orcidid: 0000-0002-1576-9846 surname: Bautista-Camino fullname: Bautista-Camino, Pedro – sequence: 2 givenname: Alejandro orcidid: 0000-0002-5050-6208 surname: Barranco-Gutiérrez fullname: Barranco-Gutiérrez, Alejandro – sequence: 3 givenname: Ilse orcidid: 0000-0003-3478-9241 surname: Cervantes fullname: Cervantes, Ilse – sequence: 4 givenname: Martin orcidid: 0000-0003-2178-4804 surname: Rodríguez-Licea fullname: Rodríguez-Licea, Martin – sequence: 5 givenname: Juan orcidid: 0000-0001-8390-3552 surname: Prado-Olivarez fullname: Prado-Olivarez, Juan – sequence: 6 givenname: Francisco orcidid: 0000-0002-6116-6464 surname: Pérez-Pinal fullname: Pérez-Pinal, Francisco |
BookMark | eNpNkU1vFDEMhiPUSpS2F35BJG5IA8l4kkyOuxUflRa6h8I1SrLJ7qym8ZJkkPj3zHQR4MtrvbIf2_IrcpEwBUJec_YOQLP3IXHBBFdSvyBXXGvZcKbg4r_8Jbkt5cjmAOAAcEXqBr0d6dbWA92ONqUh7WnETFdTxYRPOBX6PRwGP4ZC17aEHcVE6yHQr7ZOeW5dh4P9OcwdGJ_99YAj7oeFuvJ1wNRsQ_bhtKT0Cy5yQy6jHUu4_aPX5NvHD493n5vNw6f7u9Wm8SB5bbreWbFTYF1QrZSd89rKTtmdcwy0C05I4Trbg2DMQSt0F2OrlNUh6iCFhGtyf-bu0B7NKQ9PNv8yaAfzbGDeG5vrcpuJ0PXguOVMi86xXrdKcxZ88Mz1EuLMenNmnTL-mEKp5ohTTvP6ppWgZCcUa-eqt-cqn7GUHOLfqZyZ5Unm35PgN8tVhUw |
CitedBy_id | crossref_primary_10_1007_s13369_023_08541_x crossref_primary_10_1061_JTEPBS_TEENG_7209 crossref_primary_10_3390_vehicles4040060 crossref_primary_10_3390_s23063051 crossref_primary_10_3390_electronics12051236 crossref_primary_10_3390_s24020600 crossref_primary_10_3390_math11040801 crossref_primary_10_1007_s13272_024_00746_6 |
Cites_doi | 10.3390/s21237898 10.3390/electronics8090943 10.1007/s11370-020-00314-x 10.1016/j.aej.2021.04.074 10.3390/electronics11030294 10.1016/j.vlsi.2017.07.007 10.3390/electronics9111826 10.1109/TITS.2015.2498841 10.1177/0954407021993623 10.1109/MC.2017.3001256 10.1109/TVCG.2021.3114777 10.1109/TITS.2019.2913998 10.1504/IJVAS.2018.096154 10.1016/0921-8890(92)90004-I 10.1109/CWCAS.2014.6994609 10.1109/LRA.2019.2926224 10.1109/ACCESS.2020.2984695 10.23919/ChiCC.2018.8482915 10.1002/rob.20255 10.23919/AEITAUTOMOTIVE50086.2020.9307439 10.1109/TITS.2020.3024655 10.1016/j.trc.2018.12.003 10.1109/TIV.2021.3123341 10.1016/j.ymssp.2015.10.021 10.3390/en14237974 10.1109/TITS.2019.2901817 10.1109/IVS.2017.7995802 10.1109/ACCESS.2020.2983149 10.1109/MITS.2019.2953551 10.1109/TRO.2010.2085790 10.1109/TITS.2017.2756099 10.3390/machines5010006 10.1093/acprof:oso/9780199300563.001.0001 10.1109/ACCESS.2018.2868339 10.1109/LRA.2021.3135940 10.1109/IVS.2015.7225800 10.1109/TIV.2018.2874532 10.1109/ICCES.2018.8639396 10.1007/s40313-013-0006-5 10.1002/rob.20147 10.3390/en12122342 10.1080/13588265.2016.1164444 10.1109/ITSC.2019.8917427 10.1109/JAS.2017.7510811 10.1109/TIE.2019.2898599 10.23919/EETA.2019.8804556 10.1080/00423119408969076 10.1109/TMECH.2015.2493980 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en15051769 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic ProQuest Central China |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_f3483b1a10954b08927910ecec0b863f 10_3390_en15051769 |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 HCIFZ I-F IAO ITC KQ8 L6V L8X M7S MODMG M~E OK1 P2P PATMY PIMPY PROAC PYCSY RIG TR2 TUS ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c361t-48ba5d73abe72664bc9a647adbb039beb565b4a83500b32594ff277a9ef9e6563 |
IEDL.DBID | BENPR |
ISSN | 1996-1073 |
IngestDate | Tue Oct 22 15:15:04 EDT 2024 Thu Oct 10 16:22:27 EDT 2024 Fri Aug 23 00:31:20 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-48ba5d73abe72664bc9a647adbb039beb565b4a83500b32594ff277a9ef9e6563 |
ORCID | 0000-0002-1576-9846 0000-0003-3478-9241 0000-0003-2178-4804 0000-0002-5050-6208 0000-0001-8390-3552 0000-0002-6116-6464 |
OpenAccessLink | https://www.proquest.com/docview/2637645702?pq-origsite=%requestingapplication% |
PQID | 2637645702 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f3483b1a10954b08927910ecec0b863f proquest_journals_2637645702 crossref_primary_10_3390_en15051769 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Li (ref_18) 2017; 87 Grigorescu (ref_33) 2019; 4 Guo (ref_3) 2018; 5 Aradi (ref_10) 2020; 23 ref_14 Claussmann (ref_22) 2019; 21 Abraham (ref_50) 2016; 21 ref_56 ref_55 ref_54 ref_52 ref_51 Receveur (ref_42) 2020; 13 ref_19 Suzuki (ref_31) 2018; 3 Song (ref_32) 2020; 8 Li (ref_16) 2015; 21 Nashashibi (ref_21) 2016; 17 ref_25 ref_23 Rasouli (ref_8) 2019; 21 ref_20 Choi (ref_30) 2010; 40 Huang (ref_5) 2022; 61 ref_29 ref_27 ref_26 Gkartzonikas (ref_1) 2019; 98 Lim (ref_11) 2018; 19 Hou (ref_9) 2021; 28 ref_34 Fancher (ref_53) 1994; 23 Yu (ref_38) 2018; 6 Li (ref_17) 2021; 7 Soulignac (ref_13) 2010; 27 Zong (ref_28) 2021; 235 Urmson (ref_12) 2008; 25 ref_39 ref_37 Pereira (ref_24) 2013; 24 Feraco (ref_36) 2020; 83938 ref_47 ref_45 ref_44 Dose (ref_43) 1992; 10 ref_41 Shi (ref_7) 2017; 59 Huang (ref_40) 2019; 67 Thrun (ref_49) 2006; 23 Yurtsever (ref_2) 2020; 8 Hamid (ref_35) 2018; 14 ref_48 Qian (ref_15) 2020; 14 Machado (ref_46) 2018; 43 Liu (ref_57) 2017; 50 ref_4 ref_6 |
References_xml | – ident: ref_14 doi: 10.3390/s21237898 – ident: ref_52 doi: 10.3390/electronics8090943 – volume: 13 start-page: 315 year: 2020 ident: ref_42 article-title: Autonomous car decision making and trajectory tracking based on genetic algorithms and fractional potential fields publication-title: Intell. Serv. Robot. doi: 10.1007/s11370-020-00314-x contributor: fullname: Receveur – volume: 61 start-page: 911 year: 2022 ident: ref_5 article-title: Application of interval state estimation in vehicle control publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.04.074 contributor: fullname: Huang – ident: ref_54 doi: 10.3390/electronics11030294 – volume: 59 start-page: 148 year: 2017 ident: ref_7 article-title: Algorithm and hardware implementation for visual perception system in autonomous vehicle: A survey publication-title: Integration doi: 10.1016/j.vlsi.2017.07.007 contributor: fullname: Shi – ident: ref_19 doi: 10.3390/electronics9111826 – volume: 17 start-page: 1135 year: 2016 ident: ref_21 article-title: A Review of Motion Planning Techniques for Automated Vehicles publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2498841 contributor: fullname: Nashashibi – volume: 235 start-page: 2086 year: 2021 ident: ref_28 article-title: Research on local path planning based on improved RRT algorithm publication-title: Proc. Inst. Mech. Eng. Part D J. Automob. Eng. doi: 10.1177/0954407021993623 contributor: fullname: Zong – ident: ref_39 – volume: 50 start-page: 18 year: 2017 ident: ref_57 article-title: Computer architectures for autonomous driving publication-title: Computer doi: 10.1109/MC.2017.3001256 contributor: fullname: Liu – volume: 28 start-page: 1030 year: 2021 ident: ref_9 article-title: Visual Evaluation for Autonomous Driving publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2021.3114777 contributor: fullname: Hou – volume: 21 start-page: 1826 year: 2019 ident: ref_22 article-title: A review of motion planning for highway autonomous driving publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2913998 contributor: fullname: Claussmann – volume: 14 start-page: 134 year: 2018 ident: ref_35 article-title: A review on threat assessment, path planning and path tracking strategies for collision avoidance systems of autonomous vehicles publication-title: Int. J. Veh. Auton. Syst. doi: 10.1504/IJVAS.2018.096154 contributor: fullname: Hamid – volume: 10 start-page: 253 year: 1992 ident: ref_43 article-title: A dynamical systems approach to task-level system integration used to plan and control autonomous vehicle motion publication-title: Robot. Auton. Syst. doi: 10.1016/0921-8890(92)90004-I contributor: fullname: Dose – ident: ref_48 doi: 10.1109/CWCAS.2014.6994609 – ident: ref_56 – volume: 4 start-page: 3441 year: 2019 ident: ref_33 article-title: NeuroTrajectory: A Neuroevolutionary Approach to Local State Trajectory Learning for Autonomous Vehicles publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2019.2926224 contributor: fullname: Grigorescu – volume: 8 start-page: 62107 year: 2020 ident: ref_32 article-title: Dynamic Path Planning for Unmanned Vehicles Based on Fuzzy Logic and Improved Ant Colony Optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2984695 contributor: fullname: Song – ident: ref_41 – ident: ref_26 doi: 10.23919/ChiCC.2018.8482915 – volume: 25 start-page: 425 year: 2008 ident: ref_12 article-title: Autonomous driving in urban environments: Boss and the urban challenge publication-title: J. Field Robot. doi: 10.1002/rob.20255 contributor: fullname: Urmson – ident: ref_27 doi: 10.23919/AEITAUTOMOTIVE50086.2020.9307439 – volume: 23 start-page: 740 year: 2020 ident: ref_10 article-title: Survey of deep reinforcement learning for motion planning of autonomous vehicles publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3024655 contributor: fullname: Aradi – volume: 98 start-page: 323 year: 2019 ident: ref_1 article-title: What have we learned? A review of stated preference and choice studies on autonomous vehicles publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2018.12.003 contributor: fullname: Gkartzonikas – ident: ref_45 – ident: ref_55 doi: 10.1109/TIV.2021.3123341 – volume: 87 start-page: 118 year: 2017 ident: ref_18 article-title: Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.10.021 contributor: fullname: Li – ident: ref_4 doi: 10.3390/en14237974 – volume: 21 start-page: 900 year: 2019 ident: ref_8 article-title: Autonomous vehicles that interact with pedestrians: A survey of theory and practice publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2901817 contributor: fullname: Rasouli – ident: ref_51 doi: 10.1109/IVS.2017.7995802 – volume: 8 start-page: 58443 year: 2020 ident: ref_2 article-title: A survey of autonomous driving: Common practices and emerging technologies publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2983149 contributor: fullname: Yurtsever – volume: 14 start-page: 57 year: 2020 ident: ref_15 article-title: Synchronous Maneuver Searching and Trajectory Planning for Autonomous Vehicles In Dynamic Traffic Environments publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2019.2953551 contributor: fullname: Qian – volume: 27 start-page: 89 year: 2010 ident: ref_13 article-title: Feasible and optimal path planning in strong current fields publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2010.2085790 contributor: fullname: Soulignac – volume: 19 start-page: 613 year: 2018 ident: ref_11 article-title: Hierarchical trajectory planning of an autonomous car based on the integration of a sampling and an optimization method publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2756099 contributor: fullname: Lim – ident: ref_47 – ident: ref_6 doi: 10.3390/machines5010006 – ident: ref_20 doi: 10.1093/acprof:oso/9780199300563.001.0001 – volume: 83938 start-page: V004T04A006 year: 2020 ident: ref_36 article-title: Optimal Trajectory Generation Using an Improved Probabilistic Road Map Algorithm for Autonomous Driving publication-title: Am. Soc. Mech. Eng. contributor: fullname: Feraco – volume: 6 start-page: 53960 year: 2018 ident: ref_38 article-title: A Path Planning and Navigation Control System Design for Driverless Electric Bus publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2868339 contributor: fullname: Yu – volume: 7 start-page: 984 year: 2021 ident: ref_17 article-title: Learning an Explainable Trajectory Generator Using the Automaton Generative Network (AGN) publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3135940 contributor: fullname: Li – ident: ref_37 doi: 10.1109/IVS.2015.7225800 – ident: ref_44 – volume: 3 start-page: 547 year: 2018 ident: ref_31 article-title: Automatic Two-Lane Path Generation for Autonomous Vehicles Using Quartic B-Spline Curves publication-title: IEEE Trans. Intell. Veh. doi: 10.1109/TIV.2018.2874532 contributor: fullname: Suzuki – ident: ref_34 doi: 10.1109/ICCES.2018.8639396 – volume: 40 start-page: 2 year: 2010 ident: ref_30 article-title: Continuous Curvature Path Generation Based on Bézier Curves for Autonomous Vehicles publication-title: Int. J. Appl. Math. contributor: fullname: Choi – volume: 24 start-page: 106 year: 2013 ident: ref_24 article-title: Navigation of an autonomous car using vector fields and the dynamic window approach publication-title: J. Control Autom. Electr. Syst. doi: 10.1007/s40313-013-0006-5 contributor: fullname: Pereira – volume: 23 start-page: 661 year: 2006 ident: ref_49 article-title: Stanley: The robot that won the DARPA Grand Challenge publication-title: J. Field Robot. doi: 10.1002/rob.20147 contributor: fullname: Thrun – ident: ref_29 doi: 10.3390/en12122342 – volume: 21 start-page: 211 year: 2016 ident: ref_50 article-title: Assessment of the impact speed and angle conditions for the EN1317 barrier tests publication-title: Int. J. Crashworthiness doi: 10.1080/13588265.2016.1164444 contributor: fullname: Abraham – ident: ref_25 doi: 10.1109/ITSC.2019.8917427 – volume: 43 start-page: 1 year: 2018 ident: ref_46 article-title: Attractor dynamics approach to joint transportation by autonomous robots: Theory, implementation and validation on the factory floor publication-title: Auton. Robots contributor: fullname: Machado – volume: 5 start-page: 418 year: 2018 ident: ref_3 article-title: Vehicle dynamic state estimation: State of the art schemes and perspectives publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2017.7510811 contributor: fullname: Guo – volume: 67 start-page: 1376 year: 2019 ident: ref_40 article-title: A motion planning and tracking framework for autonomous vehicles based on artificial potential field elaborated resistance network approach publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2898599 contributor: fullname: Huang – ident: ref_23 doi: 10.23919/EETA.2019.8804556 – volume: 23 start-page: 575 year: 1994 ident: ref_53 article-title: Evaluating headway control using range versus range-rate relationships publication-title: Veh. Syst. Dyn. doi: 10.1080/00423119408969076 contributor: fullname: Fancher – volume: 21 start-page: 740 year: 2015 ident: ref_16 article-title: Real-time trajectory planning for autonomous urban driving: Framework, algorithms, and verifications publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2015.2493980 contributor: fullname: Li |
SSID | ssj0000331333 |
Score | 2.378817 |
Snippet | Local path planning is a key task for the motion planners of autonomous vehicles since it commands the vehicle across its environment while avoiding any... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 1769 |
SubjectTerms | Acceleration Actuators Algorithms Artificial intelligence Autonomous vehicles Behavior Constraint modelling Design Elections Fuzzy logic Kinematics local path planning Localization Mathematical functions Motion detection Motion planning obstacles avoidance Optimization techniques Planning Robots Security Trajectory planning Vehicles Velocity distribution Visual perception |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6JQkCVYI5ycY8dji6gQgqoDoG6RL7HFlKKS_n_OTgqVGFhYnSiJ7uy796K7d4zd5KqQRqd00kCpREoPiVXeJNbVDrSvvMTwv-N5ph5e5eMiX2yN-go1YZ08cGe4Ww-yAExtSlhAoihMpinDucpVAgsFPkZfYbbIVIzBAES-oNMjBeL1t64h6JOnOlQ2b2WgKNT_Kw7H5DI9YPs9KuTj7msO2Y5rjtjellbgMWufQtbhc0JsfDNpiBPi5ON1GxoTiMHzN_ceq9z4hHJTzZcNJ3jHZzZqa_BeCnHFlz6ud2Mog5P4OHY3JPPvKhf-HKf7nLDX6f3L3UPSj0xIKlBpm8gCbV5rsOg0pV6JlbFKalsjCjDokPAbSkuwSwgEoj7S-0xra5w3jqAdnLJBs2zcGeOETKyxdF3VuUzRmvAo5wsBKCpCbUN2vTFj-dEpY5TEKIKxyx9jD9kkWPj7jqBmHRfIx2Xv4_IvHw_ZaOOfsj9in2WmKDbKXIvs_D_eccF2s9DZEMvLRmzQrtbukvBGi1dxa30Byy7S6w priority: 102 providerName: Directory of Open Access Journals |
Title | Local Path Planning for Autonomous Vehicles Based on the Natural Behavior of the Biological Action-Perception Motion |
URI | https://www.proquest.com/docview/2637645702 https://doaj.org/article/f3483b1a10954b08927910ecec0b863f |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV2xbtswED3UztIMRds0iFvXINCuQiiRIsUpsIvYQdEYRpAE3gRSIpNJcmz5_3OkacdAgC4aSEHDkcd773R8B_A7FwVXMkVPY0IknDuWaOFUom1tmXSV48bnO27n4uaB_13my5hw28Syyv2ZGA7quq18jvwyE-gKPJc0u1q9JL5rlP-7Glto9OAkQ6ZA-3AyuZ4v7g5ZFsoYkjC20yVlyO8vbYMQKE-lr3A-ikRBsP_deRyCzPQzfIrokIx3y_kFPtjmK5weaQaeQffPRx-yQORG9h2HCCJPMt52_oICMnnyaJ9DtRuZYIyqSdsQhHlkroPGBomSiGvSujC-a0fpF4uMwy2HZHGodiG3ocvPN3iYXt__uUli64SkYiLtEl4YndeSaWMlhmBuKqUFl7o2hjJlrEEcZ7hG-EWpYUiBuHOZlFpZpyxCPHYO_aZt7AUQRChaaZwXdc5To5X_lHUFZYZWiN4G8GtvxnK1U8gokVl4Y5dvxh7AxFv48IZXtQ4D7fqpjE5SOsYLZlKdIu7jhhYqk4hmbGUragrB3ACG-_Upo6ttyreN8f3_0z_gY-bvLoQCsiH0u_XW_kRE0ZkR9IrpbBQ3zyjwcnzOlukrZTPPPw |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gHIAD4inGMxJcI9ImTZoTGogxYJs4AOJWJW0Cp3Zs3f_HSbuBhMQ1qXJwYvuza39G6DIRKVcyAk1jQhDOHSNaOEW0LSyTLnfc-HzHaCwGr_zxPXlvE26ztqxyYRODoS6q3OfIr2IBqsATSePryRfxU6P839V2hMYqWuMMfLXvFO_fL3MslDEIwVjDSsogur-yJQCgJJK-vvmXHwp0_X-scXAx_W201WJD3Gsucwet2HIXbf5iDNxD9dD7HvwMuA0v5g1hwJ24N699ewLE8fjNfoZaN3wDHqrAVYkB5OGxDgwbuCVEnOLKhfVmGKW_KtwLPQ7keVnrgkdhxs8-eu3fvdwOSDs4geQghZrw1OikkEwbK8EBc5MrLbjUhTGUKWMNoDjDNYAvSg2DAIg7F0uplXXKAsBjB6hTVqU9RBjwiVYa9kWR8Mho5Y-yLqXM0BywWxddLMSYTRp-jAziCi_s7EfYXXTjJbz8wnNah4Vq-pG1KpI5xlNmIh0B6uOGpiqWgGVsbnNqUsFcF50s7idrFW2W_TyLo_-3z9H64GU0zIYP46djtBH7LoZQSnaCOvV0bk8BW9TmLDygbzoyzf4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB3RRarKoSr9EAu0tdReo3Uyjh2f0G7LirawWlWl4hbZiQ2nBJbw_xl7vQtSpV7tyIexx_PGefMG4GspK6FVTp6GUmZCeMyM9DozrnWofOOFDe8dFwt5dil-XpVXif90n2iVmzsxXtRt34Q38kkhyRVEqXgx8YkWsfw-P7m9y0IHqfCnNbXTeAG7SkjkI9idnS6Wv7cvLhyREjJca5Qi5foT1xEcKnMV2M7PolIU7__nbo4BZ_4GXiekyKbrrd2HHde9hb1n-oHvYDgPkYgtCcWxTfchRiiUTR-GUKxAWT37624i843NKF61rO8YQT62MFFvgyV5xBXrfRxft6YMG8emseIhW26ZL-widvx5D5fz0z_fzrLURiFrUOZDJiprylahsU5ROBa20UYKZVprOWrrLGE6KwxBMc4tUjokvC-UMtp57Qju4QcYdX3nDoARWjHa0LxsS5Fbo8NSzlccLW8IyY3hy8aM9e1aLaOmLCMYu34y9hhmwcLbL4LCdRzoV9d1cpjao6jQ5iYnDCgsr3ShCNm4xjXcVhL9GI43-1Mnt7uvnw7J4f-nP8NLOj31-Y_FryN4VYSShsgrO4bRsHpwHwloDPZTOkGPO7HTmw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+Path+Planning+for+Autonomous+Vehicles+Based+on+the+Natural+Behavior+of+the+Biological+Action-Perception+Motion&rft.jtitle=Energies+%28Basel%29&rft.au=Bautista-Camino%2C+Pedro&rft.au=Barranco-Guti%C3%A9rrez%2C+Alejandro+I&rft.au=Cervantes%2C+Ilse&rft.au=Rodr%C3%ADguez-Licea%2C+Martin&rft.date=2022-03-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=15&rft.issue=5&rft.spage=1769&rft_id=info:doi/10.3390%2Fen15051769&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |