Dynamic IaaS Computing Resource Provisioning Strategy with QoS Constraint
In an IaaS cloud, virtual machines (VMs), also called instances, may be classified as reserved instances and on-demand instances. The reserved instances having long-term commitments and one-time payment are appropriate for the steady or predictable workloads, while for short-term, spiky or unpredict...
Saved in:
Published in | IEEE transactions on services computing Vol. 10; no. 2; pp. 190 - 202 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1939-1374 2372-0204 |
DOI | 10.1109/TSC.2015.2464212 |
Cover
Loading…
Abstract | In an IaaS cloud, virtual machines (VMs), also called instances, may be classified as reserved instances and on-demand instances. The reserved instances having long-term commitments and one-time payment are appropriate for the steady or predictable workloads, while for short-term, spiky or unpredictable workloads, the on-demand instances having flexible hourly payment and no long-term commitments may be more suitable for reducing the cost. In this paper, we consider the economical provisioning of reserved and/or on-demand instances for meeting time-varying computing workload of compute-intensive applications. In order to achieve this, we conceive a strategy for determining the amount of the purchased instances dynamically in order to minimize the total computing cost while keeping quality-of-service (QoS). By mapping QoS as the overload probability, we propose a dynamic instance provisioning strategy based on the large deviation principle, which is capable of calculating the minimum number of instances for the upcoming demands subject to the overload probability below a desired threshold. In addition, a reserved instance provisioning strategy for further reducing the total cost is also proposed by applying the autoregressive (AR) model to calculate the number of reserved instances for the average computation requirements. Finally, the simulations are performed based on real workload traces to show the attainable performance of the proposed instance provisioning strategy for the computing service in an IaaS cloud. |
---|---|
AbstractList | In an IaaS cloud, virtual machines (VMs), also called instances, may be classified as reserved instances and on-demand instances. The reserved instances having long-term commitments and one-time payment are appropriate for the steady or predictable workloads, while for short-term, spiky or unpredictable workloads, the on-demand instances having flexible hourly payment and no long-term commitments may be more suitable for reducing the cost. In this paper, we consider the economical provisioning of reserved and/or on-demand instances for meeting time-varying computing workload of compute-intensive applications. In order to achieve this, we conceive a strategy for determining the amount of the purchased instances dynamically in order to minimize the total computing cost while keeping quality-of-service (QoS). By mapping QoS as the overload probability, we propose a dynamic instance provisioning strategy based on the large deviation principle, which is capable of calculating the minimum number of instances for the upcoming demands subject to the overload probability below a desired threshold. In addition, a reserved instance provisioning strategy for further reducing the total cost is also proposed by applying the autoregressive (AR) model to calculate the number of reserved instances for the average computation requirements. Finally, the simulations are performed based on real workload traces to show the attainable performance of the proposed instance provisioning strategy for the computing service in an IaaS cloud. |
Author | Jian Yang Hongsheng Xi Yongyi Ran Shuben Zhang |
Author_xml | – sequence: 1 givenname: Yongyi surname: Ran fullname: Ran, Yongyi – sequence: 2 givenname: Jian surname: Yang fullname: Yang, Jian – sequence: 3 givenname: Shuben surname: Zhang fullname: Zhang, Shuben – sequence: 4 givenname: Hongsheng surname: Xi fullname: Xi, Hongsheng |
BookMark | eNp9kMtLAzEQxoNUsK3eBS8LnrfmtZvkKPVVKPhoPYc0m60pbVKTVOl_b5YWDx48zTB8v5lvvgHoOe8MAJcIjhCC4mY-G48wRNUI05pihE9AHxOGS4gh7YE-EkSUiDB6BgYxriCsMeeiDyZ3e6c2VhcTpWbF2G-2u2Tdsngz0e-CNsVL8F82Wu-66SwFlcxyX3zb9FG8-o5wMQ-tS-fgtFXraC6OdQjeH-7n46dy-vw4Gd9OS01qlErKBGeigU3NTZObitB6QWrRCo0Vplww0poWEg0XmlXYYLxoDUJImEYLjBsyBNeHvdvgP3cmJrnKTl0-KRHnHFLKKc-q-qDSwccYTCu1TSrlPzq3a4mg7GKTOTbZxSaPsWUQ_gG3wW5U2P-HXB0Qa4z5lTPEGEIV-QHr-3l1 |
CODEN | ITSCAD |
CitedBy_id | crossref_primary_10_1007_s10586_024_04400_y crossref_primary_10_1109_TCC_2021_3133464 crossref_primary_10_1007_s11227_018_2349_y crossref_primary_10_1109_TSC_2019_2906870 crossref_primary_10_1002_dac_4686 crossref_primary_10_1002_ett_4492 crossref_primary_10_1007_s00521_021_06665_5 crossref_primary_10_1109_JSYST_2021_3087527 crossref_primary_10_1109_TMM_2016_2635019 crossref_primary_10_1007_s11227_021_04248_8 crossref_primary_10_1007_s11042_018_6833_4 crossref_primary_10_1007_s11227_022_04760_5 crossref_primary_10_1007_s10796_022_10302_4 crossref_primary_10_1016_j_compeleceng_2018_04_001 crossref_primary_10_1016_j_jss_2019_110405 crossref_primary_10_1109_TGCN_2020_2982821 crossref_primary_10_1287_isre_2019_0871 crossref_primary_10_1016_j_ins_2020_05_045 crossref_primary_10_1109_TNSM_2020_2990664 crossref_primary_10_1016_j_future_2019_10_026 crossref_primary_10_1109_TCC_2019_2926254 crossref_primary_10_1016_j_jnca_2018_09_023 |
Cites_doi | 10.1142/3573 10.1109/MIC.2012.99 10.1287/mnsc.6.1.73 10.1109/TSE.2013.26 10.1109/INFCOM.2010.5461931 10.1109/TSC.2013.35 10.1002/0470013192.bsa199 10.1109/MIC.2011.121 10.1109/MC.2014.159 10.1109/TSC.2013.5 10.1109/CCGrid.2012.95 10.1109/CloudCom.2013.18 10.1109/CloudCom.2012.6427519 10.1109/ISPASS.2012.6189210 10.1109/TSC.2011.7 10.1109/49.400650 10.1007/s10586-010-0131-x 10.1145/2602571 10.1109/TPDS.2013.218 10.1109/TC.2011.173 10.1109/TNSM.2013.122313.130448 10.1109/Grid.2012.16 10.1145/1879141.1879143 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TSC.2015.2464212 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2372-0204 |
EndPage | 202 |
ExternalDocumentID | 10_1109_TSC_2015_2464212 7177115 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: WK2100100026 – fundername: National Science Foundation (NSF) of China grantid: 61174062 funderid: 10.13039/100000001 – fundername: State Key Program of National NSF of China grantid: 61233003 funderid: 10.13039/100000001 |
GroupedDBID | 0R~ 29I 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB AAYXX CITATION RIG 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c361t-479879d0d68ed79d5346b369f9c2a248973fef03c0bc752e22bfe1119edc922d3 |
IEDL.DBID | RIE |
ISSN | 1939-1374 |
IngestDate | Sun Jun 29 13:16:47 EDT 2025 Thu Apr 24 23:01:03 EDT 2025 Tue Jul 01 00:53:29 EDT 2025 Wed Aug 27 02:48:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-479879d0d68ed79d5346b369f9c2a248973fef03c0bc752e22bfe1119edc922d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1888044848 |
PQPubID | 85503 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TSC_2015_2464212 proquest_journals_1888044848 ieee_primary_7177115 crossref_primary_10_1109_TSC_2015_2464212 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on services computing |
PublicationTitleAbbrev | TSC |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref12 ref15 ref14 ref31 ref11 ref10 akaike (ref33) 1976; 14 ref17 ref16 (ref9) 0 ref19 ref18 ran (ref5) 0 (ref3) 0 fox (ref1) 2009; 28 zhai (ref29) 2014; pp ref24 ref23 ref26 ref25 ref20 dembo (ref8) 2009; 38 ref22 ref21 (ref36) 0 ref28 (ref32) 0 (ref30) 0 ref7 (ref2) 0 shen (ref13) 0; 8097 ref4 ref6 (ref27) 0 |
References_xml | – volume: 14 start-page: 5 year: 1976 ident: ref33 article-title: An Information Criterion (AIC) publication-title: Math Sci – start-page: 408 year: 0 ident: ref5 article-title: SLA-driven dynamic resource provisioning for service provider in cloud computing publication-title: Proc IEEE GLOBECOM Workshops – ident: ref6 doi: 10.1142/3573 – ident: ref19 doi: 10.1109/MIC.2012.99 – volume: pp start-page: 1 year: 2014 ident: ref29 article-title: Automatic cloud I/O configurator for I/O intensive parallel applications publication-title: IEEE Trans Parallel Distrib Syst – ident: ref28 doi: 10.1287/mnsc.6.1.73 – ident: ref24 doi: 10.1109/TSE.2013.26 – ident: ref35 doi: 10.1109/INFCOM.2010.5461931 – volume: 38 year: 2009 ident: ref8 publication-title: Large Deviations Techniques and Applications – year: 0 ident: ref32 – year: 0 ident: ref2 – volume: 8097 start-page: 242 year: 0 ident: ref13 article-title: Scheduling jobs in the cloud using on-demand and reserved instances publication-title: Proc 19th Int Conf Parallel Process – ident: ref17 doi: 10.1109/TSC.2013.35 – year: 0 ident: ref3 – ident: ref34 doi: 10.1002/0470013192.bsa199 – year: 0 ident: ref30 – ident: ref18 doi: 10.1109/MIC.2011.121 – ident: ref21 doi: 10.1109/MC.2014.159 – ident: ref14 doi: 10.1109/TSC.2013.5 – ident: ref22 doi: 10.1109/CCGrid.2012.95 – ident: ref20 doi: 10.1109/CloudCom.2013.18 – ident: ref16 doi: 10.1109/CloudCom.2012.6427519 – year: 0 ident: ref36 – ident: ref10 doi: 10.1109/ISPASS.2012.6189210 – ident: ref11 doi: 10.1109/TSC.2011.7 – ident: ref31 doi: 10.1109/49.400650 – ident: ref12 doi: 10.1007/s10586-010-0131-x – ident: ref25 doi: 10.1145/2602571 – volume: 28 year: 2009 ident: ref1 article-title: Above the clouds: A Berkeley view of cloud computing – ident: ref26 doi: 10.1109/TPDS.2013.218 – year: 0 ident: ref9 – year: 0 ident: ref27 – ident: ref7 doi: 10.1109/TC.2011.173 – ident: ref23 doi: 10.1109/TNSM.2013.122313.130448 – ident: ref15 doi: 10.1109/Grid.2012.16 – ident: ref4 doi: 10.1145/1879141.1879143 |
SSID | ssj0062889 |
Score | 2.2954578 |
Snippet | In an IaaS cloud, virtual machines (VMs), also called instances, may be classified as reserved instances and on-demand instances. The reserved instances having... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 190 |
SubjectTerms | Auto-regressive models Autoregressive processes Cloud computing Computational modeling compute-intensive application Computer simulation Computing costs Computing time cost saving Demand Dynamic scheduling Heuristic algorithms IaaS Optimization Probability Provisioning Quality of service Resource allocation Resource provisioning Strategy Virtual environments Workload |
Title | Dynamic IaaS Computing Resource Provisioning Strategy with QoS Constraint |
URI | https://ieeexplore.ieee.org/document/7177115 https://www.proquest.com/docview/1888044848 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qT3rwVcVqlRy8CO52m2QfOUq1tEJFaQu9LXktiLIVuz3orzfJ7hZfiLfAZmCYyc5kJjPzAZxjqQKcYe0pTm1LTig9lhHmMaa5YCIjwoH2je-i4YzezsN5Ay7XvTBaa1d8pn27dG_5aiFXNlXWNaFH3LMd5RsmcCt7tWqra1FzWf0MGbDudNK3dVuhj6lt5cRf3I7DUflhfJ1HGezAuOalLCR58leF8OX7tzGN_2V2F7arqyW6Ks_CHjR0vg9bnwYOtmB0XQLQoxHnE1QiOpgPqE7io3ubYViWOVpUTa59QzZZix4WlsIOnOWPeXEAs8HNtD_0KjAFT5KoV9gMWhIzFago0cosQkIjQSKWMYk5pgmLSaazgMhAyDjEGmORaWMImVaSYazIITTzRa6PAMWCah4pxpNYU0644AlNolARLCLjE1UburWsU1lNGre8Pacu4ghYarSTWu2klXbacLGmeCmnbPyxt2WFvd5XybkNnVqdafUbLtOeie8DE4DS5Ph3qhPYxNZPu6KyDjSL15U-NbeMQpy54_UBgRLP-g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5KPagHX1WsVs3Bi-C2u0n2kaNUS6ttUdpCb0teC6K0YrcH_fUm-yi-EG-BzcAwk53JfJkHwDmWysUJ1o7i1Jbk-NJhCWEOY5oLJhIisqF9g2HQndDbqT-twOWqFkZrnSWf6aZdZm_5ai6XFiprmdAj9GxF-Zrx-76XV2uVdtfOzWXlQ6TLWuNR22Zu-U1MbTEn_uJ4skkqP8xv5lM62zAouclTSZ6ay1Q05fu3Ro3_ZXcHtorLJbrKT8MuVPRsDzY_tRysQe86H0GPepyPUD7TwXxAJYyP7i3GsMhRWlT0rn1DFq5FD3NLYVvO8sdZug-Tzs243XWKcQqOJIGXWgwtCplyVRBpZRY-oYEgAUuYxBzTiIUk0YlLpCtk6GONsUi0MYVMK8kwVuQAqrP5TB8CCgXVPFCMR6GmnHDBIxoFviJYBMYrqjq0SlnHsug1bnl7jrOYw2Wx0U5stRMX2qnDxYriJe-z8cfemhX2al8h5zo0SnXGxY-4iD0T4bsmBKXR0e9UZ7DeHQ_6cb83vDuGDWy9dpZi1oBq-rrUJ-bOkYrT7Kh9AITI00M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+IaaS+Computing+Resource+Provisioning+Strategy+with+QoS+Constraint&rft.jtitle=IEEE+transactions+on+services+computing&rft.au=Yongyi+Ran&rft.au=Jian+Yang&rft.au=Shuben+Zhang&rft.au=Hongsheng+Xi&rft.date=2017-03-01&rft.pub=IEEE&rft.eissn=2372-0204&rft.volume=10&rft.issue=2&rft.spage=190&rft.epage=202&rft_id=info:doi/10.1109%2FTSC.2015.2464212&rft.externalDocID=7177115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1374&client=summon |