3D Character Animation and Asset Generation Using Deep Learning

Besides video content, a significant part of entertainment is represented by computer games and animations such as cartoons. Creating such entertainment is based on two fundamental steps: asset generation and character animation. The main problem stems from its repetitive nature and the needed amoun...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 16; p. 7234
Main Authors Lungu-Stan, Vlad-Constantin, Mocanu, Irina Georgiana
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Besides video content, a significant part of entertainment is represented by computer games and animations such as cartoons. Creating such entertainment is based on two fundamental steps: asset generation and character animation. The main problem stems from its repetitive nature and the needed amounts of concentration and skill. The latest advances in deep learning and generative techniques have provided a set of powerful tools which can be used to alleviate these problems by facilitating the tasks of artists and engineers and providing a better workflow. In this work we explore practical solutions for facilitating and hastening the creative process: character animation and asset generation. In character animation, the task is to either move the joints of a subject manually or to correct the noisy data coming out of motion capture. The main difficulties of these tasks are their repetitive nature and the needed amounts of concentration and skill. For the animation case, we propose two decoder-only transformer based solutions, inspired by the current success of GPT. The first, AnimGPT, targets the original animation workflow by predicting the next pose of an animation based on a set of previous poses, while the second, DenoiseAnimGPT, tackles the motion capture case by predicting the clean current pose based on all previous poses and the current noisy pose. Both models obtained good performances on the CMU motion dataset, with the generated results being imperceptible to the untrained human eye. Quantitative evaluation was performed using mean absolute error between the ground truth motion vectors and the predicted motion vector. For both networks AnimGPT and DenoiseAnimGPT errors were 0.345, respectively 0.2513 (for 50 frames) that indicates better performances compared with other solutions. For asset generation, diffusion models were used. Using image generation and outpainting, we created a method that generates good backgrounds by combining the idea of text conditioned generation and text conditioned image editing. A time coherent algorithm that creates animated effects for characters was obtained.
AbstractList Besides video content, a significant part of entertainment is represented by computer games and animations such as cartoons. Creating such entertainment is based on two fundamental steps: asset generation and character animation. The main problem stems from its repetitive nature and the needed amounts of concentration and skill. The latest advances in deep learning and generative techniques have provided a set of powerful tools which can be used to alleviate these problems by facilitating the tasks of artists and engineers and providing a better workflow. In this work we explore practical solutions for facilitating and hastening the creative process: character animation and asset generation. In character animation, the task is to either move the joints of a subject manually or to correct the noisy data coming out of motion capture. The main difficulties of these tasks are their repetitive nature and the needed amounts of concentration and skill. For the animation case, we propose two decoder-only transformer based solutions, inspired by the current success of GPT. The first, AnimGPT, targets the original animation workflow by predicting the next pose of an animation based on a set of previous poses, while the second, DenoiseAnimGPT, tackles the motion capture case by predicting the clean current pose based on all previous poses and the current noisy pose. Both models obtained good performances on the CMU motion dataset, with the generated results being imperceptible to the untrained human eye. Quantitative evaluation was performed using mean absolute error between the ground truth motion vectors and the predicted motion vector. For both networks AnimGPT and DenoiseAnimGPT errors were 0.345, respectively 0.2513 (for 50 frames) that indicates better performances compared with other solutions. For asset generation, diffusion models were used. Using image generation and outpainting, we created a method that generates good backgrounds by combining the idea of text conditioned generation and text conditioned image editing. A time coherent algorithm that creates animated effects for characters was obtained.
Audience Academic
Author Mocanu, Irina Georgiana
Lungu-Stan, Vlad-Constantin
Author_xml – sequence: 1
  givenname: Vlad-Constantin
  orcidid: 0009-0006-1840-8305
  surname: Lungu-Stan
  fullname: Lungu-Stan, Vlad-Constantin
– sequence: 2
  givenname: Irina Georgiana
  orcidid: 0000-0001-5176-9344
  surname: Mocanu
  fullname: Mocanu, Irina Georgiana
BookMark eNpNUU1PwzAMjdCQgLETf6ASR1RI6pCPE5o2vqRJXNg5yhJ3dNqSkpQD_55AEcI-2H6yn57tMzIJMSAhF4xeA2h6Y_uecSZkA_yInDZUiho4k5N_-QmZ5byjxTQDxegpuYNltXizyboBUzUP3cEOXQyVDb6a54xD9YgB0wiucxe21RKxr1ZoUyjVOTlu7T7j7DdOyfrh_nXxVK9eHp8X81XtQLCh5kIwCVS12koutXIN3SiBGyka68QGAb2lzvmGcYBGe2XFRsGtkAy0AHoLU_I88vpod6ZPRWf6NNF25geIaWtsGjq3R0NRlYWdQu2BC6YVk613XigQ0EgrCtflyNWn-P6BeTC7-JFCkW-AaqmYlg0vXddj19YW0i60cShXKu7x0Lly-rYr-FxRySmn8lvi1TjgUsw5Yfsnk1Hz_SHz70PwBQZsgKc
Cites_doi 10.1007/978-3-319-24574-4_28
10.1109/ICCV.2015.494
10.1109/CVPR52688.2022.01042
10.1145/3072959.3073663
10.1016/j.patcog.2020.107404
10.1109/TPAMI.2012.120
10.1109/ICCV51070.2023.00355
10.1016/j.aiopen.2023.08.012
10.1109/WACV51458.2022.00324
10.18653/v1/2020.emnlp-demos.6
10.1109/WACV.2013.6474999
10.1109/TPAMI.2013.248
10.1145/2897824.2925975
10.1145/2766999
10.1111/cgf.15063
10.1109/CVPR52729.2023.02155
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app14167234
DatabaseName CrossRef
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_0e8207c8e9d34619817fdcd6836327a6
A807404075
10_3390_app14167234
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-46617308f9a74798c20b86eb762ac6be3eda0ccd2143329d8a6b8356713963053
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Wed Aug 27 01:30:52 EDT 2025
Mon Jun 30 16:41:34 EDT 2025
Tue Jun 10 21:07:10 EDT 2025
Tue Jul 01 01:31:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-46617308f9a74798c20b86eb762ac6be3eda0ccd2143329d8a6b8356713963053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5176-9344
0009-0006-1840-8305
OpenAccessLink https://www.proquest.com/docview/3097819724?pq-origsite=%requestingapplication%
PQID 3097819724
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_0e8207c8e9d34619817fdcd6836327a6
proquest_journals_3097819724
gale_infotracacademiconefile_A807404075
crossref_primary_10_3390_app14167234
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Holden (ref_4) 2017; 36
Po (ref_8) 2024; 43
Xia (ref_22) 2015; 34
ref_14
ref_13
ref_12
ref_11
ref_10
Holden (ref_2) 2016; 35
ref_19
ref_18
ref_17
Ionescu (ref_23) 2014; 36
ref_16
Radford (ref_7) 2019; 1
ref_15
Ho (ref_20) 2020; 33
ref_25
ref_24
ref_21
ref_1
Achanta (ref_29) 2012; 34
ref_3
ref_28
ref_26
ref_9
ref_5
ref_6
Qin (ref_27) 2020; 106
References_xml – ident: ref_9
– ident: ref_24
– ident: ref_28
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_26
– ident: ref_3
  doi: 10.1109/ICCV.2015.494
– ident: ref_11
– ident: ref_17
  doi: 10.1109/CVPR52688.2022.01042
– volume: 36
  start-page: 1
  year: 2017
  ident: ref_4
  article-title: Phase-Functioned Neural Networks for Character Control
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/3072959.3073663
– volume: 106
  start-page: 107404
  year: 2020
  ident: ref_27
  article-title: U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107404
– ident: ref_16
– volume: 34
  start-page: 2274
  year: 2012
  ident: ref_29
  article-title: SLIC Superpixels Compared to State-of-the-Art Superpixel Methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.120
– ident: ref_15
  doi: 10.1109/ICCV51070.2023.00355
– ident: ref_14
– ident: ref_18
  doi: 10.1016/j.aiopen.2023.08.012
– ident: ref_1
  doi: 10.1109/WACV51458.2022.00324
– volume: 1
  start-page: 9
  year: 2019
  ident: ref_7
  article-title: Language Models are Unsupervised Multitask Learners
  publication-title: OpenAI Blog
– ident: ref_6
– ident: ref_5
  doi: 10.18653/v1/2020.emnlp-demos.6
– ident: ref_21
  doi: 10.1109/WACV.2013.6474999
– ident: ref_12
– ident: ref_10
– volume: 36
  start-page: 1325
  year: 2014
  ident: ref_23
  article-title: Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.248
– ident: ref_13
– volume: 35
  start-page: 1
  year: 2016
  ident: ref_2
  article-title: A Deep Learning Framework for Character Motion Synthesis and Editing
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2897824.2925975
– ident: ref_19
– volume: 34
  start-page: 119:1
  year: 2015
  ident: ref_22
  article-title: Realtime style transfer for unlabeled heterogeneous human motion
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2766999
– volume: 33
  start-page: 6840
  year: 2020
  ident: ref_20
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 43
  start-page: e15063
  year: 2024
  ident: ref_8
  article-title: State of the Art on Diffusion Models for Visual Computing
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.15063
– ident: ref_25
  doi: 10.1109/CVPR52729.2023.02155
SSID ssj0000913810
Score 2.2915864
Snippet Besides video content, a significant part of entertainment is represented by computer games and animations such as cartoons. Creating such entertainment is...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 7234
SubjectTerms 3D character animation
Algorithms
Analysis
animated effects
Animation
asset generation
Computational linguistics
Deep learning
diffusion models
Games
Language processing
Machine learning
Motion capture
Natural language interfaces
Neural networks
next pose prediction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED6hTjAgykMECvJQCRgiEtuxkwmVlqpCgolK3Sy_glhCRcP_55ykKAyIhdXycPrO95LvvgMYU6cl99rHtMxszD0-Yy28izNRsjLRzhgb5p2fnsViyR9X2aq36iv0hLX0wC1wt4nHGCVt7gvHOGb7eSpLZ53ImWBU6oZsG2Ner5hqfHCRBuqqdiCPYV0f_oNTTD4kZfxHCGqY-n_zx02QmR_Afpcdkkkr1RB2fHUIez3OwEMYdta4IdcdZfTNEdyxGZluqZfJpHprBxKJrhwJ37o1ae82h02XAJl5vyYdu-rrMSznDy_TRdytRogtE2kdcwyraJt5WSDUssgtTUwuvEHXpq0wnnmnE2sdTQM_WeFyLQzmWgJLUrQ4NLwTGFTvlT8FYrFoSIwpS60tdzwzhTTUFVlhEuN0aiMYb9FS65YBQ2HlEEBVPVAjuA9Ifl8JtNXNASpTdcpUfykzgqugBxWMq0bMdDcjgJIGmio1CdQ96HZkFsFoqyrVWd1GsTCUEvao8bP_kOYcdimmMG273wgG9cenv8AUpDaXzWv7Av081pw
  priority: 102
  providerName: Directory of Open Access Journals
Title 3D Character Animation and Asset Generation Using Deep Learning
URI https://www.proquest.com/docview/3097819724
https://doaj.org/article/0e8207c8e9d34619817fdcd6836327a6
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV05T-wwEB5xNFAgrieWY-UCCV4RvSR2HKdCy7EgJBBCD4nO8hVEk13Y8P-ZSbwcBbSOi2jsb2Y-2_MNwGHuTSmCCUleFy4RAbexkcEnhax5nRpvraN655tbefUgrh-Lx3jgNovPKuc-sXPUfuLojPwfp4ID6pElTqYvCXWNotvV2EJjEZbRBSskX8unF7d39x-nLKR6qbK0L8zjyO_pXjjDJKTMufgWijrF_p_8chdsxuuwFrNENuqXdQMWQrMJq1-0AzdhI6Jyxo6jdPTfLTjh5-xsLsHMRs1zX5jITOMZXe-2rJ_bDXavBdh5CFMWVVaftuFhfPH_7CqJLRISx2XWJgLDK2JU1RWavKyUy1OrZLDo4oyTNvDgTeqczzPSKau8MtJiziWRmiLyEIB_YKmZNGEHmEPykFpb18Y44UVhq9Lmvioqm1pvMjeAw7m19LRXwtDIIMio-otRB3BKlvyYQvLV3cDk9UlHNOg0YOJROhUqzwVSOJWVtXdeKi55Xho5gCNaB00ga9FmJtYK4J-SXJUekYQPup-yGMD-fKl0RN9Mf-6V3d8_78FKjklK_6BvH5ba17dwgElGa4ewqMaXw7ifhh1VfwdGJdJO
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07bxQxEB5FoQAKRAKIgwAugoBihdf2er0Fio4cx4U8qkRKZ_zaKM3ekVuE-FP8Rmb2EUIBXVrbhTX-5mV7vgHYFdGVKrmUiboImUoIY6dTzApdy5q76H2geufjE704U1_Oi_MN-DXWwtC3ytEmdoY6LgPdkb-XVHBAPbLU3upbRl2j6HV1bKHRw-Iw_fyBKdv6w8EMz_e1EPNPp_uLbOgqkAWp8zZT6JEQ1qaucJdlZYLg3ujk0Sq4oH2SKToeQhQ5UXtV0TjtMUzRmM0hWDl1iUCTfwcnK9IoM_98fadDHJsm530ZIM5zeoXOMeQphVR_Ob6uP8C_vEDn2uYP4cEQk7JpD6It2EjNNty_wVS4DVuDDViztwNR9btHsCdnbH8kfGbT5rIvg2SuiYwek1vWr-0Gu78JbJbSig2crheP4exWRPcENptlk54CC5iqcO_r2rmgoip8VXoRq6Ly3EeXhwnsjtKyq553w2K-QkK1N4Q6gY8kyeslRJbdDSyvLuyge5YnDHPKYFIVpcKE0eRlHUPURmopSqcn8IbOwZJKtygzN1Qm4E6JHMtOiTAIjV1ZTGBnPCo76Pra_kHms_9Pv4K7i9PjI3t0cHL4HO4JDI_6r4Q7sNlefU8vMLxp_csOUwy-3jaIfwMuiwn2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBoWoLiIUCPhQBh6iOnTjJAVXbblcthVWFqNSb8SsVl-y2G1Tx1_h1zCROKQe49Wr7YI0_z8Oe-QZgV3hTZMGERNS5S7KAMDYq-CRXtay58dY6qnf-PFfH59nHi_xiDX4NtTCUVjnoxE5R-4WjN_I9SQUH1CMr26tjWsTZdLa_vEqogxT9tA7tNHqInIafNxi-rT6cTPGs3wgxO_p6eJzEDgOJkyptkwytE0K8rCvccVGVTnBbqmBRQxinbJDBG-6cFynRfFW-NMqiy6IwskPgcuoYgep_vcCoiI9g_eBofvbl9oWHGDfLlPdFgVJWnP6kU3SACiGzv8xg1y3gXzahM3SzTdiIHiqb9JDagrXQbMOjO7yF27AVNcKKvYu01e8fw76cssOB_plNmu99USQzjWf0tdyyfm032GUqsGkISxYZXi-fwPm9CO8pjJpFE54Bcxi4cGvr2hiX-Sy3VWGFr_LKcutN6sawO0hLL3sWDo3RCwlV3xHqGA5IkrdLiDq7G1hcX-p4EzUP6PQUrgyVlxmGj2Va1N55VUolRWHUGN7SOWi64C3KzMQ6BdwpUWXpCdEHoeor8jHsDEel481f6T84ff7_6dfwAAGsP53MT1_AQ4G-Up9XuAOj9vpHeIm-TmtfRVAx-HbfOP4NGbwPiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Character+Animation+and+Asset+Generation+Using+Deep+Learning&rft.jtitle=Applied+sciences&rft.au=Vlad-Constantin+Lungu-Stan&rft.au=Irina+Georgiana+Mocanu&rft.date=2024-08-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=14&rft.issue=16&rft.spage=7234&rft_id=info:doi/10.3390%2Fapp14167234&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon