3D Character Animation and Asset Generation Using Deep Learning
Besides video content, a significant part of entertainment is represented by computer games and animations such as cartoons. Creating such entertainment is based on two fundamental steps: asset generation and character animation. The main problem stems from its repetitive nature and the needed amoun...
Saved in:
Published in | Applied sciences Vol. 14; no. 16; p. 7234 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Besides video content, a significant part of entertainment is represented by computer games and animations such as cartoons. Creating such entertainment is based on two fundamental steps: asset generation and character animation. The main problem stems from its repetitive nature and the needed amounts of concentration and skill. The latest advances in deep learning and generative techniques have provided a set of powerful tools which can be used to alleviate these problems by facilitating the tasks of artists and engineers and providing a better workflow. In this work we explore practical solutions for facilitating and hastening the creative process: character animation and asset generation. In character animation, the task is to either move the joints of a subject manually or to correct the noisy data coming out of motion capture. The main difficulties of these tasks are their repetitive nature and the needed amounts of concentration and skill. For the animation case, we propose two decoder-only transformer based solutions, inspired by the current success of GPT. The first, AnimGPT, targets the original animation workflow by predicting the next pose of an animation based on a set of previous poses, while the second, DenoiseAnimGPT, tackles the motion capture case by predicting the clean current pose based on all previous poses and the current noisy pose. Both models obtained good performances on the CMU motion dataset, with the generated results being imperceptible to the untrained human eye. Quantitative evaluation was performed using mean absolute error between the ground truth motion vectors and the predicted motion vector. For both networks AnimGPT and DenoiseAnimGPT errors were 0.345, respectively 0.2513 (for 50 frames) that indicates better performances compared with other solutions. For asset generation, diffusion models were used. Using image generation and outpainting, we created a method that generates good backgrounds by combining the idea of text conditioned generation and text conditioned image editing. A time coherent algorithm that creates animated effects for characters was obtained. |
---|---|
AbstractList | Besides video content, a significant part of entertainment is represented by computer games and animations such as cartoons. Creating such entertainment is based on two fundamental steps: asset generation and character animation. The main problem stems from its repetitive nature and the needed amounts of concentration and skill. The latest advances in deep learning and generative techniques have provided a set of powerful tools which can be used to alleviate these problems by facilitating the tasks of artists and engineers and providing a better workflow. In this work we explore practical solutions for facilitating and hastening the creative process: character animation and asset generation. In character animation, the task is to either move the joints of a subject manually or to correct the noisy data coming out of motion capture. The main difficulties of these tasks are their repetitive nature and the needed amounts of concentration and skill. For the animation case, we propose two decoder-only transformer based solutions, inspired by the current success of GPT. The first, AnimGPT, targets the original animation workflow by predicting the next pose of an animation based on a set of previous poses, while the second, DenoiseAnimGPT, tackles the motion capture case by predicting the clean current pose based on all previous poses and the current noisy pose. Both models obtained good performances on the CMU motion dataset, with the generated results being imperceptible to the untrained human eye. Quantitative evaluation was performed using mean absolute error between the ground truth motion vectors and the predicted motion vector. For both networks AnimGPT and DenoiseAnimGPT errors were 0.345, respectively 0.2513 (for 50 frames) that indicates better performances compared with other solutions. For asset generation, diffusion models were used. Using image generation and outpainting, we created a method that generates good backgrounds by combining the idea of text conditioned generation and text conditioned image editing. A time coherent algorithm that creates animated effects for characters was obtained. |
Audience | Academic |
Author | Mocanu, Irina Georgiana Lungu-Stan, Vlad-Constantin |
Author_xml | – sequence: 1 givenname: Vlad-Constantin orcidid: 0009-0006-1840-8305 surname: Lungu-Stan fullname: Lungu-Stan, Vlad-Constantin – sequence: 2 givenname: Irina Georgiana orcidid: 0000-0001-5176-9344 surname: Mocanu fullname: Mocanu, Irina Georgiana |
BookMark | eNpNUU1PwzAMjdCQgLETf6ASR1RI6pCPE5o2vqRJXNg5yhJ3dNqSkpQD_55AEcI-2H6yn57tMzIJMSAhF4xeA2h6Y_uecSZkA_yInDZUiho4k5N_-QmZ5byjxTQDxegpuYNltXizyboBUzUP3cEOXQyVDb6a54xD9YgB0wiucxe21RKxr1ZoUyjVOTlu7T7j7DdOyfrh_nXxVK9eHp8X81XtQLCh5kIwCVS12koutXIN3SiBGyka68QGAb2lzvmGcYBGe2XFRsGtkAy0AHoLU_I88vpod6ZPRWf6NNF25geIaWtsGjq3R0NRlYWdQu2BC6YVk613XigQ0EgrCtflyNWn-P6BeTC7-JFCkW-AaqmYlg0vXddj19YW0i60cShXKu7x0Lly-rYr-FxRySmn8lvi1TjgUsw5Yfsnk1Hz_SHz70PwBQZsgKc |
Cites_doi | 10.1007/978-3-319-24574-4_28 10.1109/ICCV.2015.494 10.1109/CVPR52688.2022.01042 10.1145/3072959.3073663 10.1016/j.patcog.2020.107404 10.1109/TPAMI.2012.120 10.1109/ICCV51070.2023.00355 10.1016/j.aiopen.2023.08.012 10.1109/WACV51458.2022.00324 10.18653/v1/2020.emnlp-demos.6 10.1109/WACV.2013.6474999 10.1109/TPAMI.2013.248 10.1145/2897824.2925975 10.1145/2766999 10.1111/cgf.15063 10.1109/CVPR52729.2023.02155 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app14167234 |
DatabaseName | CrossRef ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_0e8207c8e9d34619817fdcd6836327a6 A807404075 10_3390_app14167234 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-46617308f9a74798c20b86eb762ac6be3eda0ccd2143329d8a6b8356713963053 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:30:52 EDT 2025 Mon Jun 30 16:41:34 EDT 2025 Tue Jun 10 21:07:10 EDT 2025 Tue Jul 01 01:31:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-46617308f9a74798c20b86eb762ac6be3eda0ccd2143329d8a6b8356713963053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5176-9344 0009-0006-1840-8305 |
OpenAccessLink | https://www.proquest.com/docview/3097819724?pq-origsite=%requestingapplication% |
PQID | 3097819724 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0e8207c8e9d34619817fdcd6836327a6 proquest_journals_3097819724 gale_infotracacademiconefile_A807404075 crossref_primary_10_3390_app14167234 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Holden (ref_4) 2017; 36 Po (ref_8) 2024; 43 Xia (ref_22) 2015; 34 ref_14 ref_13 ref_12 ref_11 ref_10 Holden (ref_2) 2016; 35 ref_19 ref_18 ref_17 Ionescu (ref_23) 2014; 36 ref_16 Radford (ref_7) 2019; 1 ref_15 Ho (ref_20) 2020; 33 ref_25 ref_24 ref_21 ref_1 Achanta (ref_29) 2012; 34 ref_3 ref_28 ref_26 ref_9 ref_5 ref_6 Qin (ref_27) 2020; 106 |
References_xml | – ident: ref_9 – ident: ref_24 – ident: ref_28 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_26 – ident: ref_3 doi: 10.1109/ICCV.2015.494 – ident: ref_11 – ident: ref_17 doi: 10.1109/CVPR52688.2022.01042 – volume: 36 start-page: 1 year: 2017 ident: ref_4 article-title: Phase-Functioned Neural Networks for Character Control publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/3072959.3073663 – volume: 106 start-page: 107404 year: 2020 ident: ref_27 article-title: U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107404 – ident: ref_16 – volume: 34 start-page: 2274 year: 2012 ident: ref_29 article-title: SLIC Superpixels Compared to State-of-the-Art Superpixel Methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.120 – ident: ref_15 doi: 10.1109/ICCV51070.2023.00355 – ident: ref_14 – ident: ref_18 doi: 10.1016/j.aiopen.2023.08.012 – ident: ref_1 doi: 10.1109/WACV51458.2022.00324 – volume: 1 start-page: 9 year: 2019 ident: ref_7 article-title: Language Models are Unsupervised Multitask Learners publication-title: OpenAI Blog – ident: ref_6 – ident: ref_5 doi: 10.18653/v1/2020.emnlp-demos.6 – ident: ref_21 doi: 10.1109/WACV.2013.6474999 – ident: ref_12 – ident: ref_10 – volume: 36 start-page: 1325 year: 2014 ident: ref_23 article-title: Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.248 – ident: ref_13 – volume: 35 start-page: 1 year: 2016 ident: ref_2 article-title: A Deep Learning Framework for Character Motion Synthesis and Editing publication-title: ACM Trans. Graph. doi: 10.1145/2897824.2925975 – ident: ref_19 – volume: 34 start-page: 119:1 year: 2015 ident: ref_22 article-title: Realtime style transfer for unlabeled heterogeneous human motion publication-title: ACM Trans. Graph. doi: 10.1145/2766999 – volume: 33 start-page: 6840 year: 2020 ident: ref_20 article-title: Denoising diffusion probabilistic models publication-title: Adv. Neural Inf. Process. Syst. – volume: 43 start-page: e15063 year: 2024 ident: ref_8 article-title: State of the Art on Diffusion Models for Visual Computing publication-title: Comput. Graph. Forum doi: 10.1111/cgf.15063 – ident: ref_25 doi: 10.1109/CVPR52729.2023.02155 |
SSID | ssj0000913810 |
Score | 2.2915864 |
Snippet | Besides video content, a significant part of entertainment is represented by computer games and animations such as cartoons. Creating such entertainment is... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 7234 |
SubjectTerms | 3D character animation Algorithms Analysis animated effects Animation asset generation Computational linguistics Deep learning diffusion models Games Language processing Machine learning Motion capture Natural language interfaces Neural networks next pose prediction |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED6hTjAgykMECvJQCRgiEtuxkwmVlqpCgolK3Sy_glhCRcP_55ykKAyIhdXycPrO95LvvgMYU6cl99rHtMxszD0-Yy28izNRsjLRzhgb5p2fnsViyR9X2aq36iv0hLX0wC1wt4nHGCVt7gvHOGb7eSpLZ53ImWBU6oZsG2Ner5hqfHCRBuqqdiCPYV0f_oNTTD4kZfxHCGqY-n_zx02QmR_Afpcdkkkr1RB2fHUIez3OwEMYdta4IdcdZfTNEdyxGZluqZfJpHprBxKJrhwJ37o1ae82h02XAJl5vyYdu-rrMSznDy_TRdytRogtE2kdcwyraJt5WSDUssgtTUwuvEHXpq0wnnmnE2sdTQM_WeFyLQzmWgJLUrQ4NLwTGFTvlT8FYrFoSIwpS60tdzwzhTTUFVlhEuN0aiMYb9FS65YBQ2HlEEBVPVAjuA9Ifl8JtNXNASpTdcpUfykzgqugBxWMq0bMdDcjgJIGmio1CdQ96HZkFsFoqyrVWd1GsTCUEvao8bP_kOYcdimmMG273wgG9cenv8AUpDaXzWv7Av081pw priority: 102 providerName: Directory of Open Access Journals |
Title | 3D Character Animation and Asset Generation Using Deep Learning |
URI | https://www.proquest.com/docview/3097819724 https://doaj.org/article/0e8207c8e9d34619817fdcd6836327a6 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV05T-wwEB5xNFAgrieWY-UCCV4RvSR2HKdCy7EgJBBCD4nO8hVEk13Y8P-ZSbwcBbSOi2jsb2Y-2_MNwGHuTSmCCUleFy4RAbexkcEnhax5nRpvraN655tbefUgrh-Lx3jgNovPKuc-sXPUfuLojPwfp4ID6pElTqYvCXWNotvV2EJjEZbRBSskX8unF7d39x-nLKR6qbK0L8zjyO_pXjjDJKTMufgWijrF_p_8chdsxuuwFrNENuqXdQMWQrMJq1-0AzdhI6Jyxo6jdPTfLTjh5-xsLsHMRs1zX5jITOMZXe-2rJ_bDXavBdh5CFMWVVaftuFhfPH_7CqJLRISx2XWJgLDK2JU1RWavKyUy1OrZLDo4oyTNvDgTeqczzPSKau8MtJiziWRmiLyEIB_YKmZNGEHmEPykFpb18Y44UVhq9Lmvioqm1pvMjeAw7m19LRXwtDIIMio-otRB3BKlvyYQvLV3cDk9UlHNOg0YOJROhUqzwVSOJWVtXdeKi55Xho5gCNaB00ga9FmJtYK4J-SXJUekYQPup-yGMD-fKl0RN9Mf-6V3d8_78FKjklK_6BvH5ba17dwgElGa4ewqMaXw7ifhh1VfwdGJdJO |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07bxQxEB5FoQAKRAKIgwAugoBihdf2er0Fio4cx4U8qkRKZ_zaKM3ekVuE-FP8Rmb2EUIBXVrbhTX-5mV7vgHYFdGVKrmUiboImUoIY6dTzApdy5q76H2geufjE704U1_Oi_MN-DXWwtC3ytEmdoY6LgPdkb-XVHBAPbLU3upbRl2j6HV1bKHRw-Iw_fyBKdv6w8EMz_e1EPNPp_uLbOgqkAWp8zZT6JEQ1qaucJdlZYLg3ujk0Sq4oH2SKToeQhQ5UXtV0TjtMUzRmM0hWDl1iUCTfwcnK9IoM_98fadDHJsm530ZIM5zeoXOMeQphVR_Ob6uP8C_vEDn2uYP4cEQk7JpD6It2EjNNty_wVS4DVuDDViztwNR9btHsCdnbH8kfGbT5rIvg2SuiYwek1vWr-0Gu78JbJbSig2crheP4exWRPcENptlk54CC5iqcO_r2rmgoip8VXoRq6Ly3EeXhwnsjtKyq553w2K-QkK1N4Q6gY8kyeslRJbdDSyvLuyge5YnDHPKYFIVpcKE0eRlHUPURmopSqcn8IbOwZJKtygzN1Qm4E6JHMtOiTAIjV1ZTGBnPCo76Pra_kHms_9Pv4K7i9PjI3t0cHL4HO4JDI_6r4Q7sNlefU8vMLxp_csOUwy-3jaIfwMuiwn2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBoWoLiIUCPhQBh6iOnTjJAVXbblcthVWFqNSb8SsVl-y2G1Tx1_h1zCROKQe49Wr7YI0_z8Oe-QZgV3hTZMGERNS5S7KAMDYq-CRXtay58dY6qnf-PFfH59nHi_xiDX4NtTCUVjnoxE5R-4WjN_I9SQUH1CMr26tjWsTZdLa_vEqogxT9tA7tNHqInIafNxi-rT6cTPGs3wgxO_p6eJzEDgOJkyptkwytE0K8rCvccVGVTnBbqmBRQxinbJDBG-6cFynRfFW-NMqiy6IwskPgcuoYgep_vcCoiI9g_eBofvbl9oWHGDfLlPdFgVJWnP6kU3SACiGzv8xg1y3gXzahM3SzTdiIHiqb9JDagrXQbMOjO7yF27AVNcKKvYu01e8fw76cssOB_plNmu99USQzjWf0tdyyfm032GUqsGkISxYZXi-fwPm9CO8pjJpFE54Bcxi4cGvr2hiX-Sy3VWGFr_LKcutN6sawO0hLL3sWDo3RCwlV3xHqGA5IkrdLiDq7G1hcX-p4EzUP6PQUrgyVlxmGj2Va1N55VUolRWHUGN7SOWi64C3KzMQ6BdwpUWXpCdEHoeor8jHsDEel481f6T84ff7_6dfwAAGsP53MT1_AQ4G-Up9XuAOj9vpHeIm-TmtfRVAx-HbfOP4NGbwPiA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Character+Animation+and+Asset+Generation+Using+Deep+Learning&rft.jtitle=Applied+sciences&rft.au=Vlad-Constantin+Lungu-Stan&rft.au=Irina+Georgiana+Mocanu&rft.date=2024-08-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=14&rft.issue=16&rft.spage=7234&rft_id=info:doi/10.3390%2Fapp14167234&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |