Measurement and Artificial Neural Network Modeling of Electrical Conductivity of CuO/Glycerol Nanofluids at Various Thermal and Concentration Conditions
In this work, the electrical conductivity of CuO/glycerol nanofluid was measured at a temperature range of 20–60 °C, volume fraction of 0.1–1.5% and nanoparticle size of 20–60 nm. The experimental data were predicted by the perceptron neural network. The results showed that the electrical conductivi...
Saved in:
Published in | Energies (Basel) Vol. 11; no. 5; p. 1190 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, the electrical conductivity of CuO/glycerol nanofluid was measured at a temperature range of 20–60 °C, volume fraction of 0.1–1.5% and nanoparticle size of 20–60 nm. The experimental data were predicted by the perceptron neural network. The results showed that the electrical conductivity increases with temperature, especially in higher volume fractions. These results are attributed to the accumulation of nanoparticles in the presence of the field and their Brownian motion at different temperatures and the reduction of electrical conductivity at higher nanoparticle sizes is attributed to the decreased mobility of nanoparticles as load carriers as well as to their decrease in volume unit per constant volume fraction. The results revealed that sonication time up to 70 min increases the nanofluid stability, while further increase in the sonication time decreases the nanofluid stability. In the modeling, input data to perceptron artificial neural network are nanofluid temperature, nanoparticle size, sonication time and volume fraction and electrical conductivity is considered as output. The results obtained from self-organizing map (SOM) showed that the winner neuron which has the most data is neuron 31. The values of the correlation coefficient (R2), the mean of squared errors (MSE) and maximum error(emax) used to evaluate the perceptron artificial neural network with 2 hidden layers and 31 neurons are 1, 2.3542 × 10−17 and 0 respectively, indicating the high accuracy of the network. |
---|---|
AbstractList | In this work, the electrical conductivity of CuO/glycerol nanofluid was measured at a temperature range of 20-60 °C, volume fraction of 0.1-1.5% and nanoparticle size of 20-60 nm. The experimental data were predicted by the perceptron neural network. The results showed that the electrical conductivity increases with temperature, especially in higher volume fractions. These results are attributed to the accumulation of nanoparticles in the presence of the field and their Brownian motion at different temperatures and the reduction of electrical conductivity at higher nanoparticle sizes is attributed to the decreased mobility of nanoparticles as load carriers as well as to their decrease in volume unit per constant volume fraction. The results revealed that sonication time up to 70 min increases the nanofluid stability, while further increase in the sonication time decreases the nanofluid stability. In the modeling, input data to perceptron artificial neural network are nanofluid temperature, nanoparticle size, sonication time and volume fraction and electrical conductivity is considered as output. The results obtained from self-organizing map (SOM) showed that the winner neuron which has the most data is neuron 31. The values of the correlation coefficient (R2), the mean of squared errors (MSE) and maximum error(emax) used to evaluate the perceptron artificial neural network with 2 hidden layers and 31 neurons are 1, 2.3542 × 10−17 and 0 respectively, indicating the high accuracy of the network. |
Author | Ghasemi, Nahid Ahmadi, Mohammad Yan, Wei-Mon Aghayari, Reza Maddah, Heydar |
Author_xml | – sequence: 1 givenname: Reza surname: Aghayari fullname: Aghayari, Reza – sequence: 2 givenname: Heydar surname: Maddah fullname: Maddah, Heydar – sequence: 3 givenname: Mohammad surname: Ahmadi fullname: Ahmadi, Mohammad – sequence: 4 givenname: Wei-Mon surname: Yan fullname: Yan, Wei-Mon – sequence: 5 givenname: Nahid surname: Ghasemi fullname: Ghasemi, Nahid |
BookMark | eNpNUctOXDEMjSoqlQIbviBSd5Wm5HUfWaIRpUhQNpRt5EkcmumdhCa5VPMn_dxmZqoWb2zZPudYPu_JUUwRCTnn7JOUml1g5Jx1nGv2hhxzrfsFZ4M8elW_I2elrFkLKbmU8pj8vkMoc8YNxkohOnqZa_DBBpjoV5zzPtVfKf-gd8nhFOITTZ5eTWhrDraNlym62dbwEup2N1rO9xfX09ZiTg0LMflpDq5QqPQRckhzoQ_fMW8adKfX4LZpZ6ghxT1Z2FXllLz1MBU8-5tPyLfPVw_LL4vb--ub5eXtwsqe14XqxTAwjxr6zqHQXCk7ejZY7HznOIwdOutAcMdgNTihBPZSd8or32kPgzwhNwdel2BtnnPYQN6aBMHsGyk_GWgvsRMaNYjROrcSK9BKe6XFylk_cM9HwXCQjevDges5p58zlmrWac6xnW8EZ2On5Kh42_p42LI5lZLR_1PlzOyMNP-NlH8ADDSUXQ |
CitedBy_id | crossref_primary_10_1007_s10973_020_09426_z crossref_primary_10_1140_epjp_s13360_020_00252_8 crossref_primary_10_1177_08927057241243361 crossref_primary_10_1016_j_renene_2019_08_112 crossref_primary_10_7498_aps_73_20240283 crossref_primary_10_1016_j_ijft_2024_100566 crossref_primary_10_1177_0954406219841075 crossref_primary_10_1080_0952813X_2019_1620870 crossref_primary_10_1016_j_physa_2018_07_040 crossref_primary_10_1007_s11630_021_1459_7 crossref_primary_10_1007_s12008_022_00906_0 crossref_primary_10_1016_j_renene_2024_120137 crossref_primary_10_1016_j_jscs_2023_101613 crossref_primary_10_3390_math7111042 crossref_primary_10_1002_mma_8907 crossref_primary_10_1007_s00231_019_02758_z crossref_primary_10_1080_19942060_2018_1542345 crossref_primary_10_1016_j_physa_2019_122142 crossref_primary_10_1080_15567036_2019_1587103 |
Cites_doi | 10.1063/1.1454184 10.1007/s10973-017-6217-4 10.1016/j.ijheatmasstransfer.2017.03.006 10.1016/j.powtec.2012.12.059 10.1016/j.physe.2016.11.004 10.1016/j.ijthermalsci.2016.08.016 10.1016/j.synthmet.2008.03.022 10.1016/j.applthermaleng.2016.03.074 10.1166/jnn.2011.4217 10.1016/j.applthermaleng.2017.05.200 10.3390/en9090716 10.1016/j.powtec.2009.08.010 10.3390/en11020361 10.1016/j.icheatmasstransfer.2016.04.002 10.1155/2013/842963 10.1016/j.colsurfa.2012.10.010 10.1016/j.powtec.2017.02.065 10.1016/j.jmmm.2016.05.051 10.1016/j.expthermflusci.2016.01.004 10.3390/en11010181 10.1016/j.ijheatmasstransfer.2016.11.022 10.3390/su9081382 10.1186/1556-276X-7-423 10.1016/j.molliq.2017.03.020 10.12693/APhysPolA.132.146 10.1063/1.4793581 10.1016/j.icheatmasstransfer.2014.12.015 10.1007/s00231-017-2068-6 10.1016/j.ijheatmasstransfer.2017.12.106 10.3390/en9100840 10.1016/j.molliq.2017.02.037 10.1016/j.icheatmasstransfer.2016.08.015 10.1016/j.renene.2017.08.059 10.3390/en10010123 10.1007/s11051-014-2788-1 10.1016/j.hbrcj.2014.12.001 10.1007/s12034-015-1020-y 10.1186/1556-276X-6-346 10.1016/j.jmmm.2017.07.024 10.1016/j.powtec.2015.01.050 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PIMPY PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/en11051190 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_4728cddb2ba949f492bdcf71f1820e73 10_3390_en11051190 |
GroupedDBID | 29G 2WC 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 HCIFZ I-F IAO IPNFZ KQ8 L6V L8X M7S MODMG M~E OK1 P2P PATMY PIMPY PROAC PYCSY RIG TR2 TUS ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c361t-462770fe9a65de29144c8f07ce5f5d1a85edcda21d0ab7d242e63954f4f59fa73 |
IEDL.DBID | DOA |
ISSN | 1996-1073 |
IngestDate | Tue Oct 22 15:12:17 EDT 2024 Thu Oct 10 17:28:58 EDT 2024 Fri Dec 06 02:34:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-462770fe9a65de29144c8f07ce5f5d1a85edcda21d0ab7d242e63954f4f59fa73 |
OpenAccessLink | https://doaj.org/article/4728cddb2ba949f492bdcf71f1820e73 |
PQID | 2108543841 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4728cddb2ba949f492bdcf71f1820e73 proquest_journals_2108543841 crossref_primary_10_3390_en11051190 |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2018 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref13 ref35 ref12 ref34 ref15 Ijaz (ref7) 2018; 250 ref14 ref36 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref39 ref16 ref38 ref19 ref18 Satriananda (ref17) 2017; 6 ref24 Lu (ref31) 2018; 11 ref23 ref26 ref25 ref42 ref41 ref22 ref44 ref21 ref43 Aghayari (ref20) 2016; 1 ref28 ref27 ref29 ref8 ref9 ref4 Azimi (ref37) 2015; 6 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref1 doi: 10.1063/1.1454184 – ident: ref27 doi: 10.1007/s10973-017-6217-4 – ident: ref4 doi: 10.1016/j.ijheatmasstransfer.2017.03.006 – ident: ref40 doi: 10.1016/j.powtec.2012.12.059 – ident: ref23 doi: 10.1016/j.physe.2016.11.004 – ident: ref11 doi: 10.1016/j.ijthermalsci.2016.08.016 – ident: ref33 doi: 10.1016/j.synthmet.2008.03.022 – ident: ref18 doi: 10.1016/j.applthermaleng.2016.03.074 – ident: ref41 doi: 10.1166/jnn.2011.4217 – ident: ref25 doi: 10.1016/j.applthermaleng.2017.05.200 – volume: 1 start-page: 15 year: 2016 ident: ref20 article-title: Comparison of the experimental and predicted data for thermal conductivity of iron oxide nanofluid using artificial neural networks publication-title: Nanomed. Res. J. contributor: fullname: Aghayari – volume: 6 start-page: 32 year: 2017 ident: ref17 article-title: Investigation on electrical conductivity enhancement of water based maghemite (γ-Fe2O3) nanofluids publication-title: Int. J. Mater. Sci. Appl. contributor: fullname: Satriananda – ident: ref30 doi: 10.3390/en9090716 – ident: ref39 doi: 10.1016/j.powtec.2009.08.010 – ident: ref9 doi: 10.3390/en11020361 – ident: ref26 doi: 10.1016/j.icheatmasstransfer.2016.04.002 – ident: ref34 doi: 10.1155/2013/842963 – volume: 250 start-page: 80 year: 2018 ident: ref7 article-title: Analytical study on liquid-solid particles interaction in the presence of heat and mass transfer through a wavy channel publication-title: J. Magn. Magn. Mater. contributor: fullname: Ijaz – ident: ref36 doi: 10.1016/j.colsurfa.2012.10.010 – ident: ref3 doi: 10.1016/j.powtec.2017.02.065 – ident: ref8 doi: 10.1016/j.jmmm.2016.05.051 – ident: ref13 doi: 10.1016/j.expthermflusci.2016.01.004 – volume: 11 start-page: 181 year: 2018 ident: ref31 article-title: Performance estimation and fault diagnosis based on Levenberg–Marquardt algorithm for a turbofan rngine publication-title: Energies doi: 10.3390/en11010181 contributor: fullname: Lu – ident: ref2 doi: 10.1016/j.ijheatmasstransfer.2016.11.022 – ident: ref29 doi: 10.3390/su9081382 – ident: ref12 doi: 10.1186/1556-276X-7-423 – ident: ref22 doi: 10.1016/j.molliq.2017.03.020 – volume: 6 start-page: 77 year: 2015 ident: ref37 article-title: Electrical conductivity of CuO nanofluids publication-title: Int. J. Nano Dimens. contributor: fullname: Azimi – ident: ref15 doi: 10.12693/APhysPolA.132.146 – ident: ref38 doi: 10.1063/1.4793581 – ident: ref16 doi: 10.1016/j.icheatmasstransfer.2014.12.015 – ident: ref28 doi: 10.1007/s00231-017-2068-6 – ident: ref19 doi: 10.1016/j.ijheatmasstransfer.2017.12.106 – ident: ref10 doi: 10.3390/en9100840 – ident: ref21 doi: 10.1016/j.molliq.2017.02.037 – ident: ref24 doi: 10.1016/j.icheatmasstransfer.2016.08.015 – ident: ref6 doi: 10.1016/j.renene.2017.08.059 – ident: ref44 doi: 10.3390/en10010123 – ident: ref32 doi: 10.1007/s11051-014-2788-1 – ident: ref42 doi: 10.1016/j.hbrcj.2014.12.001 – ident: ref14 doi: 10.1007/s12034-015-1020-y – ident: ref35 doi: 10.1186/1556-276X-6-346 – ident: ref5 doi: 10.1016/j.jmmm.2017.07.024 – ident: ref43 doi: 10.1016/j.powtec.2015.01.050 |
SSID | ssj0000331333 |
Score | 2.304409 |
Snippet | In this work, the electrical conductivity of CuO/glycerol nanofluid was measured at a temperature range of 20–60 °C, volume fraction of 0.1–1.5% and... In this work, the electrical conductivity of CuO/glycerol nanofluid was measured at a temperature range of 20-60 °C, volume fraction of 0.1-1.5% and... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 1190 |
SubjectTerms | Copper Correlation coefficient Correlation coefficients Electrical conductivity Electrical resistivity Glycerol Modelling nanofluid Nanofluids Nanoparticles Neural networks Oxides perceptron artificial neural network Self organizing maps Sonication Stability Temperature Temperature effects Temperature perception |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcmkPIUlbunkUQXI1a-thWaeQLNkNgaSXpORm9CyFxd7s45B_kp-bGdm721DoyWDJNviT5qWZbwg5F64CvZSLTOZeZ0jglRkTWCaClk4XXomI9c539-XNo7h9kk99wG3Rp1WuZWIS1L51GCMfMkyTF7wSxcXsOcOuUXi62rfQ-Eh2C6ZKTOmrxpNNjCXnHFww3rGScvDuh6EBdYdHZ_k7PZTo-v-RxknFjPfJXm8b0ssOzAPyITSH5PNfjIFfyOvdNqZHTePT5I4EgiLPRrqkxG6KXc6w1py2kV6nZjeIBx21DVK8pp4RODRa_RxOpi8uzFt41jRtnK7--AU1S_oL_Oh2taCwlEB8T9P3Rljm2PRcu-llXc7XV_I4vn4Y3WR9c4XM8bJYAixMqTwGbUrpA9PgWLkq5soFGaUvTCWDd96wwufGKg-aPIAxI0UUUepoFP9Gdpq2Cd8JlQzsiCAt89wKJ6S11peiyJ20sN1DGJCz9a-uZx2HRg2-BwJSbwEZkCtEYTMDea_TjXb-u-63US0Uq5z3llmjhY5CM-tdVEVEHvqg-ICcrDGs-824qLdL5-j_w8fkE9hDVZfPeEJ2lvNVOAWbY2l_pIX1BjkA2dI priority: 102 providerName: ProQuest |
Title | Measurement and Artificial Neural Network Modeling of Electrical Conductivity of CuO/Glycerol Nanofluids at Various Thermal and Concentration Conditions |
URI | https://www.proquest.com/docview/2108543841 https://doaj.org/article/4728cddb2ba949f492bdcf71f1820e73 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA66XvQgPnF9LAG9lm3TZNMcddldEXwgKnsreYKwtLKPg__En-skqe6KBy9eWmjTpmQmmfnSmW8QuqC6ALuU0oSlRiSewCuR0pKEWsG0yAynzuc73971rp_pzZiNV0p9-ZiwSA8cB65LOSm0MYooKahwVBBltOOZ88zjlkeez5SsgKmwBuc5gK888pHmgOu7tgJD53-apT8sUCDq_7UOB-My3EHbjVeIL-PX7KI1W-2hrRWuwH30cbvczcMA_0PjSP-APcNGOIWQbuzrm_ksc1w7PAhlbrwkcL-uPLlrqBbhb_UX993R5F3baQ3Pyqp2k8WrmWE5xy-AoOvFDIMSwcI9Cf31fYJj1bDshpfFaK8D9DwcPPWvk6asQqLzXjYHgRDOU2eF7DFjiQBIpQuXcm2ZYyaTBbNGG0kyk0rFDdhwC24Mo446Jpzk-SFqVXVljxBmBDwIyxQxuaKaMqWU6dEs1UzBRLe2jc6_hrp8i-wZJaAOL5ByKZA2uvJS-G7hGa_DBdCDstGD8i89aKPTLxmWzTSclcTnVtC8oNnxf_RxgjbBXypivOMpas2nC3sGPslcddB6MRx10MbV4O7hsROUEY6jcfYJg57mUA |
link.rule.ids | 314,780,784,864,2102,12765,21388,27924,27925,33373,33744,43600,43805,74035,74302 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BOAAHRKFVU0q7Elyt2PvIek8IoqbpI-XSVr1Z-6wqRXbJ49B_ws9lZu0kVEicLHnXtuRvd1478w0hX4UrQS_lIpO51xkSeGXGBJaJoKXThVciYr3z9Go4uRHnd_KuC7gturTKtUxMgto3DmPkA4Zp8oKXovj2-CvDrlF4utq10HhJXgkOqhsrxcenmxhLzjm4YLxlJeXg3Q9CDeoOj87yZ3oo0fX_I42Tihm_J-8625B-b8HcIS9C_YG8_Ysx8CP5Pd3G9KipfZrckkBQ5NlIl5TYTbHLGdaa0ybSk9TsBvGgo6ZGitfUMwKHRqufg9PZkwvzBp41dRNnqwe_oGZJb8GPblYLCksJxPcsfW-EZY51x7WbXtbmfO2Sm_HJ9WiSdc0VMseHxRJgYUrlMWgzlD4wDY6VK2OuXJBR-sKUMnjnDSt8bqzyoMkDGDNSRBGljkbxPdKrmzrsEyoZ2BFBWua5FU5Ia60fiiJ30sJ2D6FPvqx_dfXYcmhU4HsgINUWkD75gShsZiDvdbrRzO-rbhtVQrHSeW-ZNVroKDSz3kVVROShD4r3yeEaw6rbjItqu3QO_j98TF5PrqeX1eXZ1cUn8gZso7LNbTwkveV8FT6D_bG0R2mR_QF979y0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA66BbEP4hW3Vg3o67AzuWwmT2LXXeulaxErfRtylcIy0-7lwX_Sn9tzMtmuIvg0MMlMIOfkXJIv3yHkrXA1-KVSFLL0ukACr8KYwAoRtHS68kpEvO98Mh8fn4nP5_I8459WGVa5tYnJUPvO4R75iCFMXvBaVKOYYRGnH2bvLq8KrCCFJ625nMZdsoejswHZO5rOT7_f7riUnENCxnuOUg65_ii04PzwIK38yysl8v5_bHNyOLOH5EGOFOn7XrSPyJ3QPib7f_AHPiHXJ7sdPmpanzr3lBAUWTfSI8G8KdY8w5vntIt0mkrfoHTopGuR8DVVkMCmyebb6OPitwvLDr41bRcXmwu_omZNf0JW3W1WFBQLjPkijTfBS49tZt5NP-sRYE_J2Wz6Y3Jc5FILhePjag1CYkqVMWgzlj4wDWmWq2OpXJBR-srUMnjnDat8aazy4NcDhDZSRBGljkbxZ2TQdm14TqhkEFUEaZnnVjghrbV-LKrSSQuLP4QhebOd6uayZ9RoIBNBgTQ7gQzJEUrhtgeyYKcX3fJXkxdVIxSrnfeWWaOFjkIz611UVURW-qD4kBxuZdjkpblqdop08P_m1-QeaFjz9dP8ywtyHwKlugc6HpLBerkJLyEYWdtXWctuAEWB4lA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+and+Artificial+Neural+Network+Modeling+of+Electrical+Conductivity+of+CuO%2FGlycerol+Nanofluids+at+Various+Thermal+and+Concentration+Conditions&rft.jtitle=Energies+%28Basel%29&rft.au=Reza+Aghayari&rft.au=Heydar+Maddah&rft.au=Mohammad+Hossein+Ahmadi&rft.au=Wei-Mon+Yan&rft.date=2018-05-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=11&rft.issue=5&rft.spage=1190&rft_id=info:doi/10.3390%2Fen11051190&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4728cddb2ba949f492bdcf71f1820e73 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |