Measurement and Artificial Neural Network Modeling of Electrical Conductivity of CuO/Glycerol Nanofluids at Various Thermal and Concentration Conditions

In this work, the electrical conductivity of CuO/glycerol nanofluid was measured at a temperature range of 20–60 °C, volume fraction of 0.1–1.5% and nanoparticle size of 20–60 nm. The experimental data were predicted by the perceptron neural network. The results showed that the electrical conductivi...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 11; no. 5; p. 1190
Main Authors Aghayari, Reza, Maddah, Heydar, Ahmadi, Mohammad, Yan, Wei-Mon, Ghasemi, Nahid
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, the electrical conductivity of CuO/glycerol nanofluid was measured at a temperature range of 20–60 °C, volume fraction of 0.1–1.5% and nanoparticle size of 20–60 nm. The experimental data were predicted by the perceptron neural network. The results showed that the electrical conductivity increases with temperature, especially in higher volume fractions. These results are attributed to the accumulation of nanoparticles in the presence of the field and their Brownian motion at different temperatures and the reduction of electrical conductivity at higher nanoparticle sizes is attributed to the decreased mobility of nanoparticles as load carriers as well as to their decrease in volume unit per constant volume fraction. The results revealed that sonication time up to 70 min increases the nanofluid stability, while further increase in the sonication time decreases the nanofluid stability. In the modeling, input data to perceptron artificial neural network are nanofluid temperature, nanoparticle size, sonication time and volume fraction and electrical conductivity is considered as output. The results obtained from self-organizing map (SOM) showed that the winner neuron which has the most data is neuron 31. The values of the correlation coefficient (R2), the mean of squared errors (MSE) and maximum error(emax) used to evaluate the perceptron artificial neural network with 2 hidden layers and 31 neurons are 1, 2.3542 × 10−17 and 0 respectively, indicating the high accuracy of the network.
AbstractList In this work, the electrical conductivity of CuO/glycerol nanofluid was measured at a temperature range of 20-60 °C, volume fraction of 0.1-1.5% and nanoparticle size of 20-60 nm. The experimental data were predicted by the perceptron neural network. The results showed that the electrical conductivity increases with temperature, especially in higher volume fractions. These results are attributed to the accumulation of nanoparticles in the presence of the field and their Brownian motion at different temperatures and the reduction of electrical conductivity at higher nanoparticle sizes is attributed to the decreased mobility of nanoparticles as load carriers as well as to their decrease in volume unit per constant volume fraction. The results revealed that sonication time up to 70 min increases the nanofluid stability, while further increase in the sonication time decreases the nanofluid stability. In the modeling, input data to perceptron artificial neural network are nanofluid temperature, nanoparticle size, sonication time and volume fraction and electrical conductivity is considered as output. The results obtained from self-organizing map (SOM) showed that the winner neuron which has the most data is neuron 31. The values of the correlation coefficient (R2), the mean of squared errors (MSE) and maximum error(emax) used to evaluate the perceptron artificial neural network with 2 hidden layers and 31 neurons are 1, 2.3542 × 10−17 and 0 respectively, indicating the high accuracy of the network.
Author Ghasemi, Nahid
Ahmadi, Mohammad
Yan, Wei-Mon
Aghayari, Reza
Maddah, Heydar
Author_xml – sequence: 1
  givenname: Reza
  surname: Aghayari
  fullname: Aghayari, Reza
– sequence: 2
  givenname: Heydar
  surname: Maddah
  fullname: Maddah, Heydar
– sequence: 3
  givenname: Mohammad
  surname: Ahmadi
  fullname: Ahmadi, Mohammad
– sequence: 4
  givenname: Wei-Mon
  surname: Yan
  fullname: Yan, Wei-Mon
– sequence: 5
  givenname: Nahid
  surname: Ghasemi
  fullname: Ghasemi, Nahid
BookMark eNpNUctOXDEMjSoqlQIbviBSd5Wm5HUfWaIRpUhQNpRt5EkcmumdhCa5VPMn_dxmZqoWb2zZPudYPu_JUUwRCTnn7JOUml1g5Jx1nGv2hhxzrfsFZ4M8elW_I2elrFkLKbmU8pj8vkMoc8YNxkohOnqZa_DBBpjoV5zzPtVfKf-gd8nhFOITTZ5eTWhrDraNlym62dbwEup2N1rO9xfX09ZiTg0LMflpDq5QqPQRckhzoQ_fMW8adKfX4LZpZ6ghxT1Z2FXllLz1MBU8-5tPyLfPVw_LL4vb--ub5eXtwsqe14XqxTAwjxr6zqHQXCk7ejZY7HznOIwdOutAcMdgNTihBPZSd8or32kPgzwhNwdel2BtnnPYQN6aBMHsGyk_GWgvsRMaNYjROrcSK9BKe6XFylk_cM9HwXCQjevDges5p58zlmrWac6xnW8EZ2On5Kh42_p42LI5lZLR_1PlzOyMNP-NlH8ADDSUXQ
CitedBy_id crossref_primary_10_1007_s10973_020_09426_z
crossref_primary_10_1140_epjp_s13360_020_00252_8
crossref_primary_10_1177_08927057241243361
crossref_primary_10_1016_j_renene_2019_08_112
crossref_primary_10_7498_aps_73_20240283
crossref_primary_10_1016_j_ijft_2024_100566
crossref_primary_10_1177_0954406219841075
crossref_primary_10_1080_0952813X_2019_1620870
crossref_primary_10_1016_j_physa_2018_07_040
crossref_primary_10_1007_s11630_021_1459_7
crossref_primary_10_1007_s12008_022_00906_0
crossref_primary_10_1016_j_renene_2024_120137
crossref_primary_10_1016_j_jscs_2023_101613
crossref_primary_10_3390_math7111042
crossref_primary_10_1002_mma_8907
crossref_primary_10_1007_s00231_019_02758_z
crossref_primary_10_1080_19942060_2018_1542345
crossref_primary_10_1016_j_physa_2019_122142
crossref_primary_10_1080_15567036_2019_1587103
Cites_doi 10.1063/1.1454184
10.1007/s10973-017-6217-4
10.1016/j.ijheatmasstransfer.2017.03.006
10.1016/j.powtec.2012.12.059
10.1016/j.physe.2016.11.004
10.1016/j.ijthermalsci.2016.08.016
10.1016/j.synthmet.2008.03.022
10.1016/j.applthermaleng.2016.03.074
10.1166/jnn.2011.4217
10.1016/j.applthermaleng.2017.05.200
10.3390/en9090716
10.1016/j.powtec.2009.08.010
10.3390/en11020361
10.1016/j.icheatmasstransfer.2016.04.002
10.1155/2013/842963
10.1016/j.colsurfa.2012.10.010
10.1016/j.powtec.2017.02.065
10.1016/j.jmmm.2016.05.051
10.1016/j.expthermflusci.2016.01.004
10.3390/en11010181
10.1016/j.ijheatmasstransfer.2016.11.022
10.3390/su9081382
10.1186/1556-276X-7-423
10.1016/j.molliq.2017.03.020
10.12693/APhysPolA.132.146
10.1063/1.4793581
10.1016/j.icheatmasstransfer.2014.12.015
10.1007/s00231-017-2068-6
10.1016/j.ijheatmasstransfer.2017.12.106
10.3390/en9100840
10.1016/j.molliq.2017.02.037
10.1016/j.icheatmasstransfer.2016.08.015
10.1016/j.renene.2017.08.059
10.3390/en10010123
10.1007/s11051-014-2788-1
10.1016/j.hbrcj.2014.12.001
10.1007/s12034-015-1020-y
10.1186/1556-276X-6-346
10.1016/j.jmmm.2017.07.024
10.1016/j.powtec.2015.01.050
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/en11051190
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_4728cddb2ba949f492bdcf71f1820e73
10_3390_en11051190
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
HCIFZ
I-F
IAO
IPNFZ
KQ8
L6V
L8X
M7S
MODMG
M~E
OK1
P2P
PATMY
PIMPY
PROAC
PYCSY
RIG
TR2
TUS
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-462770fe9a65de29144c8f07ce5f5d1a85edcda21d0ab7d242e63954f4f59fa73
IEDL.DBID DOA
ISSN 1996-1073
IngestDate Tue Oct 22 15:12:17 EDT 2024
Thu Oct 10 17:28:58 EDT 2024
Fri Dec 06 02:34:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-462770fe9a65de29144c8f07ce5f5d1a85edcda21d0ab7d242e63954f4f59fa73
OpenAccessLink https://doaj.org/article/4728cddb2ba949f492bdcf71f1820e73
PQID 2108543841
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_4728cddb2ba949f492bdcf71f1820e73
proquest_journals_2108543841
crossref_primary_10_3390_en11051190
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref13
ref35
ref12
ref34
ref15
Ijaz (ref7) 2018; 250
ref14
ref36
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref39
ref16
ref38
ref19
ref18
Satriananda (ref17) 2017; 6
ref24
Lu (ref31) 2018; 11
ref23
ref26
ref25
ref42
ref41
ref22
ref44
ref21
ref43
Aghayari (ref20) 2016; 1
ref28
ref27
ref29
ref8
ref9
ref4
Azimi (ref37) 2015; 6
ref3
ref6
ref5
ref40
References_xml – ident: ref1
  doi: 10.1063/1.1454184
– ident: ref27
  doi: 10.1007/s10973-017-6217-4
– ident: ref4
  doi: 10.1016/j.ijheatmasstransfer.2017.03.006
– ident: ref40
  doi: 10.1016/j.powtec.2012.12.059
– ident: ref23
  doi: 10.1016/j.physe.2016.11.004
– ident: ref11
  doi: 10.1016/j.ijthermalsci.2016.08.016
– ident: ref33
  doi: 10.1016/j.synthmet.2008.03.022
– ident: ref18
  doi: 10.1016/j.applthermaleng.2016.03.074
– ident: ref41
  doi: 10.1166/jnn.2011.4217
– ident: ref25
  doi: 10.1016/j.applthermaleng.2017.05.200
– volume: 1
  start-page: 15
  year: 2016
  ident: ref20
  article-title: Comparison of the experimental and predicted data for thermal conductivity of iron oxide nanofluid using artificial neural networks
  publication-title: Nanomed. Res. J.
  contributor:
    fullname: Aghayari
– volume: 6
  start-page: 32
  year: 2017
  ident: ref17
  article-title: Investigation on electrical conductivity enhancement of water based maghemite (γ-Fe2O3) nanofluids
  publication-title: Int. J. Mater. Sci. Appl.
  contributor:
    fullname: Satriananda
– ident: ref30
  doi: 10.3390/en9090716
– ident: ref39
  doi: 10.1016/j.powtec.2009.08.010
– ident: ref9
  doi: 10.3390/en11020361
– ident: ref26
  doi: 10.1016/j.icheatmasstransfer.2016.04.002
– ident: ref34
  doi: 10.1155/2013/842963
– volume: 250
  start-page: 80
  year: 2018
  ident: ref7
  article-title: Analytical study on liquid-solid particles interaction in the presence of heat and mass transfer through a wavy channel
  publication-title: J. Magn. Magn. Mater.
  contributor:
    fullname: Ijaz
– ident: ref36
  doi: 10.1016/j.colsurfa.2012.10.010
– ident: ref3
  doi: 10.1016/j.powtec.2017.02.065
– ident: ref8
  doi: 10.1016/j.jmmm.2016.05.051
– ident: ref13
  doi: 10.1016/j.expthermflusci.2016.01.004
– volume: 11
  start-page: 181
  year: 2018
  ident: ref31
  article-title: Performance estimation and fault diagnosis based on Levenberg–Marquardt algorithm for a turbofan rngine
  publication-title: Energies
  doi: 10.3390/en11010181
  contributor:
    fullname: Lu
– ident: ref2
  doi: 10.1016/j.ijheatmasstransfer.2016.11.022
– ident: ref29
  doi: 10.3390/su9081382
– ident: ref12
  doi: 10.1186/1556-276X-7-423
– ident: ref22
  doi: 10.1016/j.molliq.2017.03.020
– volume: 6
  start-page: 77
  year: 2015
  ident: ref37
  article-title: Electrical conductivity of CuO nanofluids
  publication-title: Int. J. Nano Dimens.
  contributor:
    fullname: Azimi
– ident: ref15
  doi: 10.12693/APhysPolA.132.146
– ident: ref38
  doi: 10.1063/1.4793581
– ident: ref16
  doi: 10.1016/j.icheatmasstransfer.2014.12.015
– ident: ref28
  doi: 10.1007/s00231-017-2068-6
– ident: ref19
  doi: 10.1016/j.ijheatmasstransfer.2017.12.106
– ident: ref10
  doi: 10.3390/en9100840
– ident: ref21
  doi: 10.1016/j.molliq.2017.02.037
– ident: ref24
  doi: 10.1016/j.icheatmasstransfer.2016.08.015
– ident: ref6
  doi: 10.1016/j.renene.2017.08.059
– ident: ref44
  doi: 10.3390/en10010123
– ident: ref32
  doi: 10.1007/s11051-014-2788-1
– ident: ref42
  doi: 10.1016/j.hbrcj.2014.12.001
– ident: ref14
  doi: 10.1007/s12034-015-1020-y
– ident: ref35
  doi: 10.1186/1556-276X-6-346
– ident: ref5
  doi: 10.1016/j.jmmm.2017.07.024
– ident: ref43
  doi: 10.1016/j.powtec.2015.01.050
SSID ssj0000331333
Score 2.304409
Snippet In this work, the electrical conductivity of CuO/glycerol nanofluid was measured at a temperature range of 20–60 °C, volume fraction of 0.1–1.5% and...
In this work, the electrical conductivity of CuO/glycerol nanofluid was measured at a temperature range of 20-60 °C, volume fraction of 0.1-1.5% and...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 1190
SubjectTerms Copper
Correlation coefficient
Correlation coefficients
Electrical conductivity
Electrical resistivity
Glycerol
Modelling
nanofluid
Nanofluids
Nanoparticles
Neural networks
Oxides
perceptron artificial neural network
Self organizing maps
Sonication
Stability
Temperature
Temperature effects
Temperature perception
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcmkPIUlbunkUQXI1a-thWaeQLNkNgaSXpORm9CyFxd7s45B_kp-bGdm721DoyWDJNviT5qWZbwg5F64CvZSLTOZeZ0jglRkTWCaClk4XXomI9c539-XNo7h9kk99wG3Rp1WuZWIS1L51GCMfMkyTF7wSxcXsOcOuUXi62rfQ-Eh2C6ZKTOmrxpNNjCXnHFww3rGScvDuh6EBdYdHZ_k7PZTo-v-RxknFjPfJXm8b0ssOzAPyITSH5PNfjIFfyOvdNqZHTePT5I4EgiLPRrqkxG6KXc6w1py2kV6nZjeIBx21DVK8pp4RODRa_RxOpi8uzFt41jRtnK7--AU1S_oL_Oh2taCwlEB8T9P3Rljm2PRcu-llXc7XV_I4vn4Y3WR9c4XM8bJYAixMqTwGbUrpA9PgWLkq5soFGaUvTCWDd96wwufGKg-aPIAxI0UUUepoFP9Gdpq2Cd8JlQzsiCAt89wKJ6S11peiyJ20sN1DGJCz9a-uZx2HRg2-BwJSbwEZkCtEYTMDea_TjXb-u-63US0Uq5z3llmjhY5CM-tdVEVEHvqg-ICcrDGs-824qLdL5-j_w8fkE9hDVZfPeEJ2lvNVOAWbY2l_pIX1BjkA2dI
  priority: 102
  providerName: ProQuest
Title Measurement and Artificial Neural Network Modeling of Electrical Conductivity of CuO/Glycerol Nanofluids at Various Thermal and Concentration Conditions
URI https://www.proquest.com/docview/2108543841
https://doaj.org/article/4728cddb2ba949f492bdcf71f1820e73
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA66XvQgPnF9LAG9lm3TZNMcddldEXwgKnsreYKwtLKPg__En-skqe6KBy9eWmjTpmQmmfnSmW8QuqC6ALuU0oSlRiSewCuR0pKEWsG0yAynzuc73971rp_pzZiNV0p9-ZiwSA8cB65LOSm0MYooKahwVBBltOOZ88zjlkeez5SsgKmwBuc5gK888pHmgOu7tgJD53-apT8sUCDq_7UOB-My3EHbjVeIL-PX7KI1W-2hrRWuwH30cbvczcMA_0PjSP-APcNGOIWQbuzrm_ksc1w7PAhlbrwkcL-uPLlrqBbhb_UX993R5F3baQ3Pyqp2k8WrmWE5xy-AoOvFDIMSwcI9Cf31fYJj1bDshpfFaK8D9DwcPPWvk6asQqLzXjYHgRDOU2eF7DFjiQBIpQuXcm2ZYyaTBbNGG0kyk0rFDdhwC24Mo446Jpzk-SFqVXVljxBmBDwIyxQxuaKaMqWU6dEs1UzBRLe2jc6_hrp8i-wZJaAOL5ByKZA2uvJS-G7hGa_DBdCDstGD8i89aKPTLxmWzTSclcTnVtC8oNnxf_RxgjbBXypivOMpas2nC3sGPslcddB6MRx10MbV4O7hsROUEY6jcfYJg57mUA
link.rule.ids 314,780,784,864,2102,12765,21388,27924,27925,33373,33744,43600,43805,74035,74302
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BOAAHRKFVU0q7Elyt2PvIek8IoqbpI-XSVr1Z-6wqRXbJ49B_ws9lZu0kVEicLHnXtuRvd1478w0hX4UrQS_lIpO51xkSeGXGBJaJoKXThVciYr3z9Go4uRHnd_KuC7gturTKtUxMgto3DmPkA4Zp8oKXovj2-CvDrlF4utq10HhJXgkOqhsrxcenmxhLzjm4YLxlJeXg3Q9CDeoOj87yZ3oo0fX_I42Tihm_J-8625B-b8HcIS9C_YG8_Ysx8CP5Pd3G9KipfZrckkBQ5NlIl5TYTbHLGdaa0ybSk9TsBvGgo6ZGitfUMwKHRqufg9PZkwvzBp41dRNnqwe_oGZJb8GPblYLCksJxPcsfW-EZY51x7WbXtbmfO2Sm_HJ9WiSdc0VMseHxRJgYUrlMWgzlD4wDY6VK2OuXJBR-sKUMnjnDSt8bqzyoMkDGDNSRBGljkbxPdKrmzrsEyoZ2BFBWua5FU5Ia60fiiJ30sJ2D6FPvqx_dfXYcmhU4HsgINUWkD75gShsZiDvdbrRzO-rbhtVQrHSeW-ZNVroKDSz3kVVROShD4r3yeEaw6rbjItqu3QO_j98TF5PrqeX1eXZ1cUn8gZso7LNbTwkveV8FT6D_bG0R2mR_QF979y0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA66BbEP4hW3Vg3o67AzuWwmT2LXXeulaxErfRtylcIy0-7lwX_Sn9tzMtmuIvg0MMlMIOfkXJIv3yHkrXA1-KVSFLL0ukACr8KYwAoRtHS68kpEvO98Mh8fn4nP5_I8459WGVa5tYnJUPvO4R75iCFMXvBaVKOYYRGnH2bvLq8KrCCFJ625nMZdsoejswHZO5rOT7_f7riUnENCxnuOUg65_ii04PzwIK38yysl8v5_bHNyOLOH5EGOFOn7XrSPyJ3QPib7f_AHPiHXJ7sdPmpanzr3lBAUWTfSI8G8KdY8w5vntIt0mkrfoHTopGuR8DVVkMCmyebb6OPitwvLDr41bRcXmwu_omZNf0JW3W1WFBQLjPkijTfBS49tZt5NP-sRYE_J2Wz6Y3Jc5FILhePjag1CYkqVMWgzlj4wDWmWq2OpXJBR-srUMnjnDat8aazy4NcDhDZSRBGljkbxZ2TQdm14TqhkEFUEaZnnVjghrbV-LKrSSQuLP4QhebOd6uayZ9RoIBNBgTQ7gQzJEUrhtgeyYKcX3fJXkxdVIxSrnfeWWaOFjkIz611UVURW-qD4kBxuZdjkpblqdop08P_m1-QeaFjz9dP8ywtyHwKlugc6HpLBerkJLyEYWdtXWctuAEWB4lA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+and+Artificial+Neural+Network+Modeling+of+Electrical+Conductivity+of+CuO%2FGlycerol+Nanofluids+at+Various+Thermal+and+Concentration+Conditions&rft.jtitle=Energies+%28Basel%29&rft.au=Reza+Aghayari&rft.au=Heydar+Maddah&rft.au=Mohammad+Hossein+Ahmadi&rft.au=Wei-Mon+Yan&rft.date=2018-05-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=11&rft.issue=5&rft.spage=1190&rft_id=info:doi/10.3390%2Fen11051190&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4728cddb2ba949f492bdcf71f1820e73
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon