Multi-scale physics-informed neural networks for solving high Reynolds number boundary layer flows based on matched asymptotic expansions

•Proposed a multi-scale physics-informed neural networks scheme for solving high Reynolds number boundary layer flows.•Applied the matched asymptotic expansions to ensure the continuity of the whole domain solutions after dividing.•Demonstrated the effectiveness of multi-scale physics-informed neura...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied mechanics letters Vol. 14; no. 2; p. 100496
Main Authors Huang, Jianlin, Qiu, Rundi, Wang, Jingzhu, Wang, Yiwei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Proposed a multi-scale physics-informed neural networks scheme for solving high Reynolds number boundary layer flows.•Applied the matched asymptotic expansions to ensure the continuity of the whole domain solutions after dividing.•Demonstrated the effectiveness of multi-scale physics-informed neural networks capturing flow details in different scales. [Display omitted] Multi-scale system remains a classical scientific problem in fluid dynamics, biology, etc. In the present study, a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at high Reynolds numbers without any data. The flow is divided into several regions with different scales based on Prandtl’s boundary theory. Different regions are solved with governing equations in different scales. The method of matched asymptotic expansions is used to make the flow field continuously. A flow on a semi infinite flat plate at a high Reynolds number is considered a multi-scale problem because the boundary layer scale is much smaller than the outer flow scale. The results are compared with the reference numerical solutions, which show that the msPINNs can solve the multi-scale problem of the boundary layer in high Reynolds number flows. This scheme can be developed for more multi-scale problems in the future.
AbstractList •Proposed a multi-scale physics-informed neural networks scheme for solving high Reynolds number boundary layer flows.•Applied the matched asymptotic expansions to ensure the continuity of the whole domain solutions after dividing.•Demonstrated the effectiveness of multi-scale physics-informed neural networks capturing flow details in different scales. [Display omitted] Multi-scale system remains a classical scientific problem in fluid dynamics, biology, etc. In the present study, a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at high Reynolds numbers without any data. The flow is divided into several regions with different scales based on Prandtl’s boundary theory. Different regions are solved with governing equations in different scales. The method of matched asymptotic expansions is used to make the flow field continuously. A flow on a semi infinite flat plate at a high Reynolds number is considered a multi-scale problem because the boundary layer scale is much smaller than the outer flow scale. The results are compared with the reference numerical solutions, which show that the msPINNs can solve the multi-scale problem of the boundary layer in high Reynolds number flows. This scheme can be developed for more multi-scale problems in the future.
Multi-scale system remains a classical scientific problem in fluid dynamics, biology, etc. In the present study, a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at high Reynolds numbers without any data. The flow is divided into several regions with different scales based on Prandtl’s boundary theory. Different regions are solved with governing equations in different scales. The method of matched asymptotic expansions is used to make the flow field continuously. A flow on a semi infinite flat plate at a high Reynolds number is considered a multi-scale problem because the boundary layer scale is much smaller than the outer flow scale. The results are compared with the reference numerical solutions, which show that the msPINNs can solve the multi-scale problem of the boundary layer in high Reynolds number flows. This scheme can be developed for more multi-scale problems in the future.
ArticleNumber 100496
Author Qiu, Rundi
Wang, Jingzhu
Huang, Jianlin
Wang, Yiwei
Author_xml – sequence: 1
  givenname: Jianlin
  surname: Huang
  fullname: Huang, Jianlin
  organization: Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 2
  givenname: Rundi
  surname: Qiu
  fullname: Qiu, Rundi
  organization: Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 3
  givenname: Jingzhu
  surname: Wang
  fullname: Wang, Jingzhu
  organization: Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 4
  givenname: Yiwei
  surname: Wang
  fullname: Wang, Yiwei
  email: wangyw@imech.ac.cn
  organization: Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
BookMark eNp9kU1uHCEQhVk4kh3HF_CKC_QEGhq6pWwiKz-WbEWKkjXip5hhQsMIeuz0EXxrM5koy9Smiie9Tw-9t-gi5QQI3VKyoYSK9_vNoue46UnPm0D4JC7QVU-moSOMT5foptY9aTNQwSZ2hV4ej3EJXbU6Aj7s1hps7ULyuczgcIJj0bGt5TmXXxU3Gdccn0La4l3Y7vB3WFOOruJ0nA0UbPIxOV1WHPXanj7m54qNro2VE571Ynft1HWdD0tegsXw-6BTDTnVd-iN17HCzd99jX5-_vTj7mv38O3L_d3Hh84yQZeOMzFZZkbvuSMeBgFs1N6PMPFhGIkcYDDgRjdKCpOl0oPjTbS0N5MzXrJrdH_muqz36lDC3PKqrIP6I-SyVbq0aBGUltYSLzkHobkwVo9WamB2MkJIIXlj9WeWLbnWAv4fjxJ16kPt1akPdepDnftopg9nE7RfPgUoqtoAyYILBezSYoT_2V8B0oacjQ
Cites_doi 10.1016/j.jcp.2022.111768
10.1063/1.168744
10.1017/jfm.2016.615
10.1103/PhysRevFluids.4.054603
10.1017/jfm.2022.463
10.1038/s42254-021-00314-5
10.1016/j.euromechflu.2014.10.004
10.1016/j.taml.2019.01.005
10.2307/2371625
10.1016/j.jcp.2018.10.045
10.1016/j.earscirev.2006.05.001
10.1016/j.cma.2019.112789
10.1126/science.aaw4741
10.1002/cnm.3148
10.1146/annurev.fl.09.010177.000511
10.1016/j.taml.2020.01.039
10.1063/5.0048909
10.1016/j.ces.2004.01.024
10.1016/j.taml.2021.100238
10.1016/j.jcp.2020.109951
10.1002/sapm195332183
10.4208/cicp.OA-2020-0179
10.1063/1.869789
10.1016/j.taml.2015.11.005
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.taml.2024.100496
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_doaj_org_article_a7cc0f744e6a46bca8c7ae3c9b667674
10_1016_j_taml_2024_100496
S2095034924000072
GroupedDBID 0R~
0SF
4.4
457
5VR
5VS
6I.
92E
92I
92Q
93N
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXDM
AAXUO
ABFTF
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AFUIB
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CCEZO
CCVFK
CHBEP
CW9
EBS
EJD
FA0
FDB
GROUPED_DOAJ
IPNFZ
M41
NCXOZ
O9-
OK1
RIG
RNS
ROL
SSZ
TCJ
TGP
Y7S
-SA
-S~
AAYXX
ADVLN
CAJEA
CITATION
Q--
U1G
U5K
ID FETCH-LOGICAL-c361t-4369c3b8ff4d0fe56e38aff8e94558075e5bed8d871e9c17fed475ec12b9dbf73
IEDL.DBID DOA
ISSN 2095-0349
IngestDate Thu Sep 05 15:44:18 EDT 2024
Thu Sep 12 21:16:37 EDT 2024
Sat Jun 29 15:30:36 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Physics-informed neural networks (PINNs)
Multi-scale
Fluid dynamics
Boundary layer
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-4369c3b8ff4d0fe56e38aff8e94558075e5bed8d871e9c17fed475ec12b9dbf73
OpenAccessLink https://doaj.org/article/a7cc0f744e6a46bca8c7ae3c9b667674
ParticipantIDs doaj_primary_oai_doaj_org_article_a7cc0f744e6a46bca8c7ae3c9b667674
crossref_primary_10_1016_j_taml_2024_100496
elsevier_sciencedirect_doi_10_1016_j_taml_2024_100496
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Theoretical and applied mechanics letters
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Raissi, Yazdani, Karniadakis (bib0009) 2020; 367
Ling, Kurzawski, Templeton (bib0004) 2016; 807
He, Jin (bib0003) 2021; 11
Friedrichs, Stoker (bib0022) 1941; 63
Kuo (bib0023) 1953; 32
Schoppa, Hussain (bib0015) 1998; 10
Steinrueck (bib0025) 2010; 532
Arzani, Cassel, D’Souza (bib0013) 2023; 473
Mofateh, Ghafouri, Kosarineia, Changizian (bib0020) 2023
Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Liu (bib0008) 2019; 3
Dixit, Gupta, Choudhary, Prabhakaran (bib0019) 2022; 943
Liu, Cai, Xu (bib0024) 2020; 28
Hart, Martinez (bib0001) 2006; 78
Raissi, Perdikaris, Karniadakis (bib0007) 2019; 378
Wang, He, Xia, Ke, Bai (bib0002) 2004; 59
Weller, Tabor, Jasak, Fureby (bib0026) 1998; 12
Jin, Cai, Li, Karniadakis (bib0012) 2021; 426
Citro, Luchini (bib0016) 2015; 50
Hansen, Arzani, Shadden (bib0021) 2019; 35
Tani (bib0014) 1977; 9
Mao, Jagtap, Karniadakis (bib0010) 2020; 360
Srinivasan, Guastoni, Azizpour, Schlatter, Vinuesa (bib0005) 2019; 4
Chen, Zheng, Shen, Chen (bib0017) 2015; 5
Rao, Sun, Liu (bib0011) 2020; 10
Jiang, Vinuesa, Chen, Mi, Laima, Li (bib0006) 2021; 33
Joe, Yu, Seiichiro, Yu (bib0018) 2019; 9
Weller (10.1016/j.taml.2024.100496_bib0026) 1998; 12
Mofateh (10.1016/j.taml.2024.100496_bib0020) 2023
Hansen (10.1016/j.taml.2024.100496_bib0021) 2019; 35
Tani (10.1016/j.taml.2024.100496_bib0014) 1977; 9
Hart (10.1016/j.taml.2024.100496_bib0001) 2006; 78
Ling (10.1016/j.taml.2024.100496_bib0004) 2016; 807
Liu (10.1016/j.taml.2024.100496_bib0024) 2020; 28
Jiang (10.1016/j.taml.2024.100496_bib0006) 2021; 33
Dixit (10.1016/j.taml.2024.100496_bib0019) 2022; 943
Joe (10.1016/j.taml.2024.100496_bib0018) 2019; 9
Raissi (10.1016/j.taml.2024.100496_bib0007) 2019; 378
Karniadakis (10.1016/j.taml.2024.100496_bib0008) 2019; 3
Jin (10.1016/j.taml.2024.100496_bib0012) 2021; 426
Arzani (10.1016/j.taml.2024.100496_bib0013) 2023; 473
Rao (10.1016/j.taml.2024.100496_bib0011) 2020; 10
Citro (10.1016/j.taml.2024.100496_bib0016) 2015; 50
Steinrueck (10.1016/j.taml.2024.100496_bib0025) 2010; 532
Schoppa (10.1016/j.taml.2024.100496_bib0015) 1998; 10
Chen (10.1016/j.taml.2024.100496_bib0017) 2015; 5
Kuo (10.1016/j.taml.2024.100496_bib0023) 1953; 32
Friedrichs (10.1016/j.taml.2024.100496_bib0022) 1941; 63
Raissi (10.1016/j.taml.2024.100496_sbref0009) 2020; 367
Mao (10.1016/j.taml.2024.100496_bib0010) 2020; 360
Wang (10.1016/j.taml.2024.100496_bib0002) 2004; 59
He (10.1016/j.taml.2024.100496_bib0003) 2021; 11
Srinivasan (10.1016/j.taml.2024.100496_bib0005) 2019; 4
References_xml – volume: 11
  start-page: 1
  year: 2021
  ident: bib0003
  article-title: Multiscale mechanics
  publication-title: Theor. Appl. Mech. Lett.
  contributor:
    fullname: Jin
– volume: 807
  start-page: 155
  year: 2016
  end-page: 166
  ident: bib0004
  article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
  publication-title: J. Fluid Mech.
  contributor:
    fullname: Templeton
– volume: 367
  year: 2020
  ident: bib0009
  article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations
  publication-title: Science
  contributor:
    fullname: Karniadakis
– volume: 78
  start-page: 117
  year: 2006
  end-page: 191
  ident: bib0001
  article-title: Environmental sensor networks: a revolution in the earth system science?
  publication-title: Earth-Science Rev.
  contributor:
    fullname: Martinez
– volume: 4
  start-page: 054603
  year: 2019
  ident: bib0005
  article-title: Predictions of turbulent shear flows using deep neural networks
  publication-title: Phys. Rev. Fluids
  contributor:
    fullname: Vinuesa
– volume: 50
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib0016
  article-title: Multiple-scale approximation of instabilities in unsteady boundary layers
  publication-title: Eur. J. Mech. B-Fluids
  contributor:
    fullname: Luchini
– volume: 9
  start-page: 32
  year: 2019
  end-page: 35
  ident: bib0018
  article-title: Key structure in laminar-turbulent transition of boundary layer with streaky structures
  publication-title: Theor. Appl. Mech. Lett.
  contributor:
    fullname: Yu
– volume: 28
  start-page: 1970
  year: 2020
  end-page: 2001
  ident: bib0024
  article-title: Multi-scale deep neural network (MscaleDNN) for solving Poisson-Boltzmann equation in complex domains
  publication-title: Commun. Comput. Phys.
  contributor:
    fullname: Xu
– volume: 5
  start-page: 262
  year: 2015
  end-page: 266
  ident: bib0017
  article-title: Time-space dependent fractional boundary layer flow of maxwell fluid over an unsteady stretching surface
  publication-title: Theor. Appl. Mech. Lett.
  contributor:
    fullname: Chen
– volume: 59
  start-page: 1677
  year: 2004
  end-page: 1686
  ident: bib0002
  article-title: Multiscale coupling in complex mechanical systems
  publication-title: Chem. Eng. Sci.
  contributor:
    fullname: Bai
– volume: 63
  start-page: 839
  year: 1941
  end-page: 888
  ident: bib0022
  article-title: The non linear boundary value problem of the buckled plate
  publication-title: Am. J. Math.
  contributor:
    fullname: Stoker
– volume: 33
  start-page: 055133
  year: 2021
  ident: bib0006
  article-title: An interpretable framework of data-driven turbulence modeling using deep neural networks
  publication-title: Phys. Fluids
  contributor:
    fullname: Li
– volume: 10
  start-page: 207
  year: 2020
  end-page: 212
  ident: bib0011
  article-title: Physics-informed deep learning for incompressible laminar flows
  publication-title: Theor. Appl. Mech. Lett.
  contributor:
    fullname: Liu
– volume: 532
  start-page: 1
  year: 2010
  end-page: 21
  ident: bib0025
  article-title: Introduction to matched asymptotic expansions
  publication-title: Symposium on Asymptotic Methods in Fluid Mechanics–Survey and Recent Advances
  contributor:
    fullname: Steinrueck
– volume: 360
  start-page: 112789
  year: 2020
  ident: bib0010
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput. Methods Appl. Mech.Eng.
  contributor:
    fullname: Karniadakis
– volume: 943
  start-page: A43
  year: 2022
  ident: bib0019
  article-title: Universal scaling of mean skin friction in turbulent boundary layers and fully developed pipe and channel flows
  publication-title: J. Fluid Mech.
  contributor:
    fullname: Prabhakaran
– volume: 9
  start-page: 87
  year: 1977
  end-page: 111
  ident: bib0014
  article-title: History of boundary-layer theory
  publication-title: Annu. Rev. Fluid Mech.
  contributor:
    fullname: Tani
– start-page: 2450027
  year: 2023
  ident: bib0020
  article-title: Numerical investigation of rotational speed effects on flow separation and boundary layer dynamics in ducted wind turbines
  publication-title: Int. J. Mod. Phys. C
  contributor:
    fullname: Changizian
– volume: 473
  start-page: 111768
  year: 2023
  ident: bib0013
  article-title: Theory-guided physics-informed neural networks for boundary layer problems with singular perturbation
  publication-title: J. Comput. Phys.
  contributor:
    fullname: D’Souza
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: bib0007
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  contributor:
    fullname: Karniadakis
– volume: 10
  start-page: 1049
  year: 1998
  end-page: 1051
  ident: bib0015
  article-title: A large-scale control strategy for drag reduction in turbulent boundary layers
  publication-title: Phys. Fluids
  contributor:
    fullname: Hussain
– volume: 12
  start-page: 620
  year: 1998
  end-page: 631
  ident: bib0026
  article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques
  publication-title: Comput. Phys.
  contributor:
    fullname: Fureby
– volume: 3
  start-page: 422
  year: 2019
  end-page: 440
  ident: bib0008
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
  contributor:
    fullname: Liu
– volume: 426
  start-page: 109951
  year: 2021
  ident: bib0012
  article-title: NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equations
  publication-title: J. Comput. Phys.
  contributor:
    fullname: Karniadakis
– volume: 32
  start-page: 83
  year: 1953
  end-page: 101
  ident: bib0023
  article-title: On the flow of an incompressible viscous fluid past a flat plate at moderate Reynolds number
  publication-title: J. Math. Phys.
  contributor:
    fullname: Kuo
– volume: 35
  start-page: E3148
  year: 2019
  ident: bib0021
  article-title: Finite element modeling of near-wall mass transport in cardiovascular flows
  publication-title: Int. J. Numer. MethodsBiomed. Eng.
  contributor:
    fullname: Shadden
– start-page: 2450027
  year: 2023
  ident: 10.1016/j.taml.2024.100496_bib0020
  article-title: Numerical investigation of rotational speed effects on flow separation and boundary layer dynamics in ducted wind turbines
  publication-title: Int. J. Mod. Phys. C
  contributor:
    fullname: Mofateh
– volume: 473
  start-page: 111768
  year: 2023
  ident: 10.1016/j.taml.2024.100496_bib0013
  article-title: Theory-guided physics-informed neural networks for boundary layer problems with singular perturbation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111768
  contributor:
    fullname: Arzani
– volume: 12
  start-page: 620
  year: 1998
  ident: 10.1016/j.taml.2024.100496_bib0026
  article-title: A tensorial approach to computational continuum mechanics using object-oriented techniques
  publication-title: Comput. Phys.
  doi: 10.1063/1.168744
  contributor:
    fullname: Weller
– volume: 807
  start-page: 155
  year: 2016
  ident: 10.1016/j.taml.2024.100496_bib0004
  article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.615
  contributor:
    fullname: Ling
– volume: 4
  start-page: 054603
  year: 2019
  ident: 10.1016/j.taml.2024.100496_bib0005
  article-title: Predictions of turbulent shear flows using deep neural networks
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.4.054603
  contributor:
    fullname: Srinivasan
– volume: 943
  start-page: A43
  year: 2022
  ident: 10.1016/j.taml.2024.100496_bib0019
  article-title: Universal scaling of mean skin friction in turbulent boundary layers and fully developed pipe and channel flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.463
  contributor:
    fullname: Dixit
– volume: 3
  start-page: 422
  year: 2019
  ident: 10.1016/j.taml.2024.100496_bib0008
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
  contributor:
    fullname: Karniadakis
– volume: 50
  start-page: 1
  year: 2015
  ident: 10.1016/j.taml.2024.100496_bib0016
  article-title: Multiple-scale approximation of instabilities in unsteady boundary layers
  publication-title: Eur. J. Mech. B-Fluids
  doi: 10.1016/j.euromechflu.2014.10.004
  contributor:
    fullname: Citro
– volume: 9
  start-page: 32
  year: 2019
  ident: 10.1016/j.taml.2024.100496_bib0018
  article-title: Key structure in laminar-turbulent transition of boundary layer with streaky structures
  publication-title: Theor. Appl. Mech. Lett.
  doi: 10.1016/j.taml.2019.01.005
  contributor:
    fullname: Joe
– volume: 63
  start-page: 839
  year: 1941
  ident: 10.1016/j.taml.2024.100496_bib0022
  article-title: The non linear boundary value problem of the buckled plate
  publication-title: Am. J. Math.
  doi: 10.2307/2371625
  contributor:
    fullname: Friedrichs
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.taml.2024.100496_bib0007
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
  contributor:
    fullname: Raissi
– volume: 78
  start-page: 117
  year: 2006
  ident: 10.1016/j.taml.2024.100496_bib0001
  article-title: Environmental sensor networks: a revolution in the earth system science?
  publication-title: Earth-Science Rev.
  doi: 10.1016/j.earscirev.2006.05.001
  contributor:
    fullname: Hart
– volume: 360
  start-page: 112789
  year: 2020
  ident: 10.1016/j.taml.2024.100496_bib0010
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput. Methods Appl. Mech.Eng.
  doi: 10.1016/j.cma.2019.112789
  contributor:
    fullname: Mao
– volume: 367
  year: 2020
  ident: 10.1016/j.taml.2024.100496_sbref0009
  article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations
  publication-title: Science
  doi: 10.1126/science.aaw4741
  contributor:
    fullname: Raissi
– volume: 35
  start-page: E3148
  year: 2019
  ident: 10.1016/j.taml.2024.100496_bib0021
  article-title: Finite element modeling of near-wall mass transport in cardiovascular flows
  publication-title: Int. J. Numer. MethodsBiomed. Eng.
  doi: 10.1002/cnm.3148
  contributor:
    fullname: Hansen
– volume: 9
  start-page: 87
  year: 1977
  ident: 10.1016/j.taml.2024.100496_bib0014
  article-title: History of boundary-layer theory
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.09.010177.000511
  contributor:
    fullname: Tani
– volume: 532
  start-page: 1
  year: 2010
  ident: 10.1016/j.taml.2024.100496_bib0025
  article-title: Introduction to matched asymptotic expansions
  contributor:
    fullname: Steinrueck
– volume: 10
  start-page: 207
  year: 2020
  ident: 10.1016/j.taml.2024.100496_bib0011
  article-title: Physics-informed deep learning for incompressible laminar flows
  publication-title: Theor. Appl. Mech. Lett.
  doi: 10.1016/j.taml.2020.01.039
  contributor:
    fullname: Rao
– volume: 33
  start-page: 055133
  year: 2021
  ident: 10.1016/j.taml.2024.100496_bib0006
  article-title: An interpretable framework of data-driven turbulence modeling using deep neural networks
  publication-title: Phys. Fluids
  doi: 10.1063/5.0048909
  contributor:
    fullname: Jiang
– volume: 59
  start-page: 1677
  year: 2004
  ident: 10.1016/j.taml.2024.100496_bib0002
  article-title: Multiscale coupling in complex mechanical systems
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.01.024
  contributor:
    fullname: Wang
– volume: 11
  start-page: 1
  year: 2021
  ident: 10.1016/j.taml.2024.100496_bib0003
  article-title: Multiscale mechanics
  publication-title: Theor. Appl. Mech. Lett.
  doi: 10.1016/j.taml.2021.100238
  contributor:
    fullname: He
– volume: 426
  start-page: 109951
  year: 2021
  ident: 10.1016/j.taml.2024.100496_bib0012
  article-title: NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109951
  contributor:
    fullname: Jin
– volume: 32
  start-page: 83
  year: 1953
  ident: 10.1016/j.taml.2024.100496_bib0023
  article-title: On the flow of an incompressible viscous fluid past a flat plate at moderate Reynolds number
  publication-title: J. Math. Phys.
  doi: 10.1002/sapm195332183
  contributor:
    fullname: Kuo
– volume: 28
  start-page: 1970
  year: 2020
  ident: 10.1016/j.taml.2024.100496_bib0024
  article-title: Multi-scale deep neural network (MscaleDNN) for solving Poisson-Boltzmann equation in complex domains
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2020-0179
  contributor:
    fullname: Liu
– volume: 10
  start-page: 1049
  year: 1998
  ident: 10.1016/j.taml.2024.100496_bib0015
  article-title: A large-scale control strategy for drag reduction in turbulent boundary layers
  publication-title: Phys. Fluids
  doi: 10.1063/1.869789
  contributor:
    fullname: Schoppa
– volume: 5
  start-page: 262
  year: 2015
  ident: 10.1016/j.taml.2024.100496_bib0017
  article-title: Time-space dependent fractional boundary layer flow of maxwell fluid over an unsteady stretching surface
  publication-title: Theor. Appl. Mech. Lett.
  doi: 10.1016/j.taml.2015.11.005
  contributor:
    fullname: Chen
SSID ssj0000516393
Score 2.3189256
Snippet •Proposed a multi-scale physics-informed neural networks scheme for solving high Reynolds number boundary layer flows.•Applied the matched asymptotic...
Multi-scale system remains a classical scientific problem in fluid dynamics, biology, etc. In the present study, a scheme of multi-scale Physics-informed...
SourceID doaj
crossref
elsevier
SourceType Open Website
Aggregation Database
Publisher
StartPage 100496
SubjectTerms Boundary layer
Fluid dynamics
Multi-scale
Physics-informed neural networks (PINNs)
Title Multi-scale physics-informed neural networks for solving high Reynolds number boundary layer flows based on matched asymptotic expansions
URI https://dx.doi.org/10.1016/j.taml.2024.100496
https://doaj.org/article/a7cc0f744e6a46bca8c7ae3c9b667674
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtUwELVQ2cAClZe4lFZesEMRyfV7WVCrikosKiq6i_wYS6DbpGpSwf0E_pqZOBdl1W7YWoltzYw8x_bxGcbe-xiN1DJVyTWxkgjwK6utqDSkRiUE4BImlu9XfXYpv1ypq0WpL-KEFXngYriP3sRYZ4P_aC91iN5G40FEF4idaYoSaKMWm6lZ1RtTL10vr2t6giykm1_MFHLX6K_p3mEtiSUgSbF_kZUm8f5FcloknNN99mxGivy4zPA5ewTdC_Z0oR_4kv2Zns9WA9oZeDmjGKoihQqJk1QldtAVovfAsZljpNEJAieVYn4B267fpIGXsiA8TCWWbrd84xGI87zpfw2c0lzifccR2qKDE_fD9vpm7HFWHH7jWkLHbcMrdnl68u3zWTXXVqii0M1YSaFdFMHmLFOdQWkQ1udswUmlSKAYVIBkE-6nwMXGZEgSG2OzDi6FbMRrttf1HbxhvPG5FnZtUrQgTfZOChsQuJkaagXSrdiHnW3bmyKh0e64ZT9b8kRLnmiLJ1bsE5n_35ckfz01YFC0c1C0DwXFiqmd89oZSRSEgF39uGfwt_9j8AP2hLosRLV3bG-8vYNDRC5jOGKPj88vvp8fTcH6F-3T8Do
link.rule.ids 315,786,790,870,2115,27957,27958
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+physics-informed+neural+networks+for+solving+high+Reynolds+number+boundary+layer+flows+based+on+matched+asymptotic+expansions&rft.jtitle=Theoretical+and+applied+mechanics+letters&rft.au=Huang%2C+Jianlin&rft.au=Qiu%2C+Rundi&rft.au=Wang%2C+Jingzhu&rft.au=Wang%2C+Yiwei&rft.date=2024-03-01&rft.issn=2095-0349&rft.volume=14&rft.issue=2&rft.spage=100496&rft_id=info:doi/10.1016%2Fj.taml.2024.100496&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_taml_2024_100496
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-0349&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-0349&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-0349&client=summon