MLAR-Net: A Multilevel Attention-Based ResNet Module for the Automated Recognition of Emotions Using Single-Channel EEG Signals

Human emotion recognition is important as it finds applications in multiple domains such as medicine, entertainment, and military. However, accurately identifying emotions remains challenging due to humans' ability to hide or suppress their emotional expressions. Hence it becomes important to r...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 99122 - 99144
Main Authors Maithri, M., Raghavendra, U., Gudigar, Anjan, Kumar Praharaj, Samir, Sriram, Karthikeyan, Salvi, Massimo, Hong Yeong, Chai, Molinari, Filippo, Rajendra Acharya, U.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human emotion recognition is important as it finds applications in multiple domains such as medicine, entertainment, and military. However, accurately identifying emotions remains challenging due to humans' ability to hide or suppress their emotional expressions. Hence it becomes important to recognize emotions by using brain signals as they provide more reliable data. Brain signals can be captured using Electroencephalograms (EEG) electrodes. Most used EEG devices come with multiple channels. However, not all channel information is important for emotion recognition. Another issue with the existing dataset is the availability of a small quantity of samples. To address these challenges, we propose MLAR-Net, a novel multilevel attention module for emotion recognition using single-channel EEG signals. Our approach converts EEG signals into spectrograms using multiple parameters to generate a large set of images. This data is then processed through our proposed MLAR-Net, which integrates a multilevel attention module with ResNet18 architecture. Our study identifies channel number 24 (T7) as the most effective for emotion classification, achieving an average accuracy of 98.06% using a cubic support vector machine and a maximum accuracy of 99.51% using fine K-Nearest Neighbors. The study was conducted using the SEED dataset. It is a publicly available dataset developed by capturing EEG signals from fifteen subjects for three classes of emotions, namely positive, negative, and neutral. The results achieved by the proposed study show an improvement of around 4 to 5% compared to state-of-the-art studies using the same channel. This performance surpasses existing state-of-the-art methods for single-channel EEG-based emotion recognition. Furthermore, we highlight the top-performing channels that can be used for real-time implementation of the system with a minimum number of channels.
AbstractList Human emotion recognition is important as it finds applications in multiple domains such as medicine, entertainment, and military. However, accurately identifying emotions remains challenging due to humans’ ability to hide or suppress their emotional expressions. Hence it becomes important to recognize emotions by using brain signals as they provide more reliable data. Brain signals can be captured using Electroencephalograms (EEG) electrodes. Most used EEG devices come with multiple channels. However, not all channel information is important for emotion recognition. Another issue with the existing dataset is the availability of a small quantity of samples. To address these challenges, we propose MLAR-Net, a novel multilevel attention module for emotion recognition using single-channel EEG signals. Our approach converts EEG signals into spectrograms using multiple parameters to generate a large set of images. This data is then processed through our proposed MLAR-Net, which integrates a multilevel attention module with ResNet18 architecture. Our study identifies channel number 24 (T7) as the most effective for emotion classification, achieving an average accuracy of 98.06% using a cubic support vector machine and a maximum accuracy of 99.51% using fine K-Nearest Neighbors. The study was conducted using the SEED dataset. It is a publicly available dataset developed by capturing EEG signals from fifteen subjects for three classes of emotions, namely positive, negative, and neutral. The results achieved by the proposed study show an improvement of around 4 to 5% compared to state-of-the-art studies using the same channel. This performance surpasses existing state-of-the-art methods for single-channel EEG-based emotion recognition. Furthermore, we highlight the top-performing channels that can be used for real-time implementation of the system with a minimum number of channels.
Author Salvi, Massimo
Maithri, M.
Molinari, Filippo
Sriram, Karthikeyan
Kumar Praharaj, Samir
Raghavendra, U.
Hong Yeong, Chai
Gudigar, Anjan
Rajendra Acharya, U.
Author_xml – sequence: 1
  givenname: M.
  orcidid: 0000-0002-4550-6836
  surname: Maithri
  fullname: Maithri, M.
  organization: Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
– sequence: 2
  givenname: U.
  orcidid: 0000-0002-1124-089X
  surname: Raghavendra
  fullname: Raghavendra, U.
  email: raghavendra.u@manipal.edu
  organization: Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
– sequence: 3
  givenname: Anjan
  orcidid: 0000-0001-5634-9103
  surname: Gudigar
  fullname: Gudigar, Anjan
  organization: Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
– sequence: 4
  givenname: Samir
  surname: Kumar Praharaj
  fullname: Kumar Praharaj, Samir
  organization: Department of Psychiatry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
– sequence: 5
  givenname: Karthikeyan
  surname: Sriram
  fullname: Sriram, Karthikeyan
  organization: Department of Electrical and Electronics Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
– sequence: 6
  givenname: Massimo
  orcidid: 0000-0001-7225-7401
  surname: Salvi
  fullname: Salvi, Massimo
  organization: Department of Electronics and Telecommunications, Politecnico di Torino, Biolab, PoliToBIOMed Laboratory, Turin, Italy
– sequence: 7
  givenname: Chai
  orcidid: 0000-0003-1572-4143
  surname: Hong Yeong
  fullname: Hong Yeong, Chai
  organization: School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
– sequence: 8
  givenname: Filippo
  orcidid: 0000-0003-1150-2244
  surname: Molinari
  fullname: Molinari, Filippo
  organization: Department of Electronics and Telecommunications, Politecnico di Torino, Biolab, PoliToBIOMed Laboratory, Turin, Italy
– sequence: 9
  givenname: U.
  surname: Rajendra Acharya
  fullname: Rajendra Acharya, U.
  organization: School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia
BookMark eNpNUU1v1DAQjVArUdr-AjhY4pzFH7ETcwtRKJV2qdRtz5YTj7dZZe0SO0ic-Os4TQXMYWb05r1nWe9ddua8gyx7T_CGECw_1U3T7vcbiinfMF4KzOWb7IISIXPGmTj7b3-bXYdwxKmqBPHyIvu929b3-XeIn1GNdvMYhxF-wojqGMHFwbv8iw5g0D2EREI7b-YRkPUTik-A6jn6k44v994f3LAokLeoPfllDegxDO6A9qmNkDdP2rlk3rY3CTo4PYar7NymAdev8zJ7_No-NN_y7d3NbVNv854JEvOCibLA0pKSdlVXlpWQ2FaFYVU6S4sJ4bIQRlDBK02A9n1liSGYYymFMZpdZrerr_H6qJ6n4aSnX8rrQb0AfjooPcWhH0HhzvbcskVfFdCVHTGlkAxzQo3kdvH6uHo9T_7HDCGqo5-n5TeKUVJxwjilicVWVj_5ECawf18lWC3BqTU4tQSnXoNLqg-ragCAfwqCKSmKgv0BiCWUCw
CODEN IAECCG
Cites_doi 10.1007/s40708-016-0051-5
10.1186/s41747-024-00428-2
10.1109/taffc.2020.3014842
10.1016/j.cmpb.2022.106646
10.3390/app122111255
10.1109/tnnls.2020.3008938
10.1016/j.compbiomed.2019.04.018
10.1109/tamd.2015.2431497
10.1016/j.neucom.2021.03.091
10.3390/diagnostics13111861
10.3390/computers9040095
10.3389/fninf.2023.1081160
10.1016/j.chemolab.2013.03.005
10.1109/tim.2022.3147876
10.3390/app10051619
10.1109/access.2020.3032380
10.1109/tcbb.2023.3247433
10.1109/bdicn58493.2023.00042
10.1109/access.2024.3365570
10.3390/app13116761
10.1109/jiot.2024.3430297
10.4018/jitr.299385
10.1109/ner.2013.6695876
10.1016/j.bspc.2021.102648
10.1007/978-3-030-01234-2_1
10.1109/tsmc.2020.2969686
10.3390/app13116394
10.1016/j.bspc.2021.102979
10.1109/tte.2023.3319157
10.1109/thms.2024.3430327
10.1109/ner.2011.5910636
10.3390/s23187853
10.1016/B978-0-323-85955-4.00004-1
10.69554/nlzl1152
10.1016/S0165-0270(98)00065-X
10.1016/j.dss.2010.12.003
10.3389/fcvm.2024.1424585
10.1109/access.2024.3351003
10.1109/jbhi.2024.3404146
10.1109/tim.2024.3374285
10.3390/electronics10182266
10.1109/taffc.2023.3336531
10.1109/access.2019.2944273
10.1016/j.heliyon.2024.e30174
10.1007/s10470-021-01805-2
10.1016/j.jksuci.2021.08.021
10.3390/app14167165
10.1016/j.chb.2016.08.029
10.1109/jsen.2018.2883497
10.1007/s13042-021-01414-5
10.3390/s23052455
10.1109/access.2019.2953542
10.1609/aimag.v38i3.2741
10.1109/tim.2021.3094619
10.5498/wjp.v13.i1.1
10.1109/cvpr.2018.00745
10.59738/jstr.v5i1.23(17-26).eaqr5800
10.1186/s40537-021-00444-8
10.1016/j.cmpb.2022.106727
10.1007/bf00994018
10.1016/j.cmpb.2016.08.010
10.1145/2939672.2939778
10.1016/j.chaos.2021.110671
10.1016/j.bspc.2023.104783
10.1016/j.engappai.2023.106887
10.1016/j.engappai.2023.106971
10.1145/2594473.2594475
10.3390/s18082739
10.3389/fnins.2022.884475
10.1016/j.bspc.2023.105875
10.1016/j.dibe.2021.100045
10.3390/s16101558
10.1109/ocit59427.2023.10430706
10.1109/cvpr.2016.90
10.1145/3236009
10.1007/s40708-015-0029-8
10.3390/app14020726
10.1016/j.engappai.2024.108305
10.1109/access.2021.3091487
10.3390/app14020702
10.1109/taffc.2020.3025777
10.1109/access.2019.2908285
10.13005/bpj/1928
10.3390/s22093248
10.1109/ACCESS.2022.3224725
10.1109/jbhi.2022.3148109
10.3390/app14062636
10.1016/j.bspc.2023.105312
10.1109/access.2023.3281450
10.1109/access.2019.2944008
10.3390/app121910028
10.1016/j.neulet.2005.09.004
10.1109/sibgrapi51738.2020.00053
10.1109/tcbb.2020.3018137
10.1016/j.caeai.2023.100166
10.1109/NER.2015.7146583
10.1038/s42256-019-0138-9
10.1109/access.2024.3463948
10.1109/access.2023.3322294
10.1109/jsen.2024.3380749
10.1109/taffc.2017.2712143
10.1016/j.bspc.2020.101951
10.1016/j.cmpb.2023.107380
10.1109/access.2021.3051281
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3576059
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 99144
ExternalDocumentID oai_doaj_org_article_0bfc5f3f1d184eb7b1d76930512d95fa
10_1109_ACCESS_2025_3576059
11021444
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-4367409f172b8b778690f84d383619f0115946d62658a1e2cc8f1d1050996dda3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:19:55 EDT 2025
Mon Jun 30 07:32:48 EDT 2025
Thu Jul 03 08:40:10 EDT 2025
Wed Aug 27 01:47:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-4367409f172b8b778690f84d383619f0115946d62658a1e2cc8f1d1050996dda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7225-7401
0000-0001-5634-9103
0000-0002-1124-089X
0000-0002-4550-6836
0000-0003-1572-4143
0000-0003-1150-2244
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11021444
PQID 3218513522
PQPubID 4845423
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_0bfc5f3f1d184eb7b1d76930512d95fa
crossref_primary_10_1109_ACCESS_2025_3576059
proquest_journals_3218513522
ieee_primary_11021444
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
Doshi-Velez (ref91) 2017
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Klem (ref6) 1999; 52
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
Lundberg (ref95) 1984
ref99
ref10
ref98
ref17
ref16
ref19
ref18
ref93
ref92
ref94
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref106
ref107
ref75
ref104
ref74
ref105
Santosh (ref60) 2022
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref70
ref73
ref72
ref68
ref67
ref69
ref64
ref63
ref66
ref65
ref62
ref61
References_xml – ident: ref73
  doi: 10.1007/s40708-016-0051-5
– ident: ref78
  doi: 10.1186/s41747-024-00428-2
– ident: ref18
  doi: 10.1109/taffc.2020.3014842
– ident: ref15
  doi: 10.1016/j.cmpb.2022.106646
– ident: ref13
  doi: 10.3390/app122111255
– ident: ref37
  doi: 10.1109/tnnls.2020.3008938
– ident: ref88
  doi: 10.1016/j.compbiomed.2019.04.018
– ident: ref7
  doi: 10.1109/tamd.2015.2431497
– ident: ref16
  doi: 10.1016/j.neucom.2021.03.091
– ident: ref63
  doi: 10.3390/diagnostics13111861
– ident: ref66
  doi: 10.3390/computers9040095
– ident: ref50
  doi: 10.3389/fninf.2023.1081160
– ident: ref108
  doi: 10.1016/j.chemolab.2013.03.005
– ident: ref26
  doi: 10.1109/tim.2022.3147876
– ident: ref76
  doi: 10.3390/app10051619
– ident: ref68
  doi: 10.1109/access.2020.3032380
– ident: ref54
  doi: 10.1109/tcbb.2023.3247433
– ident: ref57
  doi: 10.1109/bdicn58493.2023.00042
– ident: ref33
  doi: 10.1109/access.2024.3365570
– ident: ref35
  doi: 10.3390/app13116761
– ident: ref19
  doi: 10.1109/jiot.2024.3430297
– ident: ref80
  doi: 10.4018/jitr.299385
– ident: ref83
  doi: 10.1109/ner.2013.6695876
– ident: ref67
  doi: 10.1016/j.bspc.2021.102648
– ident: ref62
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref10
  doi: 10.1109/tsmc.2020.2969686
– ident: ref82
  doi: 10.3390/app13116394
– ident: ref28
  doi: 10.1016/j.bspc.2021.102979
– ident: ref85
  doi: 10.1109/tte.2023.3319157
– ident: ref17
  doi: 10.1109/thms.2024.3430327
– ident: ref8
  doi: 10.1109/ner.2011.5910636
– ident: ref5
  doi: 10.3390/s23187853
– ident: ref107
  doi: 10.1016/B978-0-323-85955-4.00004-1
– ident: ref86
  doi: 10.69554/nlzl1152
– ident: ref51
  doi: 10.1016/S0165-0270(98)00065-X
– ident: ref93
  doi: 10.1016/j.dss.2010.12.003
– ident: ref20
  doi: 10.3389/fcvm.2024.1424585
– ident: ref64
  doi: 10.1109/access.2024.3351003
– ident: ref27
  doi: 10.1109/jbhi.2024.3404146
– ident: ref58
  doi: 10.1109/tim.2024.3374285
– ident: ref81
  doi: 10.3390/electronics10182266
– ident: ref41
  doi: 10.1109/taffc.2023.3336531
– ident: ref36
  doi: 10.1109/access.2019.2944273
– ident: ref49
  doi: 10.1016/j.heliyon.2024.e30174
– ident: ref53
  doi: 10.1007/s10470-021-01805-2
– ident: ref105
  doi: 10.1016/j.jksuci.2021.08.021
– ident: ref101
  doi: 10.3390/app14167165
– ident: ref69
  doi: 10.1016/j.chb.2016.08.029
– ident: ref30
  doi: 10.1109/jsen.2018.2883497
– ident: ref103
  doi: 10.1007/s13042-021-01414-5
– ident: ref12
  doi: 10.3390/s23052455
– ident: ref98
  doi: 10.1109/access.2019.2953542
– ident: ref90
  doi: 10.1609/aimag.v38i3.2741
– ident: ref34
  doi: 10.1109/tim.2021.3094619
– ident: ref1
  doi: 10.5498/wjp.v13.i1.1
– ident: ref59
  doi: 10.1109/cvpr.2018.00745
– year: 2017
  ident: ref91
  article-title: Towards a rigorous science of interpretable machine learning
  publication-title: arXiv:1702.08608
– ident: ref99
  doi: 10.59738/jstr.v5i1.23(17-26).eaqr5800
– ident: ref61
  doi: 10.1186/s40537-021-00444-8
– ident: ref55
  doi: 10.1016/j.cmpb.2022.106727
– ident: ref79
  doi: 10.1007/bf00994018
– ident: ref65
  doi: 10.1016/j.cmpb.2016.08.010
– ident: ref94
  doi: 10.1145/2939672.2939778
– ident: ref75
  doi: 10.1016/j.chaos.2021.110671
– ident: ref42
  doi: 10.1016/j.bspc.2023.104783
– ident: ref84
  doi: 10.1016/j.engappai.2023.106887
– ident: ref46
  doi: 10.1016/j.engappai.2023.106971
– ident: ref92
  doi: 10.1145/2594473.2594475
– ident: ref72
  doi: 10.3390/s18082739
– ident: ref40
  doi: 10.3389/fnins.2022.884475
– ident: ref47
  doi: 10.1016/j.bspc.2023.105875
– ident: ref77
  doi: 10.1016/j.dibe.2021.100045
– ident: ref25
  doi: 10.3390/s16101558
– ident: ref106
  doi: 10.1109/ocit59427.2023.10430706
– ident: ref56
  doi: 10.1109/cvpr.2016.90
– ident: ref89
  doi: 10.1145/3236009
– ident: ref52
  doi: 10.1007/s40708-015-0029-8
– ident: ref14
  doi: 10.3390/app14020726
– ident: ref31
  doi: 10.1016/j.engappai.2024.108305
– ident: ref104
  doi: 10.1109/access.2021.3091487
– ident: ref22
  doi: 10.3390/app14020702
– ident: ref3
  doi: 10.1109/taffc.2020.3025777
– ident: ref71
  doi: 10.1109/access.2019.2908285
– ident: ref9
  doi: 10.13005/bpj/1928
– ident: ref39
  doi: 10.3390/s22093248
– ident: ref2
  doi: 10.1109/ACCESS.2022.3224725
– year: 1984
  ident: ref95
  article-title: Consistent individualized feature attribution for tree ensembles
  publication-title: arXiv:1802.03888
– ident: ref11
  doi: 10.1109/jbhi.2022.3148109
– ident: ref21
  doi: 10.3390/app14062636
– ident: ref45
  doi: 10.1016/j.bspc.2023.105312
– ident: ref32
  doi: 10.1109/access.2023.3281450
– volume: 52
  start-page: 3
  year: 1999
  ident: ref6
  article-title: The ten-twenty electrode system of the international federation
  publication-title: Electroencephalography Clin. Neurophysiol Suppl.
– ident: ref74
  doi: 10.1109/access.2019.2944008
– ident: ref24
  doi: 10.3390/app121910028
– ident: ref4
  doi: 10.1016/j.neulet.2005.09.004
– ident: ref96
  doi: 10.1109/sibgrapi51738.2020.00053
– ident: ref29
  doi: 10.1109/tcbb.2020.3018137
– ident: ref87
  doi: 10.1016/j.caeai.2023.100166
– ident: ref102
  doi: 10.1109/NER.2015.7146583
– ident: ref97
  doi: 10.1038/s42256-019-0138-9
– ident: ref100
  doi: 10.1109/access.2024.3463948
– ident: ref43
  doi: 10.1109/access.2023.3322294
– ident: ref48
  doi: 10.1109/jsen.2024.3380749
– ident: ref70
  doi: 10.1109/taffc.2017.2712143
– volume-title: Deep Learning Models for Medical Imaging
  year: 2022
  ident: ref60
– ident: ref23
  doi: 10.1016/j.bspc.2020.101951
– ident: ref44
  doi: 10.1016/j.cmpb.2023.107380
– ident: ref38
  doi: 10.1109/access.2021.3051281
SSID ssj0000816957
Score 2.333768
Snippet Human emotion recognition is important as it finds applications in multiple domains such as medicine, entertainment, and military. However, accurately...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 99122
SubjectTerms Accuracy
attention-based ResNet
Availability
Biomedical imaging
Brain
Brain modeling
Channels
Computational modeling
Datasets
Electrodes
Electroencephalography
Emotion recognition
Emotions
explainable AI
Feature extraction
Modules
Multilevel
Real time
Real-time systems
single-channel EEG
Spectrogram
Spectrograms
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyIjyIKBXlgxDSpHTdmC1WhQpShgMRm9fzBUiWIpjN_nbMToBIDC0sGx4pj38X3XnR-R8i5sybxCQcG3iFBEWrI5j73zPHUAZgBzCEcFJ4-yMmzuHvJXtZKfYWcsEYeuFm4fgLeZJ771CIXcTCE1MbyfRiorMp8hEYY89bIVNyD81SqbNjKDKWJ6hejEc4ICeEgu-QIsqM66Vooior9bYmVX_tyDDY3u2SnRYm0aN5uj2y4cp9sr2kHHpCP6X0xYw-uvqIFjcdoFyH_hxZ13WQwsmsMUJbO3BI70WllVwtHEaJShHy0WNUVYtV4v80gqkpaeTpuyvosacwloI94WTgWziCU-PDx-BabXoPmcoc834yfRhPWVlNghsu0ZoLLIZI5j4gFcgiycSrxubBIUZFE-QANlZAWCU6Wz1M3MCYPix70YZS0ds4PyWZZle6IUOAcjEUjSMeFMQAYB0GC9SIxTqpBl1x8Lax-a0QzdCQbidKNHXSwg27t0CXXYfG_uwbF69iAfqBbP9B_-UGXdILpfsaLNcuF6JLely11-3kuNUdgk6UBex7_x9gnZCvMp_kz0yOb9fvKnSJWqeEsuuUnvZPkiA
  priority: 102
  providerName: Directory of Open Access Journals
Title MLAR-Net: A Multilevel Attention-Based ResNet Module for the Automated Recognition of Emotions Using Single-Channel EEG Signals
URI https://ieeexplore.ieee.org/document/11021444
https://www.proquest.com/docview/3218513522
https://doaj.org/article/0bfc5f3f1d184eb7b1d76930512d95fa
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwELVoT3CgBYrYUiofOOJtsnaycW_pakuF2D0UKvVmZewxB1YJYpNLL_11xo63VCAkLlGUOMlEY8fvOTNvGHuPzmY-kyDAIxEUpeei8ZUXKHMEsDNoICQKr9bl1Y36dFvcpmT1mAuDiDH4DKdhN_7Ld50dwlLZWR7rUCu1x_aIuY3JWg8LKqGChC7mSVkoz_RZvVjQSxAHnBVTSbg6CpI-mn2iSH-qqvLXpzjOL5cHbL2zbAwr-T4depjauz9EG__b9EP2PCFNXo9d4wV7gu1L9uyR_uArdr_6XF-LNfbnvOYxFXcTYoh43fdjFKS4oEnO8WvcUiO-6tywQU4wlxNs5PXQd4R34_kUhdS1vPN8OZYG2vIYj8C_0GaDIuQxtHTz5fIjHfoWdJuP2M3l8uviSqSKDMLKMu-FkuWcCKEn1AMVBOk5nflKOaK5RMR8gJdalY5IUlE1Oc6srXzu8qAxo0vnGvma7bddi28YBynBOk2MBaWyFoDmUijBeZVZLPVswj7sPGV-jMIbJhKWTJvRsSY41iTHTthF8OZD06CaHQ-QF0wahCYDbwsvg0mVQphD7mIpSAI9The-mbCj4Lnfz0tOm7CTXecwaYhvjSRwVOQBvx7_47K37GkwcVywOWH7_c8B3xGE6eE0Uv_T2IF_Acl17u4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgHIADn0UsFPCBI9kmsZONuaWrLQvs7qG0Um9Wxh73wCpBbHLhwl9n7HhLBULiEkWJkzgaO_OeM_OGsbdoTepSAQk4JIIi1SxpXOUSFBkCmBwa8InC6025vJCfLovLmKwecmEQMQSf4dTvhn_5tjODXyo7zkIdailvszvk-It8TNe6XlLxNSRUMYvaQlmqjuv5nF6DWGBeTAUh6yBJesP_BJn-WFflr49x8DCnD9lm37cxsOTrdOhhan78Idv4351_xB5ErMnrcXA8ZrewfcLu31AgfMp-rlf1WbLB_j2veUjG3fooIl73_RgHmZyQm7P8DHfUiK87O2yRE9DlBBx5PfQdId5wPsYhdS3vHF-MxYF2PEQk8C-02WLiMxlauvli8YEOXXnl5kN2cbo4ny-TWJMhMaLM-kSKckaU0BHugQq8-JxKXSUtEV2iYs4DTCVLSzSpqJoMc2Mql9nMq8yo0tpGPGMHbdfic8ZBCDBWEWdBIY0BIG8KJVgnU4Olyifs3d5S-tsovaEDZUmVHg2rvWF1NOyEnXhrXjf1utnhAFlBx2moU3CmcMJ3qZIIM8hsKAZJsMeqwjUTdugt9_t50WgTdrQfHDpO8p0WBI-KzCPYF_-47A27uzxfr_Tq4-bzS3bPd3dcvjliB_33AV8RoOnhdRjGvwDGavFD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MLAR-Net%3A+A+Multilevel+Attention-Based+ResNet+Module+for+the+Automated+Recognition+of+Emotions+Using+Single-Channel+EEG+Signals&rft.jtitle=IEEE+access&rft.au=Maithri%2C+M.&rft.au=Raghavendra%2C+U.&rft.au=Gudigar%2C+Anjan&rft.au=Kumar+Praharaj%2C+Samir&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=99122&rft.epage=99144&rft_id=info:doi/10.1109%2FACCESS.2025.3576059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3576059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon