The gravity dual of a density matrix
For a state in a quantum field theory on some spacetime, we can associate a density matrix to any subset of a given spacelike slice by tracing out the remaining degrees of freedom. In the context of the AdS CFT correspondence, if the original state has a dual bulk spacetime with a good classical des...
Saved in:
Published in | Classical and quantum gravity Vol. 29; no. 15; pp. 155009 - 16 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
07.08.2012
Institute of Physics |
Subjects | |
Online Access | Get full text |
ISSN | 0264-9381 1361-6382 |
DOI | 10.1088/0264-9381/29/15/155009 |
Cover
Abstract | For a state in a quantum field theory on some spacetime, we can associate a density matrix to any subset of a given spacelike slice by tracing out the remaining degrees of freedom. In the context of the AdS CFT correspondence, if the original state has a dual bulk spacetime with a good classical description, it is natural to ask how much information about the bulk spacetime is carried by the density matrix for such a subset of field theory degrees of freedom. In this note, we provide several constraints on the largest region that can be fully reconstructed, and discuss specific proposals for the geometric construction of this dual region. |
---|---|
AbstractList | For a state in a quantum field theory on some spacetime, we can associate a density matrix to any subset of a given spacelike slice by tracing out the remaining degrees of freedom. In the context of the AdS CFT correspondence, if the original state has a dual bulk spacetime with a good classical description, it is natural to ask how much information about the bulk spacetime is carried by the density matrix for such a subset of field theory degrees of freedom. In this note, we provide several constraints on the largest region that can be fully reconstructed, and discuss specific proposals for the geometric construction of this dual region. |
Author | Czech, Bart omiej Karczmarek, Joanna L Van Raamsdonk, Mark Nogueira, Fernando |
Author_xml | – sequence: 1 givenname: Bart omiej surname: Czech fullname: Czech, Bart omiej email: mav@phas.ubc.ca organization: University Department of Physics and Astronomy, of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1, Canada – sequence: 2 givenname: Joanna L surname: Karczmarek fullname: Karczmarek, Joanna L organization: University Department of Physics and Astronomy, of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1, Canada – sequence: 3 givenname: Fernando surname: Nogueira fullname: Nogueira, Fernando organization: University Department of Physics and Astronomy, of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1, Canada – sequence: 4 givenname: Mark surname: Van Raamsdonk fullname: Van Raamsdonk, Mark organization: University Department of Physics and Astronomy, of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1, Canada |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26204117$$DView record in Pascal Francis |
BookMark | eNqFkE1LwzAYgINMcJv-BelBwUtd3rRNG_Aiwy8YeJnn8DZNNKNrZ9KK-_emdOzgZRAIJM-TNzwzMmnaRhNyDfQeaFEsKONpLJICFkwsIAsro1SckSkkHGKeFGxCpkfogsy831AKUACbkpv1l44-Hf7Ybh9VPdZRayKMKt344WSLnbO_l-TcYO311WGfk4_np_XyNV69v7wtH1exCpO6OE1YaZRKMpqCrsqE0VywEjkk4Z4rXpW5MJxSzhAoy7JMVEZjldLCVAwFJnNyN767c-13r30nt9YrXdfY6Lb3EjgXRS6yAgJ6e0DRK6yNw0ZZL3fObtHtJeMsfALywPGRU6713mlzRIDKIZ8cysihjGRCQibHfEF8-Ccq22Fn26ZzaOvTOht12-7kpu1dE8Kdkv4AB-aDYg |
CODEN | CQGRDG |
CitedBy_id | crossref_primary_10_21468_SciPostPhys_12_1_003 crossref_primary_10_1103_PhysRevD_105_126010 crossref_primary_10_1007_JHEP09_2018_093 crossref_primary_10_1007_JHEP03_2014_118 crossref_primary_10_1007_JHEP05_2024_300 crossref_primary_10_1007_JHEP12_2013_023 crossref_primary_10_1007_JHEP02_2022_180 crossref_primary_10_1007_JHEP01_2016_176 crossref_primary_10_1103_PhysRevD_108_026009 crossref_primary_10_1103_PhysRevB_109_L041104 crossref_primary_10_1007_JHEP06_2024_155 crossref_primary_10_1103_PhysRevD_87_106006 crossref_primary_10_1142_S0217751X20300070 crossref_primary_10_1103_PhysRevD_109_126012 crossref_primary_10_1007_JHEP03_2016_195 crossref_primary_10_1140_epjc_s10052_022_11129_8 crossref_primary_10_1007_JHEP04_2024_140 crossref_primary_10_1103_PhysRevD_103_126018 crossref_primary_10_1007_JHEP04_2019_119 crossref_primary_10_1007_JHEP12_2021_134 crossref_primary_10_1103_PhysRevD_110_046023 crossref_primary_10_1140_epjc_s10052_022_10382_1 crossref_primary_10_1007_JHEP04_2021_175 crossref_primary_10_1103_RevModPhys_93_035002 crossref_primary_10_1140_epjc_s10052_020_8283_1 crossref_primary_10_1007_JHEP03_2023_026 crossref_primary_10_1103_PhysRevD_98_026010 crossref_primary_10_1007_JHEP07_2017_151 crossref_primary_10_1103_PhysRevD_96_066028 crossref_primary_10_1007_JHEP10_2014_174 crossref_primary_10_1007_s00220_022_04627_z crossref_primary_10_1007_JHEP09_2021_042 crossref_primary_10_1007_s00220_016_2796_3 crossref_primary_10_1007_JHEP08_2013_092 crossref_primary_10_1007_JHEP08_2013_090 crossref_primary_10_1007_JHEP08_2019_140 crossref_primary_10_1007_JHEP11_2017_097 crossref_primary_10_1103_PhysRevLett_127_141604 crossref_primary_10_1007_JHEP11_2021_192 crossref_primary_10_1140_epjc_s10052_020_08437_2 crossref_primary_10_1016_j_nuclphysb_2022_115722 crossref_primary_10_1007_JHEP04_2021_262 crossref_primary_10_1007_JHEP04_2016_119 crossref_primary_10_1007_JHEP08_2022_118 crossref_primary_10_1007_JHEP04_2014_185 crossref_primary_10_1007_JHEP09_2020_002 crossref_primary_10_1007_JHEP11_2019_175 crossref_primary_10_1103_PhysRevD_101_086014 crossref_primary_10_1038_s41567_018_0075_2 crossref_primary_10_1007_JHEP08_2020_032 crossref_primary_10_1007_JHEP10_2013_212 crossref_primary_10_1007_JHEP05_2019_052 crossref_primary_10_1038_s42254_020_0225_1 crossref_primary_10_1007_JHEP07_2022_031 crossref_primary_10_1093_ptep_ptad054 crossref_primary_10_1103_PhysRevD_105_086010 crossref_primary_10_1103_PhysRevD_109_086011 crossref_primary_10_1007_JHEP01_2023_027 crossref_primary_10_1103_PhysRevResearch_3_013248 crossref_primary_10_1007_JHEP03_2020_033 crossref_primary_10_1140_epjp_s13360_023_03893_7 crossref_primary_10_1007_JHEP03_2020_152 crossref_primary_10_1007_JHEP02_2021_121 crossref_primary_10_1007_JHEP09_2012_013 crossref_primary_10_1007_JHEP07_2018_034 crossref_primary_10_1007_JHEP03_2020_151 crossref_primary_10_21468_SciPostPhys_8_4_057 crossref_primary_10_1007_JHEP08_2023_056 crossref_primary_10_1007_JHEP05_2014_053 crossref_primary_10_1103_PhysRevD_110_046009 crossref_primary_10_1007_JHEP09_2023_091 crossref_primary_10_1007_JHEP11_2019_069 crossref_primary_10_21468_SciPostPhys_15_5_199 crossref_primary_10_1007_JHEP08_2020_140 crossref_primary_10_1007_JHEP09_2021_027 crossref_primary_10_1007_JHEP06_2016_004 crossref_primary_10_1140_epjc_s10052_021_09581_z crossref_primary_10_1007_JHEP11_2016_028 crossref_primary_10_1007_JHEP05_2013_136 crossref_primary_10_1007_JHEP03_2025_004 crossref_primary_10_1088_2058_9565_ac0293 crossref_primary_10_1140_epjc_s10052_022_10037_1 crossref_primary_10_1088_1674_1137_ad32be crossref_primary_10_1140_epjp_s13360_020_00110_7 crossref_primary_10_1007_JHEP04_2017_134 crossref_primary_10_1007_JHEP08_2013_060 crossref_primary_10_1103_PhysRevLett_119_020501 crossref_primary_10_1140_epjc_s10052_019_7241_2 crossref_primary_10_1007_JHEP08_2013_063 crossref_primary_10_1007_JHEP04_2023_009 crossref_primary_10_1007_JHEP06_2014_104 crossref_primary_10_1007_JHEP07_2024_123 crossref_primary_10_1103_PhysRevLett_121_211301 crossref_primary_10_1007_JHEP03_2020_012 crossref_primary_10_1007_JHEP08_2024_014 crossref_primary_10_1103_PhysRevLett_122_191601 crossref_primary_10_1007_JHEP08_2024_016 crossref_primary_10_1007_JHEP11_2016_130 crossref_primary_10_1007_JHEP01_2020_066 crossref_primary_10_1007_JHEP06_2015_149 crossref_primary_10_1007_JHEP10_2018_152 crossref_primary_10_1007_JHEP01_2018_012 crossref_primary_10_1007_JHEP01_2020_071 crossref_primary_10_1103_PhysRevD_110_086002 crossref_primary_10_1007_JHEP01_2014_080 crossref_primary_10_1007_JHEP10_2021_047 crossref_primary_10_1007_JHEP12_2019_007 crossref_primary_10_1007_JHEP12_2019_128 crossref_primary_10_1093_ptep_ptaa152 crossref_primary_10_22331_q_2022_11_28_864 crossref_primary_10_1007_JHEP09_2016_166 crossref_primary_10_21468_SciPostPhys_12_4_137 crossref_primary_10_1103_PRXQuantum_3_020314 crossref_primary_10_1007_JHEP07_2024_013 crossref_primary_10_1007_JHEP04_2020_173 crossref_primary_10_1103_PhysRevD_107_086002 crossref_primary_10_1007_JHEP10_2015_175 crossref_primary_10_1103_PhysRevD_97_065011 crossref_primary_10_1007_JHEP04_2021_062 crossref_primary_10_1007_JHEP11_2019_098 crossref_primary_10_1103_PhysRevD_86_066001 crossref_primary_10_1103_PhysRevX_9_031011 crossref_primary_10_21468_SciPostPhys_17_5_133 crossref_primary_10_1088_1572_9494_acdd61 crossref_primary_10_1007_JHEP05_2024_054 crossref_primary_10_1103_PhysRevD_93_106003 crossref_primary_10_1007_JHEP08_2020_078 crossref_primary_10_1103_PhysRevD_90_106005 crossref_primary_10_1007_JHEP04_2013_017 crossref_primary_10_1140_epjc_s10052_018_5563_0 crossref_primary_10_1007_JHEP10_2023_104 crossref_primary_10_1007_JHEP02_2023_052 crossref_primary_10_1007_JHEP04_2018_132 crossref_primary_10_1007_JHEP07_2021_051 crossref_primary_10_1007_JHEP01_2020_168 crossref_primary_10_1103_PhysRevLett_123_221601 crossref_primary_10_1140_epjc_s10052_018_6140_2 crossref_primary_10_1007_s10714_018_2426_9 crossref_primary_10_1007_JHEP01_2025_064 crossref_primary_10_1016_j_nuclphysb_2018_11_003 crossref_primary_10_1103_PhysRevD_102_086009 crossref_primary_10_1103_PhysRevLett_122_141601 crossref_primary_10_1007_JHEP10_2019_177 crossref_primary_10_1103_PhysRevD_102_086001 crossref_primary_10_1007_JHEP01_2015_090 crossref_primary_10_1007_JHEP08_2024_107 crossref_primary_10_1103_PhysRevD_108_086035 crossref_primary_10_1103_PhysRevD_88_026003 crossref_primary_10_21468_SciPostPhys_16_6_152 crossref_primary_10_1103_PhysRevX_7_021022 crossref_primary_10_1007_JHEP12_2019_170 crossref_primary_10_1088_1361_6382_acc829 crossref_primary_10_1007_JHEP05_2024_143 crossref_primary_10_1007_JHEP06_2022_153 crossref_primary_10_1016_j_physrep_2021_10_001 crossref_primary_10_1007_JHEP07_2013_081 crossref_primary_10_1007_JHEP12_2019_057 crossref_primary_10_1007_JHEP05_2020_004 crossref_primary_10_1007_JHEP02_2019_156 crossref_primary_10_1103_PhysRevB_102_045114 crossref_primary_10_1007_JHEP04_2015_163 crossref_primary_10_1007_JHEP01_2022_170 crossref_primary_10_1007_JHEP10_2013_078 crossref_primary_10_1103_PhysRevD_108_126013 crossref_primary_10_1007_JHEP01_2025_019 crossref_primary_10_1007_JHEP05_2017_065 crossref_primary_10_1007_JHEP01_2017_131 crossref_primary_10_1007_JHEP03_2014_085 crossref_primary_10_1007_JHEP06_2014_043 crossref_primary_10_1007_JHEP05_2021_186 crossref_primary_10_1140_epjc_s10052_022_10505_8 crossref_primary_10_1007_JHEP07_2024_181 crossref_primary_10_1007_JHEP08_2024_213 crossref_primary_10_1007_JHEP10_2020_166 crossref_primary_10_1103_PhysRevD_100_126021 crossref_primary_10_1007_JHEP03_2017_153 crossref_primary_10_1103_PhysRevD_108_046007 crossref_primary_10_1007_JHEP11_2022_041 crossref_primary_10_1103_PhysRevD_109_L101903 crossref_primary_10_1088_1361_6382_ac3e75 crossref_primary_10_1007_JHEP04_2021_207 crossref_primary_10_1007_JHEP02_2019_145 crossref_primary_10_1007_JHEP04_2021_200 crossref_primary_10_1103_PhysRevD_101_066011 crossref_primary_10_1007_JHEP06_2014_038 crossref_primary_10_1007_JHEP10_2020_050 crossref_primary_10_1103_PhysRevD_102_086021 crossref_primary_10_1103_PhysRevD_106_086021 crossref_primary_10_1007_JHEP01_2015_073 crossref_primary_10_1007_JHEP12_2020_083 crossref_primary_10_1103_PhysRevD_101_025011 crossref_primary_10_1007_JHEP01_2018_081 crossref_primary_10_1007_JHEP10_2019_009 crossref_primary_10_1103_PhysRevLett_119_071602 crossref_primary_10_1016_j_physletb_2022_137451 crossref_primary_10_1103_PhysRevLett_122_111601 crossref_primary_10_1007_JHEP11_2022_153 crossref_primary_10_1103_PhysRevD_89_086010 crossref_primary_10_1007_JHEP06_2015_180 crossref_primary_10_1007_JHEP10_2013_059 crossref_primary_10_1007_JHEP05_2024_251 crossref_primary_10_1103_PhysRevD_102_064028 crossref_primary_10_1007_JHEP11_2014_038 crossref_primary_10_1103_PhysRevD_104_086014 crossref_primary_10_1007_JHEP09_2019_080 crossref_primary_10_1007_JHEP02_2021_085 crossref_primary_10_1007_JHEP07_2016_040 crossref_primary_10_1007_JHEP12_2022_008 crossref_primary_10_1007_JHEP12_2023_020 crossref_primary_10_1007_JHEP01_2016_122 crossref_primary_10_1103_PhysRevD_103_026015 crossref_primary_10_1103_PhysRevD_88_064057 crossref_primary_10_1007_JHEP02_2024_040 crossref_primary_10_1007_JHEP05_2024_261 crossref_primary_10_1103_PhysRevD_107_026016 crossref_primary_10_1103_PhysRevLett_115_151601 crossref_primary_10_1007_JHEP04_2021_301 crossref_primary_10_1007_JHEP09_2016_068 crossref_primary_10_1103_PhysRevD_89_086004 crossref_primary_10_1007_JHEP05_2023_102 crossref_primary_10_1007_JHEP08_2021_055 crossref_primary_10_1103_PhysRevD_94_086009 crossref_primary_10_1007_JHEP09_2017_006 crossref_primary_10_1007_JHEP07_2022_128 crossref_primary_10_1007_JHEP09_2014_156 crossref_primary_10_1103_PhysRevD_88_063509 crossref_primary_10_1088_0264_9381_31_21_214005 crossref_primary_10_1007_JHEP01_2014_120 crossref_primary_10_1007_JHEP08_2020_129 crossref_primary_10_1007_JHEP10_2022_009 crossref_primary_10_1103_PhysRevD_99_086016 crossref_primary_10_1103_PhysRevD_99_086015 crossref_primary_10_1007_JHEP08_2020_132 crossref_primary_10_1007_JHEP12_2015_081 crossref_primary_10_1007_JHEP10_2023_164 crossref_primary_10_1103_PhysRevD_101_045004 crossref_primary_10_1007_JHEP04_2022_175 crossref_primary_10_1007_JHEP09_2017_115 crossref_primary_10_1007_JHEP09_2019_020 crossref_primary_10_1088_1361_6382_abff9a crossref_primary_10_1007_JHEP03_2017_118 crossref_primary_10_1088_1361_6382_ac2c1b crossref_primary_10_1007_JHEP10_2019_239 crossref_primary_10_1103_PhysRevD_109_086009 crossref_primary_10_1007_JHEP03_2023_102 crossref_primary_10_1007_JHEP01_2018_098 crossref_primary_10_1007_JHEP05_2019_049 crossref_primary_10_1007_JHEP08_2016_162 crossref_primary_10_1007_JHEP08_2020_125 crossref_primary_10_1007_JHEP09_2013_100 crossref_primary_10_21468_SciPostPhysCore_5_1_013 crossref_primary_10_1007_JHEP06_2018_130 crossref_primary_10_1007_JHEP08_2020_121 crossref_primary_10_1007_JHEP10_2023_156 crossref_primary_10_1007_JHEP02_2018_021 crossref_primary_10_1007_JHEP05_2019_160 crossref_primary_10_1007_JHEP12_2020_025 crossref_primary_10_1103_PhysRevD_103_086002 crossref_primary_10_1007_JHEP03_2025_068 crossref_primary_10_1007_JHEP04_2024_079 crossref_primary_10_1007_JHEP04_2016_153 crossref_primary_10_1007_JHEP06_2020_048 crossref_primary_10_1007_JHEP06_2020_166 crossref_primary_10_1103_PRXQuantum_4_010321 crossref_primary_10_1007_JHEP02_2020_152 crossref_primary_10_1103_PhysRevD_90_066012 crossref_primary_10_1103_PhysRevD_105_L081903 crossref_primary_10_1126_science_aay9560 crossref_primary_10_1088_1361_6382_ac025d crossref_primary_10_1103_PhysRevD_94_024026 crossref_primary_10_1103_PhysRevD_94_084047 crossref_primary_10_1007_JHEP12_2015_099 crossref_primary_10_1007_JHEP07_2023_025 crossref_primary_10_1103_PhysRevD_95_126012 crossref_primary_10_1103_PhysRevD_102_066008 crossref_primary_10_1103_PhysRevD_87_066002 crossref_primary_10_1007_JHEP02_2018_012 crossref_primary_10_1007_JHEP03_2022_205 crossref_primary_10_1007_JHEP12_2014_162 crossref_primary_10_3390_e22111297 crossref_primary_10_1007_JHEP06_2017_118 crossref_primary_10_1007_s00220_017_2904_z crossref_primary_10_1103_PhysRevD_101_046001 crossref_primary_10_1007_JHEP03_2014_068 crossref_primary_10_1007_JHEP12_2019_063 crossref_primary_10_1007_JHEP12_2020_172 crossref_primary_10_1007_JHEP03_2020_191 crossref_primary_10_1007_s00220_021_04040_y crossref_primary_10_1007_JHEP02_2022_093 crossref_primary_10_3390_universe10030125 crossref_primary_10_1007_JHEP06_2024_151 crossref_primary_10_1088_1361_6633_ac51b5 crossref_primary_10_1007_JHEP11_2020_111 crossref_primary_10_1007_JHEP02_2020_014 crossref_primary_10_1103_PhysRevLett_117_021601 crossref_primary_10_1007_JHEP02_2021_173 crossref_primary_10_1007_JHEP10_2017_187 |
Cites_doi | 10.1088/0264-9381/17/24/305 10.1103/PhysRevD.48.3743 10.4310/ATMP.1998.v2.n2.a1 10.1088/0264-9381/28/6/065002 10.1103/PhysRevD.62.044041 10.1142/S0218271810018529 10.1007/s10714-010-1034-0 10.1016/S0370-1573(99)00083-6 10.1023/A:1026654312961 10.1103/PhysRevLett.96.181602 10.1016/S0550-3213(03)00482-6 |
ContentType | Journal Article |
Copyright | 2012 IOP Publishing Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2012 IOP Publishing Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7U5 8FD H8D L7M |
DOI | 10.1088/0264-9381/29/15/155009 |
DatabaseName | CrossRef Pascal-Francis Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Physics |
DocumentTitleAlternate | The gravity dual of a density matrix |
EISSN | 1361-6382 |
EndPage | 16 |
ExternalDocumentID | 26204117 10_1088_0264_9381_29_15_155009 cqg432728 |
GroupedDBID | -DZ -~X 1JI 1WK 29B 4.4 5B3 5GY 5PX 5VS 5ZH 6J9 7.M 7.Q 9BW AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NT- NT. P2P PJBAE Q02 R4D RIN RNS RO9 ROL RPA S3P SY9 TN5 UCJ W28 XPP ZMT AAYXX ADEQX AERVB CITATION 02O 5ZI AAGCF ACARI ACWPO AETNG AFFNX AGQPQ AHSEE AI. ARNYC BBWZM CBCFC CEBXE IQODW RKQ T37 VH1 XOL YYP ZCG ZY4 7U5 8FD AEINN H8D L7M |
ID | FETCH-LOGICAL-c361t-432bfcc35041edb320792ba613c366c6db79f60062a1025559dfead408fd2a9a3 |
IEDL.DBID | IOP |
ISSN | 0264-9381 |
IngestDate | Fri Sep 05 08:06:25 EDT 2025 Mon Jul 21 09:17:58 EDT 2025 Tue Jul 01 00:32:13 EDT 2025 Thu Apr 24 22:53:43 EDT 2025 Wed Aug 21 03:33:17 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | Density matrix Space-time Degrees of freedom Field theories Quantum field theory Gravity |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-432bfcc35041edb320792ba613c366c6db79f60062a1025559dfead408fd2a9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1669879581 |
PQPubID | 23500 |
PageCount | 16 |
ParticipantIDs | iop_journals_10_1088_0264_9381_29_15_155009 crossref_citationtrail_10_1088_0264_9381_29_15_155009 crossref_primary_10_1088_0264_9381_29_15_155009 pascalfrancis_primary_26204117 proquest_miscellaneous_1669879581 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-07 |
PublicationDateYYYYMMDD | 2012-08-07 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Classical and quantum gravity |
PublicationTitleAbbrev | CQG |
PublicationTitleAlternate | Class. Quantum Grav |
PublicationYear | 2012 |
Publisher | IOP Publishing Institute of Physics |
Publisher_xml | – name: IOP Publishing – name: Institute of Physics |
References | Freivogel B (7) 2006 13 Pestov L (15) 2005 Van Raamsdonk M (5) 2009 16 17 18 Swingle B (19) 2009 Hubeny V E (14) 2012 Van Raamsdonk M (6) 2011; 28 2 Hubeny V E Rangamani M (11) 2012 3 Bousso R Leichenauer S Rosenhaus V (10) 2012 4 Maldacena J M (1) 1998; 2 8 Gao S (12) 2000; 17 Hubeny V E (9) 2007 |
References_xml | – volume: 17 start-page: 4999 issn: 0264-9381 year: 2000 ident: 12 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/17/24/305 – ident: 4 doi: 10.1103/PhysRevD.48.3743 – volume: 2 start-page: 231 year: 1998 ident: 1 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a1 – year: 2007 ident: 9 publication-title: J. High Energy Phys. – volume: 28 issn: 0264-9381 year: 2011 ident: 6 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/28/6/065002 – year: 2006 ident: 7 publication-title: J. High Energy Phys. – ident: 18 doi: 10.1103/PhysRevD.62.044041 – start-page: 1089 year: 2005 ident: 15 publication-title: Ann. Math. – year: 2012 ident: 10 – ident: 17 doi: 10.1142/S0218271810018529 – year: 2009 ident: 19 – ident: 16 doi: 10.1007/s10714-010-1034-0 – ident: 3 doi: 10.1016/S0370-1573(99)00083-6 – ident: 2 doi: 10.1023/A:1026654312961 – ident: 8 doi: 10.1103/PhysRevLett.96.181602 – year: 2012 ident: 14 – ident: 13 doi: 10.1016/S0550-3213(03)00482-6 – year: 2012 ident: 11 – year: 2009 ident: 5 |
SSID | ssj0011812 |
Score | 2.5601625 |
Snippet | For a state in a quantum field theory on some spacetime, we can associate a density matrix to any subset of a given spacelike slice by tracing out the... |
SourceID | proquest pascalfrancis crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 155009 |
SubjectTerms | AdS/CFT Bulk density Construction specifications Degrees of freedom Density Exact sciences and technology General relativity and gravitation Gravitation holography Mathematical analysis Physics Proposals Quantum gravity |
Title | The gravity dual of a density matrix |
URI | https://iopscience.iop.org/article/10.1088/0264-9381/29/15/155009 https://www.proquest.com/docview/1669879581 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-EPTgW1xfVPAm3W7aJm2OIi4q-DgoeAt5NBe1u7hdEH-9M01bUJFFvJW2kzSTSTJpZr6PkJNcK44waSEyu4SpVi7U3MShsc5Qk9hc1Vh6N7f88jG9fmJtNGGdCzMaN1N_Hy49ULBXYRMQl0ewa0hDAStNFIuIsgidbEzhW0T6SjTyq7v77iABFzD_m8XLtEnCv5bzZX2ah2_AaEk1AYU5z3TxY9KuV6LhGtFtG3wAynN_Wum--fgG7_ivRq6T1cZPDc68wAaZK8pNsnLTgbxONslSHT1qJlvkBIwtQCIjcOkDTO4KRi5QgcXgeLjzijQA79vkcXjxcH4ZNvQLoUk4rcI0ibUzJmGDlBZWJ_EgEzF0LU3gOTfc6kw4jkmYiuLOhAnrwC7TQe5srIRKdshCOSqLXRJY2GQNrM0yp03KskwhpE1iUiNowQqW9whrlS5Ng02OFBkvsj4jz3OJ-pCoDxkLSZn0-uiRqJMbe3SOmRKnoHLZDNTJzLePvvR9V0kN409p1iPHrTFIGJd42KLKYjSFgjkXSOSe070_VblPlsEni-sYw-yALFRv0-IQ_J5KH9WW_QlvE--p |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xUCt6KJQWdWmBIHFD2cRJ7MRH1LKCtjwOIHGz_Igvhd1Vsyshfn1n4mwkihCquEVJxknGY884_uYbgIPKaEE0aTFVdokLo31shM1i67xlNneVbrn0zs7FyXXx44bfLMFxnwszmXZT_xAPA1FwUGEHiKsSXDUUsURPk2QyYTyhIDuVydT5ZVjlOCETsuv04rLfTCAnFn61BLlFovCzbT3yUcv4HoSY1A0qzYdqF08m7tYbjdYDaqRpSQwJhPJ7OJ-ZoX34h-Lx1R-6Ae-7eDU6CkIfYKkeb8K7s57stdmENy2K1DYf4QCNLqKCRhjaR5TkFU18pCNHIHk8c0flAO4_wfXo-OrbSdyVYYhtLtgsLvLMeGtznhasdibP0lJm2MUsx-vCCmdK6QUlY2pGKxQunUf7LNLKu0xLnW_Byngyrj9D5HCxlTpXlt7YgpelJmqb3BZWsprXvBoAXyhe2Y6jnEpl3Kp2r7yqFOlEkU5UJhXjKuhkAEkvNw0sHS9KHKLaVTdgmxfv3n3U__1DWjp_xsoB7C8MQuH4pE0XPa4nc2xYCEkF3Su2_V-P3IO3l99H6tfp-c8vsIZhWtbCDsuvsDL7M693MBSamd3W0P8C55P1DQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+gravity+dual+of+a+density+matrix&rft.jtitle=Classical+and+quantum+gravity&rft.au=CZECH%2C+Bart%C5%82omiej&rft.au=KARCZMAREK%2C+Joanna+L&rft.au=NOGUEIRA%2C+Fernando&rft.au=VAN+RAAMSDONK%2C+Mark&rft.date=2012-08-07&rft.pub=Institute+of+Physics&rft.issn=0264-9381&rft.volume=29&rft.issue=15&rft_id=info:doi/10.1088%2F0264-9381%2F29%2F15%2F155009&rft.externalDBID=n%2Fa&rft.externalDocID=26204117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-9381&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-9381&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-9381&client=summon |