Beyond Scalar Neuron: Adopting Vector-Neuron Capsules for Long-Term Person Re-Identification
Current person re-identification (re-ID) works mainly focus on the short-term scenario where a person is less likely to change clothes. However, in the long-term re-ID scenario, a person has a great chance to change clothes. A sophisticated re-ID system should take such changes into account. To faci...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 30; no. 10; pp. 3459 - 3471 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Current person re-identification (re-ID) works mainly focus on the short-term scenario where a person is less likely to change clothes. However, in the long-term re-ID scenario, a person has a great chance to change clothes. A sophisticated re-ID system should take such changes into account. To facilitate the study of long-term re-ID, this paper introduces a large-scale re-ID dataset called "Celeb-reID" to the community. Unlike previous datasets, the same person can change clothes in the proposed Celeb-reID dataset. Images of Celeb-reID are acquired from the Internet using street snap-shots of celebrities. There is a total of 1,052 IDs with 34,186 images making Celeb-reID being the largest long-term re-ID dataset so far. To tackle the challenge of cloth changes, we propose to use vector-neuron (VN) capsules instead of the traditional scalar neurons (SN) to design our network. Compared with SN, one extra-dimensional information in VN can perceive cloth changes of the same person. We introduce a well-designed ReIDCaps network and integrate capsules to deal with the person re-ID task. Soft Embedding Attention (SEA) and Feature Sparse Representation (FSR) mechanisms are adopted in our network for performance boosting. Experiments are conducted on the proposed long-term re-ID dataset and two common short-term re-ID datasets. Comprehensive analyses are given to demonstrate the challenge exposed in our datasets. Experimental results show that our ReIDCaps can outperform existing state-of-the-art methods by a large margin in the long-term scenario. The new dataset and code will be released to facilitate future researches. |
---|---|
AbstractList | Current person re-identification (re-ID) works mainly focus on the short-term scenario where a person is less likely to change clothes. However, in the long-term re-ID scenario, a person has a great chance to change clothes. A sophisticated re-ID system should take such changes into account. To facilitate the study of long-term re-ID, this paper introduces a large-scale re-ID dataset called “Celeb-reID” to the community. Unlike previous datasets, the same person can change clothes in the proposed Celeb-reID dataset. Images of Celeb-reID are acquired from the Internet using street snap-shots of celebrities. There is a total of 1,052 IDs with 34,186 images making Celeb-reID being the largest long-term re-ID dataset so far. To tackle the challenge of cloth changes, we propose to use vector-neuron (VN) capsules instead of the traditional scalar neurons (SN) to design our network. Compared with SN, one extra-dimensional information in VN can perceive cloth changes of the same person. We introduce a well-designed ReIDCaps network and integrate capsules to deal with the person re-ID task. Soft Embedding Attention (SEA) and Feature Sparse Representation (FSR) mechanisms are adopted in our network for performance boosting. Experiments are conducted on the proposed long-term re-ID dataset and two common short-term re-ID datasets. Comprehensive analyses are given to demonstrate the challenge exposed in our datasets. Experimental results show that our ReIDCaps can outperform existing state-of-the-art methods by a large margin in the long-term scenario. The new dataset and code will be released to facilitate future researches. |
Author | Huang, Yan Xu, Jingsong Zhang, Peng Zhang, Zhaoxiang Wu, Qiang Zhong, Yi |
Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0002-1363-5318 surname: Huang fullname: Huang, Yan organization: Global Big Data Technologies Centre (GBDTC), School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 2 givenname: Jingsong orcidid: 0000-0002-9102-3616 surname: Xu fullname: Xu, Jingsong organization: Global Big Data Technologies Centre (GBDTC), School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 3 givenname: Qiang orcidid: 0000-0001-5641-2483 surname: Wu fullname: Wu, Qiang organization: Global Big Data Technologies Centre (GBDTC), School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 4 givenname: Yi surname: Zhong fullname: Zhong, Yi email: yi.zhong@bit.edu.cn organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 5 givenname: Peng orcidid: 0000-0001-6794-7352 surname: Zhang fullname: Zhang, Peng organization: Global Big Data Technologies Centre (GBDTC), School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 6 givenname: Zhaoxiang orcidid: 0000-0003-2648-3875 surname: Zhang fullname: Zhang, Zhaoxiang organization: Research Center for Brain-Inspired Intelligence, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China |
BookMark | eNp9kMtOwzAQRS1UJNrCD8AmEusUP-LEZlciHpUqQDR0hRSl9qRK1drBThb9e9KmYsGC1Yxm5szVvSM0MNYAQtcETwjB8i5LF8tsQjGREyojgSU7Q0PCuQgpxXzQ9ZiTUFDCL9DI-w3GJBJRMkRfD7C3RgcLVWwLF7xC66y5D6ba1k1l1sESVGNd2M-DtKh9uwUflNYFc2vWYQZuF7yD8932A8KZBtNUZaWKprLmEp2XxdbD1amO0efTY5a-hPO351k6nYeKxaQJI6oLGVHGJQgdKx1zTggQKkDFcaQgYVDqRK54LHTCV7IkyUoLjJlYgSAg2Rjd9n9rZ79b8E2-sa0znWROo84nZ4zi7or2V8pZ7x2Uee2qXeH2OcH5IcX8mGJ-SDE_pdhB4g-kquZornFFtf0fvenRCgB-tYRIOtMR-wE5koH1 |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_LSP_2023_3262447 crossref_primary_10_3390_s20185365 crossref_primary_10_1109_TIP_2023_3277389 crossref_primary_10_1016_j_asoc_2024_111891 crossref_primary_10_1109_TMM_2023_3331569 crossref_primary_10_1109_TMM_2021_3092579 crossref_primary_10_1109_TIP_2025_3531217 crossref_primary_10_1016_j_patcog_2023_109669 crossref_primary_10_1109_TIP_2023_3341762 crossref_primary_10_2139_ssrn_4098678 crossref_primary_10_2139_ssrn_4098679 crossref_primary_10_1016_j_heliyon_2022_e12086 crossref_primary_10_1109_TMM_2020_3028461 crossref_primary_10_1109_TIP_2024_3374634 crossref_primary_10_1109_TPAMI_2023_3334741 crossref_primary_10_1007_s11042_024_18440_4 crossref_primary_10_1109_TCI_2020_3037413 crossref_primary_10_1109_TIP_2022_3183469 crossref_primary_10_11834_jig_230022 crossref_primary_10_1109_ACCESS_2024_3385342 crossref_primary_10_1109_ACCESS_2024_3385782 crossref_primary_10_1109_TPAMI_2024_3381184 crossref_primary_10_1109_TCSVT_2022_3216769 crossref_primary_10_1109_TNNLS_2023_3329384 crossref_primary_10_1109_TGRS_2022_3225267 crossref_primary_10_1109_TMM_2021_3114539 crossref_primary_10_1109_TIFS_2025_3539079 crossref_primary_10_1109_TMM_2021_3067760 crossref_primary_10_1145_3599730 crossref_primary_10_1109_TMM_2023_3334975 crossref_primary_10_1109_TCSVT_2021_3088446 crossref_primary_10_1016_j_imavis_2023_104843 crossref_primary_10_1007_s11263_024_02315_0 crossref_primary_10_1016_j_neunet_2024_106477 crossref_primary_10_1109_TIFS_2022_3158058 crossref_primary_10_1109_TIFS_2025_3550063 crossref_primary_10_1109_TIP_2023_3310307 crossref_primary_10_1109_TCSVT_2022_3147813 crossref_primary_10_1109_TIFS_2024_3428371 crossref_primary_10_1109_TIP_2023_3279673 crossref_primary_10_1109_TPAMI_2021_3122444 crossref_primary_10_1109_TCSVT_2023_3241988 crossref_primary_10_1109_TIFS_2024_3414667 crossref_primary_10_1016_j_imavis_2024_105400 crossref_primary_10_1109_LSP_2020_2972768 crossref_primary_10_1007_s11760_023_02913_4 crossref_primary_10_1117_1_JEI_33_1_013045 crossref_primary_10_1109_TCSVT_2021_3128214 crossref_primary_10_1109_TIP_2022_3207024 crossref_primary_10_1016_j_patrec_2020_12_017 crossref_primary_10_1016_j_imavis_2021_104335 crossref_primary_10_1109_TCSVT_2020_3031303 crossref_primary_10_1145_3447715 crossref_primary_10_1007_s00371_024_03741_4 crossref_primary_10_1016_j_neucom_2024_127480 |
Cites_doi | 10.1109/ICCV.2017.322 10.1016/j.neucom.2017.02.055 10.1109/CVPR.2017.143 10.1109/CVPR.2018.00225 10.1109/ICCV.2017.405 10.1109/WACV.2018.00060 10.1109/ICCV.2015.133 10.1109/CVPR.2017.243 10.1109/CVPR.2018.00745 10.1109/ICRA.2014.6907518 10.1109/CVPR.2018.00243 10.1109/ICCV.2017.410 10.1109/CVPR.2016.138 10.1109/ACCESS.2018.2803789 10.1007/978-1-4471-6296-4 10.1109/CVPR.2014.27 10.1007/978-3-642-33863-2_43 10.1109/CVPR.2018.00016 10.1109/ACCESS.2018.2872804 10.1049/iet-cvi.2018.5402 10.1109/CVPR.2017.357 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2019.2948093 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 3471 |
ExternalDocumentID | 10_1109_TCSVT_2019_2948093 8873614 |
Genre | orig-research |
GrantInformation_xml | – fundername: Australian Government Research Training Program Scholarship funderid: 10.13039/100015539 – fundername: Beijing Institute of Technology Research Fund Program for Young Scholars funderid: 10.13039/501100012236 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c361t-42da942359e8d6cd65511e128ec664ce73efd79b568d75b9f17bd80038be81e93 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 02:27:14 EDT 2025 Tue Jul 01 00:41:13 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Wed Aug 27 02:31:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-42da942359e8d6cd65511e128ec664ce73efd79b568d75b9f17bd80038be81e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9102-3616 0000-0001-6794-7352 0000-0003-2648-3875 0000-0001-5641-2483 0000-0002-1363-5318 |
PQID | 2448453320 |
PQPubID | 85433 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TCSVT_2019_2948093 crossref_citationtrail_10_1109_TCSVT_2019_2948093 ieee_primary_8873614 proquest_journals_2448453320 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref34 ref12 ref15 ref30 gray (ref2) 2008 ref32 ref10 ref1 lalonde (ref26) 2018 ref19 sabour (ref17) 2017 ref18 hinton (ref28) 2018 guanshuo (ref16) 2018 srivastava (ref31) 2014; 15 hermans (ref11) 2017 zheng (ref14) 2017; 14 yu (ref13) 2017 ref24 ref23 ref25 ref21 yumin (ref22) 2018 kingma (ref33) 2014 ref29 ref8 sun (ref20) 2018 ref7 ref9 ref4 ref3 ref6 ref5 jaiswal (ref27) 2018 |
References_xml | – ident: ref29 doi: 10.1109/ICCV.2017.322 – ident: ref21 doi: 10.1016/j.neucom.2017.02.055 – ident: ref34 doi: 10.1109/CVPR.2017.143 – ident: ref15 doi: 10.1109/CVPR.2018.00225 – ident: ref5 doi: 10.1109/ICCV.2017.405 – ident: ref9 doi: 10.1109/WACV.2018.00060 – start-page: 3856 year: 2017 ident: ref17 article-title: Dynamic routing between capsules publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref4 doi: 10.1109/ICCV.2015.133 – start-page: 501 year: 2018 ident: ref20 article-title: Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline) publication-title: Proc Eur Conf Comput Vis (ECCV) – start-page: 1 year: 2018 ident: ref28 article-title: Matrix capsules with EM routing publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref30 doi: 10.1109/CVPR.2017.243 – volume: 14 start-page: 13 year: 2017 ident: ref14 article-title: A discriminatively learned CNN embedding for person reidentification publication-title: ACM Trans Multimedia Comput Commun Appl – ident: ref32 doi: 10.1109/CVPR.2018.00745 – start-page: 418 year: 2018 ident: ref22 article-title: Part-aligned bilinear representations for person re-identification publication-title: Proc Eur Conf Comput Vis (ECCV) – ident: ref7 doi: 10.1109/ICRA.2014.6907518 – start-page: 274 year: 2018 ident: ref16 article-title: Learning discriminative features with multiple granularities for person re-identification publication-title: Proc ACM Int Conf Multimedia (ACMMM) – ident: ref23 doi: 10.1109/CVPR.2018.00243 – ident: ref12 doi: 10.1109/ICCV.2017.410 – year: 2014 ident: ref33 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – volume: 15 start-page: 1929 year: 2014 ident: ref31 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – year: 2018 ident: ref26 article-title: Capsules for object segmentation publication-title: arXiv 1804 04241 – start-page: 526 year: 2018 ident: ref27 article-title: CapsuleGAN: Generative adversarial capsule network publication-title: Proc Eur Conf Comput Vis (ECCV) – ident: ref8 doi: 10.1109/CVPR.2016.138 – ident: ref25 doi: 10.1109/ACCESS.2018.2803789 – ident: ref1 doi: 10.1007/978-1-4471-6296-4 – ident: ref3 doi: 10.1109/CVPR.2014.27 – ident: ref6 doi: 10.1007/978-3-642-33863-2_43 – ident: ref18 doi: 10.1109/CVPR.2018.00016 – ident: ref19 doi: 10.1109/ACCESS.2018.2872804 – ident: ref24 doi: 10.1049/iet-cvi.2018.5402 – year: 2017 ident: ref11 article-title: In defense of the triplet loss for person re-identification publication-title: arXiv 1703 07737 – year: 2017 ident: ref13 article-title: The devil is in the middle: Exploiting mid-level representations for cross-domain instance matching publication-title: arXiv 1711 08106 – start-page: 262 year: 2008 ident: ref2 article-title: Viewpoint invariant pedestrian recognition with an ensemble of localized features publication-title: Proc Eur Conf Comput Vis (ECCV) – ident: ref10 doi: 10.1109/CVPR.2017.357 |
SSID | ssj0014847 |
Score | 2.614358 |
Snippet | Current person re-identification (re-ID) works mainly focus on the short-term scenario where a person is less likely to change clothes. However, in the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3459 |
SubjectTerms | Cameras Cloth cloth change Datasets Face Image acquisition Internet Lighting long-term scenario Neurons Person re-identification Security Surveillance vector-neuron capsules |
Title | Beyond Scalar Neuron: Adopting Vector-Neuron Capsules for Long-Term Person Re-Identification |
URI | https://ieeexplore.ieee.org/document/8873614 https://www.proquest.com/docview/2448453320 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUShIA9skDZOnDRmqyqqCgFC9KEOSJEfFwZQivpY-PWcnbTiJcTmwZYsf7bvO_vuO0LOJQ8zEHgANTPa44EfecjChSeFRHdIqjBSLtriPu6P-M0kmlTI5ToXBgBc8Bk0bdP95ZupXtqnshYeiDC2Vas30HErcrXWPwY8ccXEkC4wL0E7tkqQ8UVr2B2MhzaKSzQDwRNfhF-MkKuq8uMqdvalt0PuVjMrwkpemsuFaur3b6KN_536LtkuiSbtFDtjj1Qg3ydbn-QHa-SpSF-hA8RJzqjT6civaMdM32wwNB27F_1CvyOnXYkO9SvMKdJcejvNn70h3ur0wVF2-ghekfOblY-AB2TUux52-15ZbcHTOLMF4mSkQHIVCUhMrE2MXIoBmi_Qccw1tEPITFuoKE5MO1IiY21lEvuzqCBhIMJDUs2nORwRmvmKM4il5lZdTwmkPMCyLAslUwGOqRO2Wv5Ul1LktiLGa-pcEl-kDrLUQpaWkNXJxXrMWyHE8WfvmsVg3bNc_jpprFBOy7M6T5HgJBxZb-Af_z7qhGwG1st2IXwNUl3MlnCKVGShztwe_AB-WtnR |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB5V7QF6aIFQkbbAHuCEnHrtteNF4lCFVgkNFaJu1EMldx9jDq2cqEmE4LfwV_hvzK6dqDzELVJvPuzKsufbmW92XgCvlIhLlHQADbcmEFGYBMTCZaCkIndI6TjRPtviNO2fiw8XycUa_FjWwiCiTz7Djnv0sXw7NnN3VXZAByImc9KkUJ7gt6_koE3fDd6TNF9H0fFR3usHzQyBwNDSGb3dKkmUIZGY2dTYlBgCR1LKaNJUGOzGWNqu1Ema2W6iZcm72mYuXqYx4-haLZGC3yCekUR1ddgyRiEyP76MCAoPMrKci5KcUB7kvbNR7vLGZCeSIgtl_JvZ83Nc_lL-3qIdb8PPxb-oE1muO_OZ7pjvf7SJvK8_6xFsNVSaHdbYfwxrWD2BzTsNFltwWRfosDNCorplvhNJ9ZYd2vHEpXuzkY9Z1B1KKtZTk-n8BqeMiDwbjqsvQU52i33yTgn7jEFd1Vw215xP4Xwln7cD69W4wmfAylALjqkywvUP1JJIHfKyLGPFdUR72sAX4i5M02zdzfy4KbzTFcrCQ6RwECkaiLThzXLPpG418t_VLSfz5cpG3G3YX6CqaLTRtCAKlwni9VG4--9dL-FBP_84LIaD05M9eBi5OwWfsLgP67PbOT4n4jXTLzz-GVytGkO_AII6NuE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+Scalar+Neuron%3A+Adopting+Vector-Neuron+Capsules+for+Long-Term+Person+Re-Identification&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Huang%2C+Yan&rft.au=Xu%2C+Jingsong&rft.au=Wu%2C+Qiang&rft.au=Zhong%2C+Yi&rft.date=2020-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=30&rft.issue=10&rft.spage=3459&rft_id=info:doi/10.1109%2FTCSVT.2019.2948093&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |