Using Very-High-Resolution Multispectral Classification to Estimate Savanna Fractional Vegetation Components
Characterizing compositional and structural aspects of vegetation is critical to effectively assessing land function. When priorities are placed on ecological integrity, remotely sensed estimates of fractional vegetation components (FVCs) are useful for measuring landscape-level habitat structure an...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 3; p. 551 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Characterizing compositional and structural aspects of vegetation is critical to effectively assessing land function. When priorities are placed on ecological integrity, remotely sensed estimates of fractional vegetation components (FVCs) are useful for measuring landscape-level habitat structure and function. In this study, we address whether FVC estimates, stratified by dominant vegetation type, vary with different classification approaches applied to very-high-resolution small unoccupied aerial system (UAS)-derived imagery. Using Parrot Sequoia imagery, flown on a DJI Mavic Pro micro-quadcopter, we compare pixel- and segment-based random forest classifiers alongside a vegetation height-threshold model for characterizing the FVC in a southern African dryland savanna. Results show differences in agreement between each classification method, with the most disagreement in shrub-dominated sites. When compared to vegetation classes chosen by visual identification, the pixel-based random forest classifier had the highest overall agreement and was the only classifier not to differ significantly from the hand-delineated FVC estimation. However, when separating out woody biomass components of tree and shrub, the vegetation height-threshold performed better than both random-forest approaches. These findings underscore the utility and challenges represented by very-high-resolution multispectral UAS-derived data (~10 cm ground resolution) and their uses to estimate FVC. Semi-automated approaches statistically differ from by-hand estimation in most cases; however, we present insights for approaches that are applicable across varying vegetation types and structural conditions. Importantly, characterization of savanna land function cannot rely only on a “greenness” measure but also requires a structural vegetation component. Underscoring these insights is that the spatial heterogeneity of vegetation structure on the landscape broadly informs land management, from land allocation, wildlife habitat use, natural resource collection, and as an indicator of overall ecosystem function. |
---|---|
AbstractList | Characterizing compositional and structural aspects of vegetation is critical to effectively assessing land function. When priorities are placed on ecological integrity, remotely sensed estimates of fractional vegetation components (FVCs) are useful for measuring landscape-level habitat structure and function. In this study, we address whether FVC estimates, stratified by dominant vegetation type, vary with different classification approaches applied to very-high-resolution small unoccupied aerial system (UAS)-derived imagery. Using Parrot Sequoia imagery, flown on a DJI Mavic Pro micro-quadcopter, we compare pixel- and segment-based random forest classifiers alongside a vegetation height-threshold model for characterizing the FVC in a southern African dryland savanna. Results show differences in agreement between each classification method, with the most disagreement in shrub-dominated sites. When compared to vegetation classes chosen by visual identification, the pixel-based random forest classifier had the highest overall agreement and was the only classifier not to differ significantly from the hand-delineated FVC estimation. However, when separating out woody biomass components of tree and shrub, the vegetation height-threshold performed better than both random-forest approaches. These findings underscore the utility and challenges represented by very-high-resolution multispectral UAS-derived data (~10 cm ground resolution) and their uses to estimate FVC. Semi-automated approaches statistically differ from by-hand estimation in most cases; however, we present insights for approaches that are applicable across varying vegetation types and structural conditions. Importantly, characterization of savanna land function cannot rely only on a “greenness” measure but also requires a structural vegetation component. Underscoring these insights is that the spatial heterogeneity of vegetation structure on the landscape broadly informs land management, from land allocation, wildlife habitat use, natural resource collection, and as an indicator of overall ecosystem function. |
Author | Pricope, Narcisa G. Bailey, Karen M. Salerno, Jonathan Hartter, Joel Kolarik, Nicholas E. Stevens, Forrest R. Woodward, Kyle Drake, Michael Gaughan, Andrea E. Cassidy, Lin |
Author_xml | – sequence: 1 givenname: Andrea E. orcidid: 0000-0002-4898-1587 surname: Gaughan fullname: Gaughan, Andrea E. – sequence: 2 givenname: Nicholas E. orcidid: 0000-0003-0527-058X surname: Kolarik fullname: Kolarik, Nicholas E. – sequence: 3 givenname: Forrest R. orcidid: 0000-0002-9328-3753 surname: Stevens fullname: Stevens, Forrest R. – sequence: 4 givenname: Narcisa G. orcidid: 0000-0002-6591-7237 surname: Pricope fullname: Pricope, Narcisa G. – sequence: 5 givenname: Lin surname: Cassidy fullname: Cassidy, Lin – sequence: 6 givenname: Jonathan orcidid: 0000-0001-9402-6479 surname: Salerno fullname: Salerno, Jonathan – sequence: 7 givenname: Karen M. orcidid: 0000-0002-7610-8646 surname: Bailey fullname: Bailey, Karen M. – sequence: 8 givenname: Michael surname: Drake fullname: Drake, Michael – sequence: 9 givenname: Kyle surname: Woodward fullname: Woodward, Kyle – sequence: 10 givenname: Joel surname: Hartter fullname: Hartter, Joel |
BookMark | eNpNUU1LAzEQDVLBWnvxFyx4E1bzudkcpbS2oAhqew1pNqkp201NUqH_3rQVdS4zzHu8eTNzCXqd7wwA1wjeESLgfYiIQgIZQ2egjyHHJcUC9_7VF2AY4xrmIAQJSPugnUfXrYqFCfty6lYf5auJvt0l57viedcmF7dGp6DaYtSqGJ11Wh3B5ItxTG6jkine1JfqOlVMgtIHMLMXZmXSiTnym2022qV4Bc6taqMZ_uQBmE_G76Np-fTyOBs9PJWaVCiVFCIGK2uN5lwwY6nmtRZWCFKzileVrhuOKIHWQtJYxinDlcKCM4Zr1DSGDMDspNt4tZbbkF2GvfTKyWPDh5VUITndGkmzArd0aa1glNN8Rr3kWBBYNxWzGGatm5PWNvjPnYlJrv0u5BWjxBXmNa5pzTPr9sTSwccYjP2diqA8PEf-PYd8A0vbgw0 |
CitedBy_id | crossref_primary_10_3390_rs15010098 crossref_primary_10_3390_rs14153833 crossref_primary_10_34133_remotesensing_0169 |
Cites_doi | 10.1201/9781420007626-22 10.1016/j.rse.2020.112175 10.1111/j.1654-1103.2002.tb02066.x 10.1007/978-94-007-7969-3 10.1016/S0034-4257(01)00295-4 10.1016/j.jaridenv.2013.02.010 10.1080/01431161003743173 10.1023/A:1010933404324 10.1080/01431161.2018.1433343 10.1511/2018.106.1.34 10.1109/MGRS.2018.2876451 10.1007/BF00058655 10.3390/rs8020087 10.3390/drones3010005 10.1016/j.isprsjprs.2009.06.004 10.1890/ES14-00034.1 10.1016/j.isprsjprs.2018.04.002 10.1038/s41467-018-04616-8 10.1080/15481603.2018.1510088 10.1016/j.isprsjprs.2020.04.011 10.1126/science.1144004 10.1093/bioinformatics/16.5.412 10.1007/s13280-020-01434-5 10.1016/j.jaridenv.2012.02.007 10.1177/0309133315615805 10.1111/2041-210X.13463 10.1080/01431160701469016 10.1111/1365-2745.12326 10.1126/science.105.2727.367 10.1080/2150704X.2014.969814 10.3390/drones5010019 10.4236/ars.2015.43015 10.1016/j.rse.2019.111401 10.1073/pnas.1712356115 10.1080/01431161.2014.885666 10.5194/acp-13-10081-2013 10.1890/120150 10.1177/001316446002000104 10.1111/avsc.12048 10.3390/drones3030063 10.1016/j.rse.2019.05.026 10.1038/s41586-020-2824-5 10.1016/j.isprsjprs.2016.01.011 10.3390/land4030627 10.1890/10-1684.1 10.1016/j.rse.2011.06.007 10.1016/j.isprsjprs.2017.03.011 10.1201/b10275 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs14030551 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_43df7f4bff95474390cb729308d65f20 10_3390_rs14030551 |
GeographicLocations | Botswana |
GeographicLocations_xml | – name: Botswana |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI RIG ACUHS |
ID | FETCH-LOGICAL-c361t-401506ffec7795ef4c78c9f993856766c8d71430ff03df574526a29755281dde3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Tue Dec 17 15:18:58 EST 2024 Thu Nov 21 08:29:30 EST 2024 Fri Dec 06 09:32:17 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-401506ffec7795ef4c78c9f993856766c8d71430ff03df574526a29755281dde3 |
ORCID | 0000-0002-9328-3753 0000-0003-0527-058X 0000-0001-9402-6479 0000-0002-4898-1587 0000-0002-6591-7237 0000-0002-7610-8646 |
OpenAccessLink | https://doaj.org/article/43df7f4bff95474390cb729308d65f20 |
PQID | 2627828487 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_43df7f4bff95474390cb729308d65f20 proquest_journals_2627828487 crossref_primary_10_3390_rs14030551 |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – sequence: 0 name: MDPI AG – name: MDPI AG |
References | Su (ref_45) 2008; 29 Brandt (ref_12) 2020; 587 Fassnacht (ref_27) 2021; 96 Xu (ref_28) 2020; 92 Liaw (ref_49) 2002; 2 Breiman (ref_48) 1996; 24 Scholtz (ref_61) 2014; 5 Cohen (ref_53) 1960; 20 Melville (ref_57) 2019; 78 Farwell (ref_46) 2021; 253 Breiman (ref_33) 2001; 45 Belgiu (ref_11) 2016; 114 ref_16 ref_15 ref_59 Smith (ref_25) 2016; 40 Hardin (ref_22) 2019; 56 Venter (ref_14) 2018; 9 Fisher (ref_50) 2014; 17 Munyati (ref_20) 2013; 94 ref_23 Liu (ref_6) 2007; 317 Mishra (ref_10) 2014; 35 Novais (ref_58) 2019; Volume 11804 ref_26 Whiteside (ref_9) 2011; 13 Elliott (ref_41) 2019; 7 Anderson (ref_21) 2013; 11 Liu (ref_47) 2010; 1 Virtanen (ref_24) 2019; 230 Scholes (ref_18) 2002; 13 Smith (ref_55) 2019; 233 Baldi (ref_60) 2000; 16 Chenari (ref_35) 2017; 42 Salerno (ref_38) 2018; 106 Sala (ref_7) 2014; 102 ref_31 Touboul (ref_4) 2018; 115 Blaschke (ref_36) 2010; 65 Chadwick (ref_19) 2020; 11 Stehman (ref_29) 2011; 115 Feng (ref_2) 2013; 13 Staver (ref_17) 2011; 92 Lu (ref_56) 2017; 128 Riva (ref_13) 2021; 50 Jawak (ref_34) 2015; 4 Pricope (ref_40) 2015; 4 Maxwell (ref_32) 2018; 39 ref_44 Holdridge (ref_3) 1947; 105 ref_43 ref_42 ref_1 Gaughan (ref_39) 2012; 82 Foody (ref_52) 2002; 80 Ye (ref_30) 2018; 141 Story (ref_54) 1986; 52 ref_8 ref_5 Kolarik (ref_37) 2020; 164 Pontius (ref_51) 2014; 35 |
References_xml | – volume: 13 start-page: 884 year: 2011 ident: ref_9 article-title: Comparing object-based and pixel-based classifications for mapping savannas publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Whiteside – ident: ref_8 doi: 10.1201/9781420007626-22 – ident: ref_5 – volume: 253 start-page: 112175 year: 2021 ident: ref_46 article-title: Satellite image texture captures vegetation heterogeneity and explains patterns of bird richness publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112175 contributor: fullname: Farwell – volume: 13 start-page: 419 year: 2002 ident: ref_18 article-title: Trends in savanna structure and composition along an aridity gradient in the Kalahari publication-title: J. Veg. Sci. doi: 10.1111/j.1654-1103.2002.tb02066.x contributor: fullname: Scholes – ident: ref_31 doi: 10.1007/978-94-007-7969-3 – volume: 80 start-page: 185 year: 2002 ident: ref_52 article-title: Status of land cover classification accuracy assessment publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00295-4 contributor: fullname: Foody – volume: 94 start-page: 121 year: 2013 ident: ref_20 article-title: Effect of canopy cover and canopy background variables on spectral profiles of savanna rangeland bush encroachment species based on selected acacia species (Mellifera, Tortilis, Karroo) and Dichrostachys Cinerea at Mokopane, South Africa publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2013.02.010 contributor: fullname: Munyati – volume: 1 start-page: 187 year: 2010 ident: ref_47 article-title: Assessing object-based classification: Advantages and limitations publication-title: Remote Sens. Lett. doi: 10.1080/01431161003743173 contributor: fullname: Liu – volume: 45 start-page: 5 year: 2001 ident: ref_33 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – ident: ref_42 – ident: ref_1 – volume: 39 start-page: 2784 year: 2018 ident: ref_32 article-title: Implementation of machine-learning classification in remote sensing: An applied review publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1433343 contributor: fullname: Maxwell – volume: 106 start-page: 34 year: 2018 ident: ref_38 article-title: Living in an Elephant Landscape: The local communities most affected by wildlife conservation often have little say in how it is carried out, even when policy incentives are intended to encourage their support publication-title: Am. Sci. doi: 10.1511/2018.106.1.34 contributor: fullname: Salerno – volume: 7 start-page: 106 year: 2019 ident: ref_41 article-title: Drone use for environmental research [Perspectives] publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2018.2876451 contributor: fullname: Elliott – volume: 24 start-page: 123 year: 1996 ident: ref_48 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 contributor: fullname: Breiman – ident: ref_16 doi: 10.3390/rs8020087 – ident: ref_23 doi: 10.3390/drones3010005 – volume: 65 start-page: 2 year: 2010 ident: ref_36 article-title: Object based image analysis for remote sensing publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.06.004 contributor: fullname: Blaschke – volume: 5 start-page: 1 year: 2014 ident: ref_61 article-title: Identifying drivers that influence the spatial distribution of woody vegetation in Kruger National Park, South Africa publication-title: Ecosphere doi: 10.1890/ES14-00034.1 contributor: fullname: Scholtz – volume: 141 start-page: 137 year: 2018 ident: ref_30 article-title: A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.04.002 contributor: fullname: Ye – volume: 9 start-page: 2272 year: 2018 ident: ref_14 article-title: Drivers of woody plant encroachment over Africa publication-title: Nat. Commun. doi: 10.1038/s41467-018-04616-8 contributor: fullname: Venter – volume: 42 start-page: 43 year: 2017 ident: ref_35 article-title: Woodland mapping and single-tree levels using object-oriented classification of unoccupied aerial vehicle (UAV) images publication-title: ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. contributor: fullname: Chenari – volume: 56 start-page: 309 year: 2019 ident: ref_22 article-title: Small unoccupied aerial systems (SUAS) for environmental remote sensing: Challenges and opportunities revisited publication-title: GISci. Remote Sens. doi: 10.1080/15481603.2018.1510088 contributor: fullname: Hardin – volume: 164 start-page: 84 year: 2020 ident: ref_37 article-title: A multi-plot assessment of vegetation structure using a micro-unoccupied aerial system (UAS) in a semi-arid savanna environment publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.04.011 contributor: fullname: Kolarik – volume: 2 start-page: 5 year: 2002 ident: ref_49 article-title: Classification and regression by randomForest publication-title: R News contributor: fullname: Liaw – volume: 317 start-page: 1513 year: 2007 ident: ref_6 article-title: Complexity of coupled human and natural systems publication-title: Science doi: 10.1126/science.1144004 contributor: fullname: Liu – volume: 16 start-page: 412 year: 2000 ident: ref_60 article-title: Assessing the accuracy of prediction algorithms for classification: An overview publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.5.412 contributor: fullname: Baldi – volume: 50 start-page: 1089 year: 2021 ident: ref_13 article-title: A Functional perspective on the analysis of land use and land cover data in ecology publication-title: Ambio doi: 10.1007/s13280-020-01434-5 contributor: fullname: Riva – volume: 82 start-page: 19 year: 2012 ident: ref_39 article-title: Spatial and temporal precipitation variability in the Okavango-Kwando-Zambezi catchment, Southern Africa publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2012.02.007 contributor: fullname: Gaughan – volume: 40 start-page: 247 year: 2016 ident: ref_25 article-title: Structure from motion photogrammetry in physical geography publication-title: Prog. Phys. Geogr. Earth Environ. doi: 10.1177/0309133315615805 contributor: fullname: Smith – ident: ref_59 – volume: 11 start-page: 1492 year: 2020 ident: ref_19 article-title: Integrating airborne remote sensing and field campaigns for ecology and earth system science publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13463 contributor: fullname: Chadwick – volume: 29 start-page: 3105 year: 2008 ident: ref_45 article-title: Textural and local spatial statistics for the object-oriented classification of urban areas using high resolution imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701469016 contributor: fullname: Su – volume: 102 start-page: 1357 year: 2014 ident: ref_7 article-title: Grass–woodland transitions: Determinants and consequences for ecosystem functioning and provisioning of services publication-title: J. Ecol. doi: 10.1111/1365-2745.12326 contributor: fullname: Sala – volume: 105 start-page: 367 year: 1947 ident: ref_3 article-title: Determination of world plant formations from simple climatic data publication-title: Science doi: 10.1126/science.105.2727.367 contributor: fullname: Holdridge – volume: 35 start-page: 7543 year: 2014 ident: ref_51 article-title: Quantity, exchange, and shift components of difference in a square contingency table publication-title: Int. J. Remote Sens. doi: 10.1080/2150704X.2014.969814 contributor: fullname: Pontius – ident: ref_26 doi: 10.3390/drones5010019 – volume: 4 start-page: 177 year: 2015 ident: ref_34 article-title: A Comprehensive review on pixel oriented and object oriented methods for information extraction from remotely sensed satellite images with a special emphasis on cryospheric applications publication-title: Adv. Remote Sens. doi: 10.4236/ars.2015.43015 contributor: fullname: Jawak – volume: 233 start-page: 111401 year: 2019 ident: ref_55 article-title: Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111401 contributor: fullname: Smith – volume: 78 start-page: 14 year: 2019 ident: ref_57 article-title: Ultra-high spatial resolution fractional vegetation cover from unoccupied aerial multispectral imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Melville – volume: 115 start-page: E1336 year: 2018 ident: ref_4 article-title: On the complex dynamics of savanna landscapes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1712356115 contributor: fullname: Touboul – volume: 35 start-page: 2082 year: 2014 ident: ref_10 article-title: Relating spatial patterns of fractional land cover to savanna vegetation morphology using multi-scale remote sensing in the central kalahari publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.885666 contributor: fullname: Mishra – volume: 13 start-page: 10081 year: 2013 ident: ref_2 article-title: Expansion of global drylands under a warming climate publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-13-10081-2013 contributor: fullname: Feng – volume: 11 start-page: 138 year: 2013 ident: ref_21 article-title: Lightweight unoccupied aerial vehicles will revolutionize spatial ecology publication-title: Front. Ecol. Environ. doi: 10.1890/120150 contributor: fullname: Anderson – ident: ref_44 – volume: 20 start-page: 37 year: 1960 ident: ref_53 article-title: A Coefficient of agreement for nominal scales publication-title: Educ. Psychol. Meas. doi: 10.1177/001316446002000104 contributor: fullname: Cohen – volume: 52 start-page: 397 year: 1986 ident: ref_54 article-title: Accuracy assessment: A user’s perspective publication-title: Photogramm. Eng. Remote Sens. contributor: fullname: Story – volume: 17 start-page: 172 year: 2014 ident: ref_50 article-title: Savanna woody vegetation classification—Now in 3-D publication-title: Appl. Veg. Sci. doi: 10.1111/avsc.12048 contributor: fullname: Fisher – ident: ref_43 doi: 10.3390/drones3030063 – volume: 230 start-page: 111207 year: 2019 ident: ref_24 article-title: Data and resolution requirements in mapping vegetation in spatially heterogeneous landscapes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.05.026 contributor: fullname: Virtanen – volume: 587 start-page: 78 year: 2020 ident: ref_12 article-title: An unexpectedly large count of trees in the West African Sahara and Sahel publication-title: Nature doi: 10.1038/s41586-020-2824-5 contributor: fullname: Brandt – volume: 114 start-page: 24 year: 2016 ident: ref_11 article-title: Random forest in remote sensing: A review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 contributor: fullname: Belgiu – volume: 4 start-page: 627 year: 2015 ident: ref_40 article-title: Spatio-temporal analysis of vegetation dynamics in relation to shifting inundation and fire regimes: Disentangling environmental variability from land management decisions in a Southern African transboundary watershed publication-title: Land doi: 10.3390/land4030627 contributor: fullname: Pricope – volume: 92 start-page: 1063 year: 2011 ident: ref_17 article-title: Tree cover in Sub-Saharan Africa: Rainfall and fire constrain forest and savanna as alternative stable states publication-title: Ecology doi: 10.1890/10-1684.1 contributor: fullname: Staver – volume: 92 start-page: 102173 year: 2020 ident: ref_28 article-title: Tree species classification using UAS-based digital aerial photogrammetry point clouds and multispectral imageries in subtropical natural forests publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Xu – volume: 115 start-page: 3044 year: 2011 ident: ref_29 article-title: Pixels, blocks of pixels, and polygons: Choosing a spatial unit for thematic accuracy assessment publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.06.007 contributor: fullname: Stehman – volume: Volume 11804 start-page: 248 year: 2019 ident: ref_58 article-title: Classification of an agrosilvopastoral system using RGB imagery from an unoccupied aerial vehicle publication-title: Progress in Artificial Intelligence contributor: fullname: Novais – volume: 128 start-page: 73 year: 2017 ident: ref_56 article-title: Species classification using unoccupied aerial vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.03.011 contributor: fullname: Lu – ident: ref_15 doi: 10.1201/b10275 – volume: 96 start-page: 102281 year: 2021 ident: ref_27 article-title: Mapping the fractional coverage of the invasive Shrub Ulex Europaeus with multi-temporal sentinel-2 imagery utilizing UAV orthoimages and a new spatial optimization approach publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Fassnacht |
SSID | ssj0000331904 |
Score | 2.371666 |
Snippet | Characterizing compositional and structural aspects of vegetation is critical to effectively assessing land function. When priorities are placed on ecological... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 551 |
SubjectTerms | Africa Arid zones Civil aviation Classification Classifiers Community Data collection Ecological effects Ecological function Ecosystem integrity Estimates Grasslands Habitat utilization Heterogeneity High resolution Imagery Land management Landscape Natural resources Parrots Photogrammetry Pixels Precipitation random forest classifier Remote sensing Savannahs savannas Sensors Spatial heterogeneity Structural analysis Structure-function relationships unoccupied aerial systems Vegetation vegetation composition vegetation structure Vegetation type Wildlife Wildlife habitats Wildlife management |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8QwDI54DLAgnuJ4KRKsEWnSJO2EAHGcGFjgEFvVpgkMqD16x3D_HjvNHUJIrG3VVo5jf3Y-24Rc-LKshc0NE8J6lpo6YZXkFZMCwFHNc5v50O3zUY_G6cOreo0Jt2mkVS5sYjDUdWsxR34ptABnlgG-vpp8MpwahaercYTGKllPhNFI6cuG98scC5egYDztu5JKiO4vuyn2p-NKJb_8UGjX_8caBxcz3CZbERvS634xd8iKa3bJRhxT_j7fIx_hgJ--uG7OkKDBMPneqw4NlbShbrKDd4RZl8gCCoKns5bewV4GdOroUwnguSnpsOtrGuDpF_cWWYcU7UPbILtin4yHd8-3IxbHJTArdTKDSBC7BSILxJhcOZ9ak9ncAwDJlDZa26zGYefcey5rrwwOFy-xsFaFdXHygKw18IVDQmvtLa8Sh3WyqSyzspSqSjz4Li-Fs35AzhfCKyZ9V4wCogkUcfEj4gG5Qbkun8BO1uFC270VcWMUKfyL8Wnlfa5SjI64rQDwS57VWnnBB-RksSpF3F7T4kcZjv6_fUw2BdYrBJr1CVmbdV_uFFDErDoLqvINg2HIzg priority: 102 providerName: ProQuest |
Title | Using Very-High-Resolution Multispectral Classification to Estimate Savanna Fractional Vegetation Components |
URI | https://www.proquest.com/docview/2627828487 https://doaj.org/article/43df7f4bff95474390cb729308d65f20 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgDLAgPkWhVJZgjerYcZyMFDVUDBUCWnWLEseGAaUoDUP_PXdOCkUMLKyRE0fvbN-75O4dIdc2ywquY-Vxrq0XqML3csFyT3AgRwWLdWSd2uckHE-D-7mcb7T6wpywRh64AW4QiMIqG-TWxjJA9sx0DoRQsKgIpeVNtM74RjDlzmABS4sFjR6pgJsG1RKV6ZiU_g8P5IT6f53DzrkkB2S_ZYX0pnmbQ7JlyiOy2zYof10dkzf3a5_OTLXyMDXDw8_uzaKhrobWVUxW8AzX5RLzfxzktF7QEexi4KWGPmVAm8uMJlVTzQCjZ-alzTekeDIsSsyrOCHTZPR8O_baRgmeFqFfQwyIOoGY_6FULI0NtIp0bIF6RDJUYaijAtucM2sZoCkVthXPsKRWOosYcUo6JcxwRmgRWs1y32CFbCCyKMuEzH0LXssKbrTtkqs1eOl7o4eRQhyBEKffEHfJEHH9GoEa1u4CWDZtLZv-Zdku6a2tkrYba5nyEF4MXGqkzv9jjguyx7GewaVh90inrj7MJbCMOu-T7Si565Od4Wjy8Nh3y-sTGnjTKQ |
link.rule.ids | 314,780,784,864,2102,12765,21388,27924,27925,33373,33744,43600,43805,74035,74302 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gHMYF8RSDAZHgGpHm0ccJAWKM54UNcavaNBkHtEE3Dvx77DQbQkhc26qtHMf-7Hy2CTlxRVEJkyVMCOOYSqqIlZKXTAoARxXPTOp8t8_HuD9Uty_6JSTcpoFWObeJ3lBXE4M58lMRC3BmKeDrs_cPhlOj8HQ1jNBYJitKguvGSvHe9SLHwiUoGFdNV1IJ0f1pPcX-dFzr6Jcf8u36_1hj72J662QtYEN63izmBlmy403SDmPKX7-2yJs_4KfPtv5iSNBgmHxvVIf6SlpfN1nDO_ysS2QBecHT2YRewV4GdGrpUwHgeVzQXt3UNMDTz3YUWIcU7cNkjOyKbTLsXQ0u-yyMS2BGxtEMIkHsFogskCTJtHXKJKnJHACQVMdJHJu0wmHn3DkuK6cTHC5eYGGt9uti5Q5pjeELu4RWsTO8jCzWySpZpEUhdRk58F1OCmtchxzPhZe_N10xcogmUMT5j4g75ALlungCO1n7C5N6lIeNkSv4l8Sp0rlMK4yOuCkB8EueVrF2gndId74qedhe0_xHGfb-v31E2v3Bw31-f_N4t09WBdYueMp1l7Rm9ac9AEQxKw-92nwD_eHLsA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCa2BNh2GboXlq7rBGxXIbJk-XEq2i5Bug1BsK1Fb4Yti-1hSDonPeTfl5SVFsOAXm3DNkiK_Ch9JAG-YF232pW51NqhTPM2kY1RjTSawFGrSldg6PY5z2bn6bdLexn5T-tIq9z5xOCo25XjPfKxzjQFs4Lw9RgjLWLxdXp081fyBCk-aY3jNJ7CkKKi0gMYnkzmi5_3Oy7KkLmptO9RaijXH3dr7lanrE3-iUqhef9_vjkEnOkevIxIURz3qn0FT_zyNTyPQ8uvt2_gTzjuFxe-20qma0jeiu8NSYS62lBF2dE7wuRL5gQFNYjNSkxoZRNW9eJXTVB6WYtp11c40NMX_ipyEAV7i9WSuRZv4Xw6-X06k3F4gnQmSzaUF3LvQOaE5HlpPaYuL1yJBEcKm-VZ5oqWR58rRGVatDmPGq-5zNYGLXnzDgZL-sJ7EG2GTjWJ56rZ1NRFXRvbJEiRDI32DkfweSe86qbvkVFRbsEirh5EPIITluv9E9zXOlxYdVdVXCZVSv-SY9ogljblXEm5huC_UUWbWdRqBAc7rVRxsa2rB9PYf_z2J3hGNlP9OJt__wAvNBcyBP71AQw23a3_SPBi0xxGu7kDzLzRTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Very-High-Resolution+Multispectral+Classification+to+Estimate+Savanna+Fractional+Vegetation+Components&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Gaughan%2C+Andrea+E.&rft.au=Kolarik%2C+Nicholas+E.&rft.au=Stevens%2C+Forrest+R.&rft.au=Pricope%2C+Narcisa+G.&rft.date=2022-02-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=3&rft.spage=551&rft_id=info:doi/10.3390%2Frs14030551&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14030551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |