A Comprehensive Review of Remote Sensing Technology for Mass-Flowering Crops Extraction

Precise and reliable crop evaluations hold significant value in ensuring agricultural security and fostering agricultural progress. Using the flowering characteristics of crops during their growth period to accurately identify crops is a hot research direction in the field of agricultural remote sen...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 18; pp. 14382 - 14405
Main Authors Meng, Qingji, Zang, Shuying, Zhu, Bingxue, Song, Kaishan, Li, Miao, Sun, Li
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Precise and reliable crop evaluations hold significant value in ensuring agricultural security and fostering agricultural progress. Using the flowering characteristics of crops during their growth period to accurately identify crops is a hot research direction in the field of agricultural remote sensing. This article presents a statistical analysis of 46 articles on flowering crops published between 2004 and 2023. Based on the findings, it is evident that China, the United States, and Ukraine are the primary focus of research in this particular field. The main subjects of study are rapeseed, accounting for 50% of the research, and sunflower, which makes up 19.57% of the study. In the extraction of mass-flowering crops and the observation of their flowering periods, commonly used remote sensing data sources include optical data (Sentinel-2, Landsat 8, Landsat 5, MODIS, etc.) and radar data (Sentinel-1, TerraSAR-X, etc.), and the fusion of multisource data is an effective means to improve the research accuracy in this field. Features such as vegetation indices (notably normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI)), band features, polarization features, and phenological features are essential for analyzing mass-flowering crops. Machine learning and deep learning have proven to be valuable tools for conducting classification research in areas with intricate crop planting structures. Spatiotemporal data fusion is an important way to supplement missing images in crop flowering period identification. Sampling points can be obtained through methods such as combining flowering period characteristics with cloud platforms, sample migration, and crowdsourcing activities. This work explores an efficient approach to quickly generate comprehensive crop classification datasets on a global scale. It also presents an overview of the future development of mass-flowering crop extraction, focusing on data sources, information extraction techniques, training samples, and classification methods.
AbstractList Precise and reliable crop evaluations hold significant value in ensuring agricultural security and fostering agricultural progress. Using the flowering characteristics of crops during their growth period to accurately identify crops is a hot research direction in the field of agricultural remote sensing. This article presents a statistical analysis of 46 articles on flowering crops published between 2004 and 2023. Based on the findings, it is evident that China, the United States, and Ukraine are the primary focus of research in this particular field. The main subjects of study are rapeseed, accounting for 50% of the research, and sunflower, which makes up 19.57% of the study. In the extraction of mass-flowering crops and the observation of their flowering periods, commonly used remote sensing data sources include optical data (Sentinel-2, Landsat 8, Landsat 5, MODIS, etc.) and radar data (Sentinel-1, TerraSAR-X, etc.), and the fusion of multisource data is an effective means to improve the research accuracy in this field. Features such as vegetation indices (notably normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI)), band features, polarization features, and phenological features are essential for analyzing mass-flowering crops. Machine learning and deep learning have proven to be valuable tools for conducting classification research in areas with intricate crop planting structures. Spatiotemporal data fusion is an important way to supplement missing images in crop flowering period identification. Sampling points can be obtained through methods such as combining flowering period characteristics with cloud platforms, sample migration, and crowdsourcing activities. This work explores an efficient approach to quickly generate comprehensive crop classification datasets on a global scale. It also presents an overview of the future development of mass-flowering crop extraction, focusing on data sources, information extraction techniques, training samples, and classification methods.
Author Zhu, Bingxue
Meng, Qingji
Sun, Li
Zang, Shuying
Song, Kaishan
Li, Miao
Author_xml – sequence: 1
  givenname: Qingji
  orcidid: 0009-0000-5397-1132
  surname: Meng
  fullname: Meng, Qingji
  email: wdwyyx321@163.com
  organization: Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China
– sequence: 2
  givenname: Shuying
  orcidid: 0000-0003-1940-5916
  surname: Zang
  fullname: Zang, Shuying
  email: zsy6311@hrbnu.edu.cn
  organization: Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China
– sequence: 3
  givenname: Bingxue
  surname: Zhu
  fullname: Zhu, Bingxue
  email: zhubingxue@iga.ac.cn
  organization: State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
– sequence: 4
  givenname: Kaishan
  orcidid: 0000-0001-9996-2450
  surname: Song
  fullname: Song, Kaishan
  email: songkaishan@iga.ac.cn
  organization: State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
– sequence: 5
  givenname: Miao
  orcidid: 0000-0001-9673-0638
  surname: Li
  fullname: Li, Miao
  email: mli@hrbnu.edu.cn
  organization: Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China
– sequence: 6
  givenname: Li
  surname: Sun
  fullname: Sun, Li
  email: sunli_wabb@163.com
  organization: Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China
BookMark eNpNUU1PGzEQtRCVGgK_oBxW6nnDzNr7MccoghJEhURScbQc7zhslKxTeyHNv2fTRVVP8_Xemye9C3He-paF-IYwQQS6eVgsp8-LSQZZPpF5QUDqTIwyzDHFXObnYoQkKUUF6qu4iHEDUGQlyZF4mSYzv9sHfuU2Nu-cPPN7w4fEu77b-Y6TxenQrpMl29fWb_36mDgfkp8mxvRu6w8cTtdZ8PuY3P7pgrFd49tL8cWZbeSrzzoWv-5ul7P79PHpx3w2fUytLLBLpbMrBSvFtWNUVhnqjZbFqlB15jJwUBZYZRUrACCrOC-BAKsVU1UbAiPHYj7o1t5s9D40OxOO2ptG_134sNYmdI3dsq4toalKixILxaY0VJEt0ebO5tRPvdb3QWsf_O83jp3e-LfQ9va1zLBHg6qgR8kBZYOPMbD79xVBn9LQQxr6lIb-TKNnXQ-shpn_YxARVKX8ABBBh7U
CODEN IJSTHZ
Cites_doi 10.1080/01431161.2019.1569791
10.1016/s0034-4257(97)00114-4
10.1109/jstars.2019.2963539
10.1016/j.compag.2009.06.004
10.1109/jstars.2024.3410172
10.1109/jstars.2023.3239756
10.1016/j.agrformet.2019.107871
10.1002/agj2.20595
10.3390/rs14215625
10.1109/jstars.2019.2937949
10.3390/rs13010105
10.1109/jstars.2023.3339294
10.5589/m11-022
10.1038/s41598-021-89779-z
10.1109/jstars.2015.2454297
10.1109/tgrs.2021.3113014
10.1093/nsr/nwac290
10.1016/j.jag.2013.03.002
10.1080/01431161.2019.1601285
10.3390/su14073965
10.1109/lgrs.2017.2681128
10.3390/rs12233912
10.1016/0098-3004(93)90083-h
10.3390/rs12121984
10.1080/01431161.2012.700133
10.1080/01431161.2015.1047994
10.3390/rs13142721
10.3390/su12020466
10.3390/rs15040875
10.1016/j.isprsjprs.2019.08.007
10.3390/rs11030242
10.1016/j.rse.2020.111954
10.1109/tgrs.2022.3224580
10.1109/lgrs.2024.3456637
10.1038/sdata.2017.136
10.5194/essd-13-2857-2021
10.3390/ijgi7030080
10.1016/j.jag.2023.103198
10.1038/s41597-024-03188-1
10.1109/mgrs.2016.2561021
10.1109/jstars.2023.3329258
10.1109/lgrs.2023.3243902
10.3390/rs14051208
10.1109/jstars.2014.2371058
10.1109/igarss.2011.6049931
10.1109/tgrs.2011.2126582
10.1016/j.compag.2022.107478
10.1007/s10489-024-05818-y
10.1016/b978-0-443-18953-1.00001-5
10.1109/tgrs.2010.2095462
10.1016/j.rse.2018.10.012
10.1109/igarss.2004.1370001
10.1109/jstars.2022.3161320
10.1016/j.rse.2016.06.016
10.1080/27669645.2023.2291216
10.1109/lgrs.2023.3270488
10.3390/rs13204169
10.1109/jstars.2017.2773625
10.1016/j.compag.2020.105812
10.1016/j.srs.2021.100019
10.1016/j.rse.2024.114070
10.1017/s0014479722000278
10.1109/jstars.2021.3083610
10.1109/jstars.2022.3217665
10.3390/rs15112731
10.1080/15481603.2022.2163576
10.1109/tgrs.2021.3138078
10.1109/tgrs.2023.3277014
10.1080/10095020.2022.2100287
10.1088/1748-9326/ab80f0
10.3390/rs14051113
10.1080/19479830903561035
10.1016/s2095-3119(19)62577-3
10.1007/s11119-023-09996-6
10.3390/rs9060544
10.3390/rs10040527
10.1109/lgrs.2023.3252048
10.3390/rs9080855
10.18520/cs/v116/i2/291-298
10.1007/s12524-020-01109-4
10.1016/j.isprsjprs.2008.07.006
10.1016/s0034-4257(02)00096-2
10.1109/tgrs.2023.3259742
10.1016/j.ecoinf.2022.101552
10.3390/rs11080990
10.1016/j.rse.2020.111660
10.1145/3209811.3212707
10.1109/tgrs.2024.3487221
10.1080/014311697219187
10.1109/tgrs.2023.3286826
10.1109/jstars.2019.2922469
10.3390/rs14081809
10.1109/tgrs.2021.3080384
10.1080/01431160903475415
10.1080/01431161.2023.2205984
10.1109/jstars.2020.3005403
10.1109/lgrs.2019.2919449
10.1109/lgrs.2020.3034420
10.1109/tgrs.2016.2581210
10.1016/j.compag.2021.106188
10.1109/jstars.2022.3187179
10.3390/su141912789
10.3390/s91007771
10.1016/j.jia.2022.10.008
10.1080/01431161.2023.2192881
10.1016/s2095-3119(17)61859-8
10.3390/s20051296
10.1016/j.isprsjprs.2020.03.009
10.1109/jstars.2021.3119398
10.1080/01431161.2024.2429784
10.5194/isprsarchives-xli-b8-959-2016
10.1016/j.isprsjprs.2020.01.010
10.1016/j.isprsjprs.2020.07.013
10.3390/rs14040893
10.3390/rs11131518
10.3390/rs12172760
10.3390/rs11121443
10.1109/access.2024.3520253
10.1109/jstars.2016.2560141
10.1109/tgrs.2020.3047102
10.1016/j.compag.2015.05.001
10.1016/j.compag.2024.109097
10.1016/j.biosystemseng.2010.11.010
10.1109/lgrs.2018.2865816
10.1080/01431169608948779
10.1016/j.isprsjprs.2021.12.001
10.3390/rs12223783
10.1080/22797254.2017.1419441
10.1109/jstars.2024.3437469
10.1109/tgrs.2023.3343071
10.14358/pers.81.4.281
10.3390/rs14133191
10.1016/j.isprsjprs.2014.04.023
10.35860/iarej.848458
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2025.3569094
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 14405
ExternalDocumentID oai_doaj_org_article_dc91a87c13164ea7a989c71c5fc597a9
10_1109_JSTARS_2025_3569094
10999087
Genre orig-research
GrantInformation_xml – fundername: Academic Innovation Project of Harbin Normal University
  grantid: HSDBSCX 2024-05
– fundername: Science & Technology Fundamental Resources Investigation Program
  grantid: 2022FY100701
– fundername: National Natural Science Foundation of China
  grantid: 42430412
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: W2412013
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c361t-3fcb40b4edfe14c4a919376b64d2f20f0761828e40009c4e5709018be98da90a3
IEDL.DBID DOA
ISSN 1939-1404
IngestDate Wed Aug 27 01:20:23 EDT 2025
Thu Aug 28 18:04:17 EDT 2025
Thu Jul 03 08:16:54 EDT 2025
Wed Aug 27 01:45:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-3fcb40b4edfe14c4a919376b64d2f20f0761828e40009c4e5709018be98da90a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-5397-1132
0000-0003-1940-5916
0000-0001-9996-2450
0000-0001-9673-0638
OpenAccessLink https://doaj.org/article/dc91a87c13164ea7a989c71c5fc597a9
PQID 3219890480
PQPubID 75722
PageCount 24
ParticipantIDs proquest_journals_3219890480
doaj_primary_oai_doaj_org_article_dc91a87c13164ea7a989c71c5fc597a9
crossref_primary_10_1109_JSTARS_2025_3569094
ieee_primary_10999087
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
Herbei (ref99) 2015; 4
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
(ref50) 2024
ref49
ref8
Bauer (ref4) 1973; 20
ref7
ref9
ref3
ref6
ref5
ZHAO Longcai (ref118) 2023; 54
ref100
ref101
ref40
Xiong (ref65) 2020; 37
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Muchiri (ref79) 2022
ref28
ref27
ref29
ref13
ref12
ref15
ref128
ref14
ref129
ref97
ref126
ref96
ref127
ref11
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref139
ref86
ref137
ref85
ref138
ref88
ref135
ref87
ref136
(ref1) 2017; 46
ref82
ref144
ref81
Khaki (ref121) 2020
ref84
ref142
ref83
ref143
ref140
ref141
ref80
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
Nagraj (ref72) 2016; 7
ref2
ref71
ref111
ref70
ref112
ref73
ref110
ref68
ref119
ref67
ref117
ref69
ref64
ref63
ref116
ref66
ref113
ref114
ref60
Chollet (ref115) 2021
ref122
ref123
ref62
ref120
ref61
References_xml – ident: ref47
  doi: 10.1080/01431161.2019.1569791
– ident: ref103
  doi: 10.1016/s0034-4257(97)00114-4
– ident: ref27
  doi: 10.1109/jstars.2019.2963539
– ident: ref112
  doi: 10.1016/j.compag.2009.06.004
– ident: ref32
  doi: 10.1109/jstars.2024.3410172
– ident: ref69
  doi: 10.1109/jstars.2023.3239756
– ident: ref19
  doi: 10.1016/j.agrformet.2019.107871
– ident: ref77
  doi: 10.1002/agj2.20595
– ident: ref125
  doi: 10.3390/rs14215625
– volume: 54
  start-page: 1
  issue: 2
  year: 2023
  ident: ref118
  article-title: Review on crop type identification and yield forecasting using remote sensing
  publication-title: Nongye Jixie XuebaoTrans. Chin. Soc. Agricultural Machinery
– ident: ref38
  doi: 10.1109/jstars.2019.2937949
– ident: ref94
  doi: 10.3390/rs13010105
– ident: ref31
  doi: 10.1109/jstars.2023.3339294
– ident: ref95
  doi: 10.5589/m11-022
– volume: 20
  start-page: 205
  year: 1973
  ident: ref4
  article-title: Identification of agricultural crops by computer processing of ERTS MSS data
  publication-title: LARS Tech. Rep.
– ident: ref16
  doi: 10.1038/s41598-021-89779-z
– ident: ref97
  doi: 10.1109/jstars.2015.2454297
– ident: ref61
  doi: 10.1109/tgrs.2021.3113014
– ident: ref2
  doi: 10.1093/nsr/nwac290
– ident: ref67
  doi: 10.1016/j.jag.2013.03.002
– ident: ref131
  doi: 10.1080/01431161.2019.1601285
– ident: ref53
  doi: 10.3390/su14073965
– ident: ref59
  doi: 10.1109/lgrs.2017.2681128
– ident: ref105
  doi: 10.3390/rs12233912
– ident: ref89
  doi: 10.1016/0098-3004(93)90083-h
– ident: ref130
  doi: 10.3390/rs12121984
– ident: ref76
  doi: 10.1080/01431161.2012.700133
– ident: ref46
  doi: 10.1080/01431161.2015.1047994
– ident: ref30
  doi: 10.3390/rs13142721
– ident: ref52
  doi: 10.3390/su12020466
– ident: ref123
  doi: 10.3390/rs15040875
– ident: ref106
  doi: 10.1016/j.isprsjprs.2019.08.007
– ident: ref107
  doi: 10.3390/rs11030242
– ident: ref11
  doi: 10.1016/j.rse.2020.111954
– ident: ref23
  doi: 10.1109/tgrs.2022.3224580
– ident: ref24
  doi: 10.1109/lgrs.2024.3456637
– ident: ref133
  doi: 10.1038/sdata.2017.136
– ident: ref139
  doi: 10.5194/essd-13-2857-2021
– ident: ref132
  doi: 10.3390/ijgi7030080
– ident: ref20
  doi: 10.1016/j.jag.2023.103198
– ident: ref39
  doi: 10.1038/s41597-024-03188-1
– ident: ref90
  doi: 10.1109/mgrs.2016.2561021
– ident: ref36
  doi: 10.1109/jstars.2023.3329258
– ident: ref29
  doi: 10.1109/lgrs.2023.3243902
– ident: ref5
  doi: 10.3390/rs14051208
– ident: ref14
  doi: 10.1109/jstars.2014.2371058
– ident: ref113
  doi: 10.1109/igarss.2011.6049931
– ident: ref43
  doi: 10.1109/tgrs.2011.2126582
– ident: ref124
  doi: 10.1016/j.compag.2022.107478
– ident: ref142
  doi: 10.1007/s10489-024-05818-y
– ident: ref80
  doi: 10.1016/b978-0-443-18953-1.00001-5
– ident: ref10
  doi: 10.1109/tgrs.2010.2095462
– ident: ref75
  doi: 10.1016/j.rse.2018.10.012
– ident: ref101
  doi: 10.1109/igarss.2004.1370001
– ident: ref6
  doi: 10.1109/jstars.2022.3161320
– ident: ref45
  doi: 10.1016/j.rse.2016.06.016
– ident: ref58
  doi: 10.1080/27669645.2023.2291216
– ident: ref9
  doi: 10.1109/lgrs.2023.3270488
– ident: ref136
  doi: 10.3390/rs13204169
– ident: ref12
  doi: 10.1109/jstars.2017.2773625
– ident: ref82
  doi: 10.1016/j.compag.2020.105812
– ident: ref85
  doi: 10.1016/j.srs.2021.100019
– ident: ref28
  doi: 10.1016/j.rse.2024.114070
– ident: ref66
  doi: 10.1017/s0014479722000278
– ident: ref3
  doi: 10.1109/jstars.2021.3083610
– ident: ref40
  doi: 10.1109/jstars.2022.3217665
– ident: ref73
  doi: 10.3390/rs15112731
– ident: ref102
  doi: 10.1080/15481603.2022.2163576
– ident: ref129
  doi: 10.1109/tgrs.2021.3138078
– ident: ref117
  doi: 10.1109/tgrs.2023.3277014
– ident: ref37
  doi: 10.1080/10095020.2022.2100287
– ident: ref141
  doi: 10.1088/1748-9326/ab80f0
– ident: ref41
  doi: 10.3390/rs14051113
– ident: ref87
  doi: 10.1080/19479830903561035
– ident: ref110
  doi: 10.1016/s2095-3119(19)62577-3
– ident: ref83
  doi: 10.1007/s11119-023-09996-6
– ident: ref22
  doi: 10.3390/rs9060544
– ident: ref127
  doi: 10.3390/rs10040527
– start-page: 280
  volume-title: Proc. 2016 Sustain. Res. Innov. Conf.
  year: 2022
  ident: ref79
  article-title: A review of applications and potential applications of UAV
– year: 2020
  ident: ref121
  article-title: YieldNet: A convolutional neural network for simultaneous corn and soybean yield prediction based on remote sensing data
  publication-title: Bioinformatics
– ident: ref119
  doi: 10.1109/lgrs.2023.3252048
– ident: ref100
  doi: 10.3390/rs9080855
– ident: ref7
  doi: 10.18520/cs/v116/i2/291-298
– year: 2024
  ident: ref50
  article-title: Global spatially-disaggregated crop production statistics data for 2020 version 1.0
– volume: 46
  volume-title: Department of Economics and Social Affairs PD
  year: 2017
  ident: ref1
  article-title: World population prospects: The 2017 revision, key findings and advance tables
– ident: ref60
  doi: 10.1007/s12524-020-01109-4
– ident: ref98
  doi: 10.1016/j.isprsjprs.2008.07.006
– ident: ref104
  doi: 10.1016/s0034-4257(02)00096-2
– ident: ref17
  doi: 10.1109/tgrs.2023.3259742
– ident: ref122
  doi: 10.1016/j.ecoinf.2022.101552
– ident: ref126
  doi: 10.3390/rs11080990
– ident: ref44
  doi: 10.1016/j.rse.2020.111660
– volume: 4
  start-page: 79
  issue: 1
  year: 2015
  ident: ref99
  article-title: Use Landsat image to evaluate vegetation stage in sunflower crops
  publication-title: Agrolife Scientif. J.
– ident: ref120
  doi: 10.1145/3209811.3212707
– ident: ref35
  doi: 10.1109/tgrs.2024.3487221
– ident: ref88
  doi: 10.1080/014311697219187
– ident: ref144
  doi: 10.1109/tgrs.2023.3286826
– ident: ref62
  doi: 10.1109/jstars.2019.2922469
– ident: ref140
  doi: 10.3390/rs14081809
– ident: ref128
  doi: 10.1109/tgrs.2021.3080384
– ident: ref93
  doi: 10.1080/01431160903475415
– ident: ref48
  doi: 10.1080/01431161.2023.2205984
– ident: ref116
  doi: 10.1109/jstars.2020.3005403
– ident: ref34
  doi: 10.1109/lgrs.2019.2919449
– ident: ref71
  doi: 10.1109/lgrs.2020.3034420
– ident: ref55
  doi: 10.1109/tgrs.2016.2581210
– ident: ref68
  doi: 10.1016/j.compag.2021.106188
– ident: ref57
  doi: 10.1109/jstars.2022.3187179
– ident: ref63
  doi: 10.3390/su141912789
– ident: ref86
  doi: 10.3390/s91007771
– ident: ref64
  doi: 10.1016/j.jia.2022.10.008
– ident: ref134
  doi: 10.1080/01431161.2023.2192881
– ident: ref51
  doi: 10.1016/s2095-3119(17)61859-8
– ident: ref13
  doi: 10.3390/s20051296
– ident: ref92
  doi: 10.1016/j.isprsjprs.2020.03.009
– ident: ref18
  doi: 10.1109/jstars.2021.3119398
– ident: ref91
  doi: 10.1080/01431161.2024.2429784
– ident: ref111
  doi: 10.5194/isprsarchives-xli-b8-959-2016
– ident: ref135
  doi: 10.1016/j.isprsjprs.2020.01.010
– ident: ref137
  doi: 10.1016/j.isprsjprs.2020.07.013
– ident: ref26
  doi: 10.3390/rs14040893
– ident: ref74
  doi: 10.3390/rs11131518
– ident: ref109
  doi: 10.3390/rs12172760
– volume-title: Deep Learning With Python
  year: 2021
  ident: ref115
– ident: ref84
  doi: 10.3390/rs11121443
– ident: ref143
  doi: 10.1109/access.2024.3520253
– ident: ref8
  doi: 10.1109/jstars.2016.2560141
– ident: ref15
  doi: 10.1109/tgrs.2020.3047102
– ident: ref33
  doi: 10.1016/j.compag.2015.05.001
– ident: ref70
  doi: 10.1016/j.compag.2024.109097
– ident: ref78
  doi: 10.1016/j.biosystemseng.2010.11.010
– ident: ref25
  doi: 10.1109/lgrs.2018.2865816
– ident: ref96
  doi: 10.1080/01431169608948779
– ident: ref42
  doi: 10.1016/j.isprsjprs.2021.12.001
– ident: ref49
  doi: 10.3390/rs12223783
– ident: ref108
  doi: 10.1080/22797254.2017.1419441
– ident: ref21
  doi: 10.1109/jstars.2024.3437469
– ident: ref56
  doi: 10.1109/tgrs.2023.3343071
– ident: ref81
  doi: 10.14358/pers.81.4.281
– ident: ref138
  doi: 10.3390/rs14133191
– volume: 37
  start-page: 856
  issue: 6
  year: 2020
  ident: ref65
  article-title: Progress and prospect of cultivated land extraction research using remote sensing
  publication-title: J. Agricultural Resour. Environ.
– ident: ref54
  doi: 10.1016/j.isprsjprs.2014.04.023
– volume: 7
  start-page: 47
  issue: 7
  year: 2016
  ident: ref72
  article-title: Crop mapping using SAR imagery: A review
  publication-title: Int. J. Adv. Res. Comput. Sci.
– ident: ref114
  doi: 10.35860/iarej.848458
SSID ssj0062793
Score 2.3745852
Snippet Precise and reliable crop evaluations hold significant value in ensuring agricultural security and fostering agricultural progress. Using the flowering...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 14382
SubjectTerms Asia
Classification
Crop identification
Crop planting
Crops
Data integration
Data mining
Data sources
Deep learning
Earth
Extraction
Flowering
Flowering plants
Information retrieval
Landsat
Laser radar
Machine learning
mass-flowering crops
Monitoring
Normalized difference vegetative index
Radar data
Rapeseed
Remote sensing
remote sensing (RS)
Soft sensors
Spatiotemporal data
Statistical analysis
Statistical methods
sunflower
Vegetation
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bSxwxFA5VEHyp1ipda0se-tisc8ll8rgVt1LQh1rRt5DJnLRQ2ZV1FtRf7znJbLUthb6FyYTJ5MvlOyfnwtgHsE0Ro2qEjo0UsgQlfOiiCBFiV_muLWvyHT490ycX8suVuhqc1ZMvDAAk4zMYUzHd5XfzsCRV2SHd4tiiMWtsDSW37Ky12nZ1ZVKEXSQkVlDMmCHEELY5xDk--XqOwmClxrVCedDK346hFK1_SK_y156cDprpFjtbdTHbl_wcL_t2HB7-iN743_-wzV4OlJNP8hx5xV7AbIdtfE4pfe9fs8sJp01hAT-yLTvP1wV8HrGEQAI_p4rZd_6khudIdfkp8m4xvaY0a1R7tJjf3PLju36RfSV22cX0-NvRiRjSLYhQ67IXdQytLFoJXYRSBuktjqXRrZZdFasiksYD5TOQxMuCBGUKJBNNi3B33ha-3mPrs_kM3jBuGmmjMQCqslIp7ZUOCqmpCqEKRpsR-7gafXeTo2q4JI0U1mWwHIHlBrBG7BMh9OtVComdHuDIumGFuS7Y0jcmlDVKgOCNt40NpgwqBhSavB2xXULj2fcyECN2sALcDev31tUV2ZKRv_3-P5q9ZZvUxayNOWDr_WIJ75Cf9O37NC8fAWgo4Ng
  priority: 102
  providerName: IEEE
Title A Comprehensive Review of Remote Sensing Technology for Mass-Flowering Crops Extraction
URI https://ieeexplore.ieee.org/document/10999087
https://www.proquest.com/docview/3219890480
https://doaj.org/article/dc91a87c13164ea7a989c71c5fc597a9
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgRHyuurpKDR6N95NEcV3EVQQ_qoreQpokepLt0K-i_d5J0dcWDF2-lLSSZL49vhsw3CB1ZWSTOsYJwV1BCU8uINpUjxllXZboq09znDt_c8qsJvX5iT0ulvvydsCgPHA13WhmZ6kKYNAdib7XQspBGpIY5A1xYh9Q9OPMWzlTcg3kmgtwusBNJvIBMpzeUJvIUJvzo7h48w4yd5AycQ0l_nElBur-rtfJrgw6nzngDrXd0EY9iNzfRiq230OplKMf7sY0eR9gv6Ma-xHvoOIb68dTBE4Bg8b3_UD_j7xA6BpqKb4Azk_GrL5Hmv54309kcX7y3Tcxz6KPJ-OLh_Ip0pRKIyXnaktyZkiYltZWzKTVUSxi64CWnVeayxPloBfhWlnpOZahlIgEiUJQAVaVlovMd1Kuntd1FWBRUOiGsZZmkjHHNuGFAK5kxmRFcDNDxwlhqFhUxVPAkEqmibZW3repsO0Bn3qBfv3o56_ACQFYdyOovkAeo7-FYag94bVJAX4YLfFS39uYqz_w9MJ8rv_cfbe-jNT-eGHYZol7bvNkDICJteRjm3GHIGfwE887X5g
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JbxMxFH6CIgQX1qIGCvjAEaezeBkfQ9UQoMmBtqI3y-N5BokqqdKJBPx6nu0Jq5C4WeOxxuPPy_ee3wLwAk1ThCAbrkIjuChRcue7wH3A0FWua8s6-g7PF2p2Jt6ey_PBWT35wiBiMj7DcSymu_xu5TdRVXYQb3FM0ejrcIMOfllmd63txqsqnWLsEiUxPEaNGYIMUasDmuWT9yckDlZyXEuSCI347SBK8fqHBCt_7crpqJnehcW2k9nC5PN407dj_-2P-I3__Rf34M5AOtkkz5L7cA2XD-Dm65TU9-tD-DBhcVtY46dszc7yhQFbBSoRlMhOYsXyI_upiGdEdtmcmDefXsREa7H2cL26vGJHX_p19pbYhbPp0enhjA8JF7ivVdnzOvhWFK3ALmApvHCGxlKrVomuClURos6DJDQUkZl5gVIXRCealgDvnClc_Qh2lqsl7gHTjTBBa0RZGYJKOam8JHIqva-8VnoEL7ejby9zXA2b5JHC2AyWjWDZAawRvIoI_Xg1BsVOD2hk7bDGbOdN6Rrty5pkQHTamcZ4XXoZPIlNzoxgN6Lxy_cyECPY3wJuhxV8ZesqWpNFj_vH_2j2HG7NTufH9vjN4t0TuB27m3Uz-7DTrzf4lNhK3z5Lc_Q7TazkIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Review+of+Remote+Sensing+Technology+for+Mass-Flowering+Crops+Extraction&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Meng%2C+Qingji&rft.au=Zang%2C+Shuying&rft.au=Zhu%2C+Bingxue&rft.au=Song%2C+Kaishan&rft.date=2025&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=18&rft.spage=14382&rft.epage=14405&rft_id=info:doi/10.1109%2FJSTARS.2025.3569094&rft.externalDocID=10999087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon