A Comprehensive Review of Remote Sensing Technology for Mass-Flowering Crops Extraction
Precise and reliable crop evaluations hold significant value in ensuring agricultural security and fostering agricultural progress. Using the flowering characteristics of crops during their growth period to accurately identify crops is a hot research direction in the field of agricultural remote sen...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 18; pp. 14382 - 14405 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Precise and reliable crop evaluations hold significant value in ensuring agricultural security and fostering agricultural progress. Using the flowering characteristics of crops during their growth period to accurately identify crops is a hot research direction in the field of agricultural remote sensing. This article presents a statistical analysis of 46 articles on flowering crops published between 2004 and 2023. Based on the findings, it is evident that China, the United States, and Ukraine are the primary focus of research in this particular field. The main subjects of study are rapeseed, accounting for 50% of the research, and sunflower, which makes up 19.57% of the study. In the extraction of mass-flowering crops and the observation of their flowering periods, commonly used remote sensing data sources include optical data (Sentinel-2, Landsat 8, Landsat 5, MODIS, etc.) and radar data (Sentinel-1, TerraSAR-X, etc.), and the fusion of multisource data is an effective means to improve the research accuracy in this field. Features such as vegetation indices (notably normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI)), band features, polarization features, and phenological features are essential for analyzing mass-flowering crops. Machine learning and deep learning have proven to be valuable tools for conducting classification research in areas with intricate crop planting structures. Spatiotemporal data fusion is an important way to supplement missing images in crop flowering period identification. Sampling points can be obtained through methods such as combining flowering period characteristics with cloud platforms, sample migration, and crowdsourcing activities. This work explores an efficient approach to quickly generate comprehensive crop classification datasets on a global scale. It also presents an overview of the future development of mass-flowering crop extraction, focusing on data sources, information extraction techniques, training samples, and classification methods. |
---|---|
AbstractList | Precise and reliable crop evaluations hold significant value in ensuring agricultural security and fostering agricultural progress. Using the flowering characteristics of crops during their growth period to accurately identify crops is a hot research direction in the field of agricultural remote sensing. This article presents a statistical analysis of 46 articles on flowering crops published between 2004 and 2023. Based on the findings, it is evident that China, the United States, and Ukraine are the primary focus of research in this particular field. The main subjects of study are rapeseed, accounting for 50% of the research, and sunflower, which makes up 19.57% of the study. In the extraction of mass-flowering crops and the observation of their flowering periods, commonly used remote sensing data sources include optical data (Sentinel-2, Landsat 8, Landsat 5, MODIS, etc.) and radar data (Sentinel-1, TerraSAR-X, etc.), and the fusion of multisource data is an effective means to improve the research accuracy in this field. Features such as vegetation indices (notably normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI)), band features, polarization features, and phenological features are essential for analyzing mass-flowering crops. Machine learning and deep learning have proven to be valuable tools for conducting classification research in areas with intricate crop planting structures. Spatiotemporal data fusion is an important way to supplement missing images in crop flowering period identification. Sampling points can be obtained through methods such as combining flowering period characteristics with cloud platforms, sample migration, and crowdsourcing activities. This work explores an efficient approach to quickly generate comprehensive crop classification datasets on a global scale. It also presents an overview of the future development of mass-flowering crop extraction, focusing on data sources, information extraction techniques, training samples, and classification methods. |
Author | Zhu, Bingxue Meng, Qingji Sun, Li Zang, Shuying Song, Kaishan Li, Miao |
Author_xml | – sequence: 1 givenname: Qingji orcidid: 0009-0000-5397-1132 surname: Meng fullname: Meng, Qingji email: wdwyyx321@163.com organization: Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China – sequence: 2 givenname: Shuying orcidid: 0000-0003-1940-5916 surname: Zang fullname: Zang, Shuying email: zsy6311@hrbnu.edu.cn organization: Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China – sequence: 3 givenname: Bingxue surname: Zhu fullname: Zhu, Bingxue email: zhubingxue@iga.ac.cn organization: State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China – sequence: 4 givenname: Kaishan orcidid: 0000-0001-9996-2450 surname: Song fullname: Song, Kaishan email: songkaishan@iga.ac.cn organization: State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China – sequence: 5 givenname: Miao orcidid: 0000-0001-9673-0638 surname: Li fullname: Li, Miao email: mli@hrbnu.edu.cn organization: Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China – sequence: 6 givenname: Li surname: Sun fullname: Sun, Li email: sunli_wabb@163.com organization: Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China |
BookMark | eNpNUU1PGzEQtRCVGgK_oBxW6nnDzNr7MccoghJEhURScbQc7zhslKxTeyHNv2fTRVVP8_Xemye9C3He-paF-IYwQQS6eVgsp8-LSQZZPpF5QUDqTIwyzDHFXObnYoQkKUUF6qu4iHEDUGQlyZF4mSYzv9sHfuU2Nu-cPPN7w4fEu77b-Y6TxenQrpMl29fWb_36mDgfkp8mxvRu6w8cTtdZ8PuY3P7pgrFd49tL8cWZbeSrzzoWv-5ul7P79PHpx3w2fUytLLBLpbMrBSvFtWNUVhnqjZbFqlB15jJwUBZYZRUrACCrOC-BAKsVU1UbAiPHYj7o1t5s9D40OxOO2ptG_134sNYmdI3dsq4toalKixILxaY0VJEt0ebO5tRPvdb3QWsf_O83jp3e-LfQ9va1zLBHg6qgR8kBZYOPMbD79xVBn9LQQxr6lIb-TKNnXQ-shpn_YxARVKX8ABBBh7U |
CODEN | IJSTHZ |
Cites_doi | 10.1080/01431161.2019.1569791 10.1016/s0034-4257(97)00114-4 10.1109/jstars.2019.2963539 10.1016/j.compag.2009.06.004 10.1109/jstars.2024.3410172 10.1109/jstars.2023.3239756 10.1016/j.agrformet.2019.107871 10.1002/agj2.20595 10.3390/rs14215625 10.1109/jstars.2019.2937949 10.3390/rs13010105 10.1109/jstars.2023.3339294 10.5589/m11-022 10.1038/s41598-021-89779-z 10.1109/jstars.2015.2454297 10.1109/tgrs.2021.3113014 10.1093/nsr/nwac290 10.1016/j.jag.2013.03.002 10.1080/01431161.2019.1601285 10.3390/su14073965 10.1109/lgrs.2017.2681128 10.3390/rs12233912 10.1016/0098-3004(93)90083-h 10.3390/rs12121984 10.1080/01431161.2012.700133 10.1080/01431161.2015.1047994 10.3390/rs13142721 10.3390/su12020466 10.3390/rs15040875 10.1016/j.isprsjprs.2019.08.007 10.3390/rs11030242 10.1016/j.rse.2020.111954 10.1109/tgrs.2022.3224580 10.1109/lgrs.2024.3456637 10.1038/sdata.2017.136 10.5194/essd-13-2857-2021 10.3390/ijgi7030080 10.1016/j.jag.2023.103198 10.1038/s41597-024-03188-1 10.1109/mgrs.2016.2561021 10.1109/jstars.2023.3329258 10.1109/lgrs.2023.3243902 10.3390/rs14051208 10.1109/jstars.2014.2371058 10.1109/igarss.2011.6049931 10.1109/tgrs.2011.2126582 10.1016/j.compag.2022.107478 10.1007/s10489-024-05818-y 10.1016/b978-0-443-18953-1.00001-5 10.1109/tgrs.2010.2095462 10.1016/j.rse.2018.10.012 10.1109/igarss.2004.1370001 10.1109/jstars.2022.3161320 10.1016/j.rse.2016.06.016 10.1080/27669645.2023.2291216 10.1109/lgrs.2023.3270488 10.3390/rs13204169 10.1109/jstars.2017.2773625 10.1016/j.compag.2020.105812 10.1016/j.srs.2021.100019 10.1016/j.rse.2024.114070 10.1017/s0014479722000278 10.1109/jstars.2021.3083610 10.1109/jstars.2022.3217665 10.3390/rs15112731 10.1080/15481603.2022.2163576 10.1109/tgrs.2021.3138078 10.1109/tgrs.2023.3277014 10.1080/10095020.2022.2100287 10.1088/1748-9326/ab80f0 10.3390/rs14051113 10.1080/19479830903561035 10.1016/s2095-3119(19)62577-3 10.1007/s11119-023-09996-6 10.3390/rs9060544 10.3390/rs10040527 10.1109/lgrs.2023.3252048 10.3390/rs9080855 10.18520/cs/v116/i2/291-298 10.1007/s12524-020-01109-4 10.1016/j.isprsjprs.2008.07.006 10.1016/s0034-4257(02)00096-2 10.1109/tgrs.2023.3259742 10.1016/j.ecoinf.2022.101552 10.3390/rs11080990 10.1016/j.rse.2020.111660 10.1145/3209811.3212707 10.1109/tgrs.2024.3487221 10.1080/014311697219187 10.1109/tgrs.2023.3286826 10.1109/jstars.2019.2922469 10.3390/rs14081809 10.1109/tgrs.2021.3080384 10.1080/01431160903475415 10.1080/01431161.2023.2205984 10.1109/jstars.2020.3005403 10.1109/lgrs.2019.2919449 10.1109/lgrs.2020.3034420 10.1109/tgrs.2016.2581210 10.1016/j.compag.2021.106188 10.1109/jstars.2022.3187179 10.3390/su141912789 10.3390/s91007771 10.1016/j.jia.2022.10.008 10.1080/01431161.2023.2192881 10.1016/s2095-3119(17)61859-8 10.3390/s20051296 10.1016/j.isprsjprs.2020.03.009 10.1109/jstars.2021.3119398 10.1080/01431161.2024.2429784 10.5194/isprsarchives-xli-b8-959-2016 10.1016/j.isprsjprs.2020.01.010 10.1016/j.isprsjprs.2020.07.013 10.3390/rs14040893 10.3390/rs11131518 10.3390/rs12172760 10.3390/rs11121443 10.1109/access.2024.3520253 10.1109/jstars.2016.2560141 10.1109/tgrs.2020.3047102 10.1016/j.compag.2015.05.001 10.1016/j.compag.2024.109097 10.1016/j.biosystemseng.2010.11.010 10.1109/lgrs.2018.2865816 10.1080/01431169608948779 10.1016/j.isprsjprs.2021.12.001 10.3390/rs12223783 10.1080/22797254.2017.1419441 10.1109/jstars.2024.3437469 10.1109/tgrs.2023.3343071 10.14358/pers.81.4.281 10.3390/rs14133191 10.1016/j.isprsjprs.2014.04.023 10.35860/iarej.848458 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2025.3569094 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) - NZ url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 14405 |
ExternalDocumentID | oai_doaj_org_article_dc91a87c13164ea7a989c71c5fc597a9 10_1109_JSTARS_2025_3569094 10999087 |
Genre | orig-research |
GrantInformation_xml | – fundername: Academic Innovation Project of Harbin Normal University grantid: HSDBSCX 2024-05 – fundername: Science & Technology Fundamental Resources Investigation Program grantid: 2022FY100701 – fundername: National Natural Science Foundation of China grantid: 42430412 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: W2412013 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c361t-3fcb40b4edfe14c4a919376b64d2f20f0761828e40009c4e5709018be98da90a3 |
IEDL.DBID | DOA |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:20:23 EDT 2025 Thu Aug 28 18:04:17 EDT 2025 Thu Jul 03 08:16:54 EDT 2025 Wed Aug 27 01:45:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-3fcb40b4edfe14c4a919376b64d2f20f0761828e40009c4e5709018be98da90a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0000-5397-1132 0000-0003-1940-5916 0000-0001-9996-2450 0000-0001-9673-0638 |
OpenAccessLink | https://doaj.org/article/dc91a87c13164ea7a989c71c5fc597a9 |
PQID | 3219890480 |
PQPubID | 75722 |
PageCount | 24 |
ParticipantIDs | proquest_journals_3219890480 doaj_primary_oai_doaj_org_article_dc91a87c13164ea7a989c71c5fc597a9 crossref_primary_10_1109_JSTARS_2025_3569094 ieee_primary_10999087 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 Herbei (ref99) 2015; 4 ref51 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 (ref50) 2024 ref49 ref8 Bauer (ref4) 1973; 20 ref7 ref9 ref3 ref6 ref5 ZHAO Longcai (ref118) 2023; 54 ref100 ref101 ref40 Xiong (ref65) 2020; 37 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Muchiri (ref79) 2022 ref28 ref27 ref29 ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref96 ref127 ref11 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref133 ref92 ref134 ref95 ref131 ref94 ref132 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref135 ref87 ref136 (ref1) 2017; 46 ref82 ref144 ref81 Khaki (ref121) 2020 ref84 ref142 ref83 ref143 ref140 ref141 ref80 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 Nagraj (ref72) 2016; 7 ref2 ref71 ref111 ref70 ref112 ref73 ref110 ref68 ref119 ref67 ref117 ref69 ref64 ref63 ref116 ref66 ref113 ref114 ref60 Chollet (ref115) 2021 ref122 ref123 ref62 ref120 ref61 |
References_xml | – ident: ref47 doi: 10.1080/01431161.2019.1569791 – ident: ref103 doi: 10.1016/s0034-4257(97)00114-4 – ident: ref27 doi: 10.1109/jstars.2019.2963539 – ident: ref112 doi: 10.1016/j.compag.2009.06.004 – ident: ref32 doi: 10.1109/jstars.2024.3410172 – ident: ref69 doi: 10.1109/jstars.2023.3239756 – ident: ref19 doi: 10.1016/j.agrformet.2019.107871 – ident: ref77 doi: 10.1002/agj2.20595 – ident: ref125 doi: 10.3390/rs14215625 – volume: 54 start-page: 1 issue: 2 year: 2023 ident: ref118 article-title: Review on crop type identification and yield forecasting using remote sensing publication-title: Nongye Jixie XuebaoTrans. Chin. Soc. Agricultural Machinery – ident: ref38 doi: 10.1109/jstars.2019.2937949 – ident: ref94 doi: 10.3390/rs13010105 – ident: ref31 doi: 10.1109/jstars.2023.3339294 – ident: ref95 doi: 10.5589/m11-022 – volume: 20 start-page: 205 year: 1973 ident: ref4 article-title: Identification of agricultural crops by computer processing of ERTS MSS data publication-title: LARS Tech. Rep. – ident: ref16 doi: 10.1038/s41598-021-89779-z – ident: ref97 doi: 10.1109/jstars.2015.2454297 – ident: ref61 doi: 10.1109/tgrs.2021.3113014 – ident: ref2 doi: 10.1093/nsr/nwac290 – ident: ref67 doi: 10.1016/j.jag.2013.03.002 – ident: ref131 doi: 10.1080/01431161.2019.1601285 – ident: ref53 doi: 10.3390/su14073965 – ident: ref59 doi: 10.1109/lgrs.2017.2681128 – ident: ref105 doi: 10.3390/rs12233912 – ident: ref89 doi: 10.1016/0098-3004(93)90083-h – ident: ref130 doi: 10.3390/rs12121984 – ident: ref76 doi: 10.1080/01431161.2012.700133 – ident: ref46 doi: 10.1080/01431161.2015.1047994 – ident: ref30 doi: 10.3390/rs13142721 – ident: ref52 doi: 10.3390/su12020466 – ident: ref123 doi: 10.3390/rs15040875 – ident: ref106 doi: 10.1016/j.isprsjprs.2019.08.007 – ident: ref107 doi: 10.3390/rs11030242 – ident: ref11 doi: 10.1016/j.rse.2020.111954 – ident: ref23 doi: 10.1109/tgrs.2022.3224580 – ident: ref24 doi: 10.1109/lgrs.2024.3456637 – ident: ref133 doi: 10.1038/sdata.2017.136 – ident: ref139 doi: 10.5194/essd-13-2857-2021 – ident: ref132 doi: 10.3390/ijgi7030080 – ident: ref20 doi: 10.1016/j.jag.2023.103198 – ident: ref39 doi: 10.1038/s41597-024-03188-1 – ident: ref90 doi: 10.1109/mgrs.2016.2561021 – ident: ref36 doi: 10.1109/jstars.2023.3329258 – ident: ref29 doi: 10.1109/lgrs.2023.3243902 – ident: ref5 doi: 10.3390/rs14051208 – ident: ref14 doi: 10.1109/jstars.2014.2371058 – ident: ref113 doi: 10.1109/igarss.2011.6049931 – ident: ref43 doi: 10.1109/tgrs.2011.2126582 – ident: ref124 doi: 10.1016/j.compag.2022.107478 – ident: ref142 doi: 10.1007/s10489-024-05818-y – ident: ref80 doi: 10.1016/b978-0-443-18953-1.00001-5 – ident: ref10 doi: 10.1109/tgrs.2010.2095462 – ident: ref75 doi: 10.1016/j.rse.2018.10.012 – ident: ref101 doi: 10.1109/igarss.2004.1370001 – ident: ref6 doi: 10.1109/jstars.2022.3161320 – ident: ref45 doi: 10.1016/j.rse.2016.06.016 – ident: ref58 doi: 10.1080/27669645.2023.2291216 – ident: ref9 doi: 10.1109/lgrs.2023.3270488 – ident: ref136 doi: 10.3390/rs13204169 – ident: ref12 doi: 10.1109/jstars.2017.2773625 – ident: ref82 doi: 10.1016/j.compag.2020.105812 – ident: ref85 doi: 10.1016/j.srs.2021.100019 – ident: ref28 doi: 10.1016/j.rse.2024.114070 – ident: ref66 doi: 10.1017/s0014479722000278 – ident: ref3 doi: 10.1109/jstars.2021.3083610 – ident: ref40 doi: 10.1109/jstars.2022.3217665 – ident: ref73 doi: 10.3390/rs15112731 – ident: ref102 doi: 10.1080/15481603.2022.2163576 – ident: ref129 doi: 10.1109/tgrs.2021.3138078 – ident: ref117 doi: 10.1109/tgrs.2023.3277014 – ident: ref37 doi: 10.1080/10095020.2022.2100287 – ident: ref141 doi: 10.1088/1748-9326/ab80f0 – ident: ref41 doi: 10.3390/rs14051113 – ident: ref87 doi: 10.1080/19479830903561035 – ident: ref110 doi: 10.1016/s2095-3119(19)62577-3 – ident: ref83 doi: 10.1007/s11119-023-09996-6 – ident: ref22 doi: 10.3390/rs9060544 – ident: ref127 doi: 10.3390/rs10040527 – start-page: 280 volume-title: Proc. 2016 Sustain. Res. Innov. Conf. year: 2022 ident: ref79 article-title: A review of applications and potential applications of UAV – year: 2020 ident: ref121 article-title: YieldNet: A convolutional neural network for simultaneous corn and soybean yield prediction based on remote sensing data publication-title: Bioinformatics – ident: ref119 doi: 10.1109/lgrs.2023.3252048 – ident: ref100 doi: 10.3390/rs9080855 – ident: ref7 doi: 10.18520/cs/v116/i2/291-298 – year: 2024 ident: ref50 article-title: Global spatially-disaggregated crop production statistics data for 2020 version 1.0 – volume: 46 volume-title: Department of Economics and Social Affairs PD year: 2017 ident: ref1 article-title: World population prospects: The 2017 revision, key findings and advance tables – ident: ref60 doi: 10.1007/s12524-020-01109-4 – ident: ref98 doi: 10.1016/j.isprsjprs.2008.07.006 – ident: ref104 doi: 10.1016/s0034-4257(02)00096-2 – ident: ref17 doi: 10.1109/tgrs.2023.3259742 – ident: ref122 doi: 10.1016/j.ecoinf.2022.101552 – ident: ref126 doi: 10.3390/rs11080990 – ident: ref44 doi: 10.1016/j.rse.2020.111660 – volume: 4 start-page: 79 issue: 1 year: 2015 ident: ref99 article-title: Use Landsat image to evaluate vegetation stage in sunflower crops publication-title: Agrolife Scientif. J. – ident: ref120 doi: 10.1145/3209811.3212707 – ident: ref35 doi: 10.1109/tgrs.2024.3487221 – ident: ref88 doi: 10.1080/014311697219187 – ident: ref144 doi: 10.1109/tgrs.2023.3286826 – ident: ref62 doi: 10.1109/jstars.2019.2922469 – ident: ref140 doi: 10.3390/rs14081809 – ident: ref128 doi: 10.1109/tgrs.2021.3080384 – ident: ref93 doi: 10.1080/01431160903475415 – ident: ref48 doi: 10.1080/01431161.2023.2205984 – ident: ref116 doi: 10.1109/jstars.2020.3005403 – ident: ref34 doi: 10.1109/lgrs.2019.2919449 – ident: ref71 doi: 10.1109/lgrs.2020.3034420 – ident: ref55 doi: 10.1109/tgrs.2016.2581210 – ident: ref68 doi: 10.1016/j.compag.2021.106188 – ident: ref57 doi: 10.1109/jstars.2022.3187179 – ident: ref63 doi: 10.3390/su141912789 – ident: ref86 doi: 10.3390/s91007771 – ident: ref64 doi: 10.1016/j.jia.2022.10.008 – ident: ref134 doi: 10.1080/01431161.2023.2192881 – ident: ref51 doi: 10.1016/s2095-3119(17)61859-8 – ident: ref13 doi: 10.3390/s20051296 – ident: ref92 doi: 10.1016/j.isprsjprs.2020.03.009 – ident: ref18 doi: 10.1109/jstars.2021.3119398 – ident: ref91 doi: 10.1080/01431161.2024.2429784 – ident: ref111 doi: 10.5194/isprsarchives-xli-b8-959-2016 – ident: ref135 doi: 10.1016/j.isprsjprs.2020.01.010 – ident: ref137 doi: 10.1016/j.isprsjprs.2020.07.013 – ident: ref26 doi: 10.3390/rs14040893 – ident: ref74 doi: 10.3390/rs11131518 – ident: ref109 doi: 10.3390/rs12172760 – volume-title: Deep Learning With Python year: 2021 ident: ref115 – ident: ref84 doi: 10.3390/rs11121443 – ident: ref143 doi: 10.1109/access.2024.3520253 – ident: ref8 doi: 10.1109/jstars.2016.2560141 – ident: ref15 doi: 10.1109/tgrs.2020.3047102 – ident: ref33 doi: 10.1016/j.compag.2015.05.001 – ident: ref70 doi: 10.1016/j.compag.2024.109097 – ident: ref78 doi: 10.1016/j.biosystemseng.2010.11.010 – ident: ref25 doi: 10.1109/lgrs.2018.2865816 – ident: ref96 doi: 10.1080/01431169608948779 – ident: ref42 doi: 10.1016/j.isprsjprs.2021.12.001 – ident: ref49 doi: 10.3390/rs12223783 – ident: ref108 doi: 10.1080/22797254.2017.1419441 – ident: ref21 doi: 10.1109/jstars.2024.3437469 – ident: ref56 doi: 10.1109/tgrs.2023.3343071 – ident: ref81 doi: 10.14358/pers.81.4.281 – ident: ref138 doi: 10.3390/rs14133191 – volume: 37 start-page: 856 issue: 6 year: 2020 ident: ref65 article-title: Progress and prospect of cultivated land extraction research using remote sensing publication-title: J. Agricultural Resour. Environ. – ident: ref54 doi: 10.1016/j.isprsjprs.2014.04.023 – volume: 7 start-page: 47 issue: 7 year: 2016 ident: ref72 article-title: Crop mapping using SAR imagery: A review publication-title: Int. J. Adv. Res. Comput. Sci. – ident: ref114 doi: 10.35860/iarej.848458 |
SSID | ssj0062793 |
Score | 2.3745852 |
Snippet | Precise and reliable crop evaluations hold significant value in ensuring agricultural security and fostering agricultural progress. Using the flowering... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 14382 |
SubjectTerms | Asia Classification Crop identification Crop planting Crops Data integration Data mining Data sources Deep learning Earth Extraction Flowering Flowering plants Information retrieval Landsat Laser radar Machine learning mass-flowering crops Monitoring Normalized difference vegetative index Radar data Rapeseed Remote sensing remote sensing (RS) Soft sensors Spatiotemporal data Statistical analysis Statistical methods sunflower Vegetation |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bSxwxFA5VEHyp1ipda0se-tisc8ll8rgVt1LQh1rRt5DJnLRQ2ZV1FtRf7znJbLUthb6FyYTJ5MvlOyfnwtgHsE0Ro2qEjo0UsgQlfOiiCBFiV_muLWvyHT490ycX8suVuhqc1ZMvDAAk4zMYUzHd5XfzsCRV2SHd4tiiMWtsDSW37Ky12nZ1ZVKEXSQkVlDMmCHEELY5xDk--XqOwmClxrVCedDK346hFK1_SK_y156cDprpFjtbdTHbl_wcL_t2HB7-iN743_-wzV4OlJNP8hx5xV7AbIdtfE4pfe9fs8sJp01hAT-yLTvP1wV8HrGEQAI_p4rZd_6khudIdfkp8m4xvaY0a1R7tJjf3PLju36RfSV22cX0-NvRiRjSLYhQ67IXdQytLFoJXYRSBuktjqXRrZZdFasiksYD5TOQxMuCBGUKJBNNi3B33ha-3mPrs_kM3jBuGmmjMQCqslIp7ZUOCqmpCqEKRpsR-7gafXeTo2q4JI0U1mWwHIHlBrBG7BMh9OtVComdHuDIumGFuS7Y0jcmlDVKgOCNt40NpgwqBhSavB2xXULj2fcyECN2sALcDev31tUV2ZKRv_3-P5q9ZZvUxayNOWDr_WIJ75Cf9O37NC8fAWgo4Ng priority: 102 providerName: IEEE |
Title | A Comprehensive Review of Remote Sensing Technology for Mass-Flowering Crops Extraction |
URI | https://ieeexplore.ieee.org/document/10999087 https://www.proquest.com/docview/3219890480 https://doaj.org/article/dc91a87c13164ea7a989c71c5fc597a9 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgRHyuurpKDR6N95NEcV3EVQQ_qoreQpokepLt0K-i_d5J0dcWDF2-lLSSZL49vhsw3CB1ZWSTOsYJwV1BCU8uINpUjxllXZboq09znDt_c8qsJvX5iT0ulvvydsCgPHA13WhmZ6kKYNAdib7XQspBGpIY5A1xYh9Q9OPMWzlTcg3kmgtwusBNJvIBMpzeUJvIUJvzo7h48w4yd5AycQ0l_nElBur-rtfJrgw6nzngDrXd0EY9iNzfRiq230OplKMf7sY0eR9gv6Ma-xHvoOIb68dTBE4Bg8b3_UD_j7xA6BpqKb4Azk_GrL5Hmv54309kcX7y3Tcxz6KPJ-OLh_Ip0pRKIyXnaktyZkiYltZWzKTVUSxi64CWnVeayxPloBfhWlnpOZahlIgEiUJQAVaVlovMd1Kuntd1FWBRUOiGsZZmkjHHNuGFAK5kxmRFcDNDxwlhqFhUxVPAkEqmibZW3repsO0Bn3qBfv3o56_ACQFYdyOovkAeo7-FYag94bVJAX4YLfFS39uYqz_w9MJ8rv_cfbe-jNT-eGHYZol7bvNkDICJteRjm3GHIGfwE887X5g |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JbxMxFH6CIgQX1qIGCvjAEaezeBkfQ9UQoMmBtqI3y-N5BokqqdKJBPx6nu0Jq5C4WeOxxuPPy_ee3wLwAk1ThCAbrkIjuChRcue7wH3A0FWua8s6-g7PF2p2Jt6ey_PBWT35wiBiMj7DcSymu_xu5TdRVXYQb3FM0ejrcIMOfllmd63txqsqnWLsEiUxPEaNGYIMUasDmuWT9yckDlZyXEuSCI347SBK8fqHBCt_7crpqJnehcW2k9nC5PN407dj_-2P-I3__Rf34M5AOtkkz5L7cA2XD-Dm65TU9-tD-DBhcVtY46dszc7yhQFbBSoRlMhOYsXyI_upiGdEdtmcmDefXsREa7H2cL26vGJHX_p19pbYhbPp0enhjA8JF7ivVdnzOvhWFK3ALmApvHCGxlKrVomuClURos6DJDQUkZl5gVIXRCealgDvnClc_Qh2lqsl7gHTjTBBa0RZGYJKOam8JHIqva-8VnoEL7ejby9zXA2b5JHC2AyWjWDZAawRvIoI_Xg1BsVOD2hk7bDGbOdN6Rrty5pkQHTamcZ4XXoZPIlNzoxgN6Lxy_cyECPY3wJuhxV8ZesqWpNFj_vH_2j2HG7NTufH9vjN4t0TuB27m3Uz-7DTrzf4lNhK3z5Lc_Q7TazkIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Review+of+Remote+Sensing+Technology+for+Mass-Flowering+Crops+Extraction&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Meng%2C+Qingji&rft.au=Zang%2C+Shuying&rft.au=Zhu%2C+Bingxue&rft.au=Song%2C+Kaishan&rft.date=2025&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=18&rft.spage=14382&rft.epage=14405&rft_id=info:doi/10.1109%2FJSTARS.2025.3569094&rft.externalDocID=10999087 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |