Application of Multi-Source Data for Mapping Plantation Based on Random Forest Algorithm in North China
The expansion of plantation poses new challenges for mapping forest, especially in mountainous regions. Using multi-source data, this study explored the capability of the random forest (RF) algorithm for the extraction and mapping of five forest types located in Yanqing, north China. The Google Eart...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 19; p. 4946 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The expansion of plantation poses new challenges for mapping forest, especially in mountainous regions. Using multi-source data, this study explored the capability of the random forest (RF) algorithm for the extraction and mapping of five forest types located in Yanqing, north China. The Google Earth imagery, forest inventory data, GaoFen-1 wide-field-of-view (GF-1 WFV) images and DEM were applied for obtaining 125 features in total. The recursive feature elimination (RFE) method selected 32 features for mapping five forest types. The results attained overall accuracy of 87.06%, with a Kappa coefficient of 0.833. The mean decrease accuracy (MDA) reveals that the DEM, LAI and EVI in winter and three texture features (entropy, variance and mean) make great contributions to forest classification. The texture features from the NIR band are important, while the other texture features have little contribution. This study has demonstrated the potential of applying multi-source data based on RF algorithm for extracting and mapping plantation forest in north China. |
---|---|
AbstractList | The expansion of plantation poses new challenges for mapping forest, especially in mountainous regions. Using multi-source data, this study explored the capability of the random forest (RF) algorithm for the extraction and mapping of five forest types located in Yanqing, north China. The Google Earth imagery, forest inventory data, GaoFen-1 wide-field-of-view (GF-1 WFV) images and DEM were applied for obtaining 125 features in total. The recursive feature elimination (RFE) method selected 32 features for mapping five forest types. The results attained overall accuracy of 87.06%, with a Kappa coefficient of 0.833. The mean decrease accuracy (MDA) reveals that the DEM, LAI and EVI in winter and three texture features (entropy, variance and mean) make great contributions to forest classification. The texture features from the NIR band are important, while the other texture features have little contribution. This study has demonstrated the potential of applying multi-source data based on RF algorithm for extracting and mapping plantation forest in north China. |
Author | Wu, Fan Ren, Yufen Wang, Xiaoke |
Author_xml | – sequence: 1 givenname: Fan surname: Wu fullname: Wu, Fan – sequence: 2 givenname: Yufen orcidid: 0000-0003-0082-976X surname: Ren fullname: Ren, Yufen – sequence: 3 givenname: Xiaoke orcidid: 0000-0002-2421-3970 surname: Wang fullname: Wang, Xiaoke |
BookMark | eNptkU1vFDEMhiNUJNrSC78gErdKQ_NhNpPjsqW0UguIj3PkzcduVrPJNJM98O8JnapFCF9iRY9f-7VPyFHKyRPyhrN3Ump2USYOXIOGxQtyLJgSHQgtjv7KX5GzadqxFlJyzeCYbJbjOESLNeZEc6B3h6HG7ns-FOvpJVakIRd6h-MY04Z-HTDVmf2Ak3e0Jd8wubynV7n4qdLlsMkl1u2exkQ_51K3dLWNCV-TlwGHyZ89vqfk59XHH6vr7vbLp5vV8razcsFrJ_uwEL0HAaAc6NDcOC2dchZ6JnzPmdKAXL9vZkBaH6wOTFmNQVmpnZSn5GbWdRl3Zixxj-WXyRjNw0cuG4OlRjt4Y4NyqkfgCD1wbtdrq6VagOsxrKVYN623s9ZY8v2huTO7tpfUxjdCtfYMQEKjzmfKljxNxYenrpyZP3cxz3dpMPsHtnFeaC0Yh_-V_Aa6KZBO |
CitedBy_id | crossref_primary_10_3390_rs15020312 crossref_primary_10_3389_fevo_2023_1201161 crossref_primary_10_3390_s23239486 crossref_primary_10_3390_f15020390 crossref_primary_10_3390_f14081630 crossref_primary_10_15547_ast_2024_02_012 |
Cites_doi | 10.3390/rs10060946 10.1080/01431161.2017.1395968 10.1016/j.rse.2009.02.014 10.1016/j.foreco.2012.10.007 10.1016/j.foreco.2005.04.004 10.1016/j.rse.2009.04.015 10.1016/j.isprsjprs.2020.11.023 10.1016/j.rse.2013.06.004 10.1088/1755-1315/17/1/012071 10.3390/rs5062795 10.3390/rs70505660 10.1016/S0034-4257(01)00318-2 10.1080/014311600210993 10.1016/j.rse.2008.02.011 10.3390/rs10111794 10.1080/01431161.2012.695095 10.3390/rs13234762 10.1007/s11676-017-0518-0 10.1080/01431161.2014.995276 10.1007/s11356-018-3824-y 10.5194/isprsarchives-XXXIX-B7-203-2012 10.1016/S0378-1127(03)00113-0 10.1016/j.rse.2011.12.003 10.3390/rs11222599 10.1016/j.rse.2016.08.013 10.3390/rs9111184 10.1080/01431160500295885 10.1016/j.rse.2018.02.064 10.1080/15481603.2018.1466441 10.3897/natureconservation.35.29588 10.1080/01431160701601782 10.3390/rs1030355 10.1080/0143116042000192367 10.3390/f11040399 10.1080/01431161.2010.532831 10.3390/rs10060807 10.3390/rs70506041 10.3390/rs12081270 10.1080/01431161.2011.636081 10.1016/S2095-3119(20)63208-7 10.3390/rs70201702 10.3390/f10070559 10.1016/j.rse.2011.01.009 10.3390/rs70101048 10.1016/j.rse.2013.03.014 10.3390/rs5062838 10.1016/j.rse.2007.06.003 10.1016/j.rse.2018.07.006 10.1109/Agro-Geoinformatics.2017.8047000 10.1109/TSMC.1973.4309314 10.1080/01431160412331269698 10.3390/rs11101197 10.1016/j.rse.2016.03.021 10.1007/s11676-017-0530-4 10.3390/rs8030236 10.1080/01431161.2017.1420933 10.1016/j.rse.2007.02.014 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs14194946 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_cf7d78a41a48411cbbc93764d8afb32b 10_3390_rs14194946 |
GeographicLocations | Beijing China China |
GeographicLocations_xml | – name: China – name: Beijing China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c361t-38f628e42447d49f949d93d7dc4802e810794a19529243cefc9f07c9af7c39d33 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:10:20 EDT 2025 Wed Sep 03 15:11:17 EDT 2025 Tue Jul 01 03:10:48 EDT 2025 Thu Apr 24 22:53:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-38f628e42447d49f949d93d7dc4802e810794a19529243cefc9f07c9af7c39d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0082-976X 0000-0002-2421-3970 |
OpenAccessLink | https://www.proquest.com/docview/2724304434?pq-origsite=%requestingapplication% |
PQID | 2724304434 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cf7d78a41a48411cbbc93764d8afb32b proquest_journals_2724304434 crossref_primary_10_3390_rs14194946 crossref_citationtrail_10_3390_rs14194946 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Kou (ref_22) 2018; 55 ref_50 Lu (ref_17) 2005; 213 Wilson (ref_15) 2002; 80 Ouma (ref_40) 2008; 29 ref_13 Ouma (ref_67) 2006; 27 Fagan (ref_6) 2015; 7 Wen (ref_56) 2018; 20 Pal (ref_58) 2005; 26 ref_53 Shi (ref_54) 2018; 39 ref_19 Ozigis (ref_52) 2019; 26 ref_59 Pacifici (ref_66) 2009; 113 Chen (ref_82) 2016; 50 Johansen (ref_42) 2007; 110 Atkinson (ref_49) 2012; 121 ref_61 ref_60 Haralick (ref_62) 1973; 3 Chan (ref_57) 2008; 112 Guan (ref_63) 2012; XXXIX-B7 Dorren (ref_46) 2003; 183 Dong (ref_12) 2013; 134 Watts (ref_55) 2009; 113 ref_69 Lan (ref_85) 2013; 12 ref_68 Shang (ref_84) 2018; 29 Zhang (ref_73) 2010; 26 Ngugi (ref_33) 2011; 115 Bhattarai (ref_28) 2021; 172 Franklin (ref_41) 2000; 21 Yun (ref_24) 2019; 41 Fan (ref_32) 2015; 7 Xu (ref_65) 2018; 29 Wang (ref_64) 2014; 17 Kou (ref_11) 2015; 7 Mellor (ref_72) 2013; 5 Li (ref_80) 2017; 37 ref_70 Pasquarella (ref_48) 2018; 210 Jinshui (ref_27) 2007; 11 ref_79 Ma (ref_44) 2019; 21 ref_78 ref_76 ref_75 ref_74 Ferreira (ref_18) 2016; 179 ref_38 Wu (ref_43) 2012; 40 Erinjery (ref_29) 2018; 216 Xiao (ref_4) 2009; 1 Han (ref_21) 2018; 39 Akar (ref_14) 2015; 36 Zeng (ref_45) 2005; 3 Zhao (ref_77) 2020; 40 Huaipeng (ref_25) 2015; 37 Senf (ref_36) 2013; 5 Ling (ref_37) 2015; 37 Yu (ref_7) 2018; 29 Fassnacht (ref_16) 2016; 186 Puissant (ref_51) 2014; 26 ref_47 Coburn (ref_39) 2004; 25 Luo (ref_83) 2020; 19 Hayes (ref_9) 2008; 112 Rajah (ref_31) 2019; 35 Jia (ref_35) 2014; 33 ref_1 ref_3 ref_2 Gao (ref_20) 2015; 7 Hill (ref_30) 2013; 137 Zhou (ref_23) 2013; 301 Chong (ref_8) 2016; 52 Li (ref_34) 2011; 32 Yu (ref_81) 2012; 33 ref_5 Franklin (ref_10) 2001; 67 Xiong (ref_71) 2021; 23 Falkowski (ref_26) 2012; 33 |
References_xml | – ident: ref_19 doi: 10.3390/rs10060946 – volume: 37 start-page: 10 year: 2015 ident: ref_37 article-title: The latest applications of optical image texture in forestry publication-title: J. Beijing For. Univ. – volume: 40 start-page: 96 year: 2012 ident: ref_43 article-title: Analysis of correlation between terrain and forest spatial distribution based on DEM publication-title: J. North-East For. Univ. – volume: 39 start-page: 1175 year: 2018 ident: ref_54 article-title: A Random Forests classification method for urban land-use mapping integrating spatial metrics and texture analysis publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1395968 – volume: 113 start-page: 1276 year: 2009 ident: ref_66 article-title: A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.02.014 – volume: 301 start-page: 129 year: 2013 ident: ref_23 article-title: Mapping local density of young Eucalyptus plantations by individual tree detection in high spatial resolution satellite images publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2012.10.007 – ident: ref_78 – volume: 213 start-page: 369 year: 2005 ident: ref_17 article-title: Integration of vegetation inventory data and Landsat TM image for vegetation classification in the western Brazilian Amazon publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2005.04.004 – volume: 113 start-page: 1843 year: 2009 ident: ref_55 article-title: Monitoring of cropland practices for carbon sequestration purposes in north central Montana by Landsat remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.04.015 – volume: 172 start-page: 28 year: 2021 ident: ref_28 article-title: Spruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.11.023 – ident: ref_74 – volume: 137 start-page: 94 year: 2013 ident: ref_30 article-title: Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated SENTINEL 2 data for a North American transect publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.06.004 – volume: 33 start-page: 32 year: 2014 ident: ref_35 article-title: Forest cover classification using Landsat ETM+ data and time series MODIS NDVI data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 17 start-page: 012071 year: 2014 ident: ref_64 article-title: Forest classification based on forest texture in Northwest Yunnan Province publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/17/1/012071 – volume: 5 start-page: 2795 year: 2013 ident: ref_36 article-title: Mapping rubber plantations and natural forests in Xishuangbanna (Southwest China) using multi-spectral phenological metrics from modis time series publication-title: Remote Sens. doi: 10.3390/rs5062795 – volume: 7 start-page: 5660 year: 2015 ident: ref_6 article-title: Mapping species composition of forests and tree plantations in northeastern Costa Rica with an integration of hyperspectral and multitemporal landsat imagery publication-title: Remote Sens. doi: 10.3390/rs70505660 – volume: 80 start-page: 385 year: 2002 ident: ref_15 article-title: Detection of forest harvest type using multiple dates of Landsat TM imagery publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00318-2 – volume: 26 start-page: 235 year: 2014 ident: ref_51 article-title: Object-oriented mapping of urban trees using random forestclassifiers publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 37 start-page: 52 year: 2017 ident: ref_80 article-title: Identification of forest type with Landsat-8 image based on SVM publication-title: J. Cent. South Univ. For. Technol. – volume: 21 start-page: 61 year: 2000 ident: ref_41 article-title: Incorporating texture into classification of forest species composition from airborne multispectral images publication-title: Int. J. Remote Sens. doi: 10.1080/014311600210993 – volume: 112 start-page: 2999 year: 2008 ident: ref_57 article-title: Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.02.011 – ident: ref_3 doi: 10.3390/rs10111794 – volume: 3 start-page: 85 year: 2005 ident: ref_45 article-title: Analysis on forest spatial distr ibution based on DEM publication-title: Territ. Resour. Study – volume: 33 start-page: 6956 year: 2012 ident: ref_26 article-title: Classification of Landsat images based on spectral and topographic variables for land-cover change detection in Zagros forests publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.695095 – ident: ref_61 – ident: ref_1 – ident: ref_68 doi: 10.3390/rs13234762 – volume: 29 start-page: 889 year: 2018 ident: ref_84 article-title: Using multi-source remote sensing data to classify larch plantations in Northeast China and support the development of multi-purpose silviculture publication-title: J. For. Res. doi: 10.1007/s11676-017-0518-0 – volume: 67 start-page: 849 year: 2001 ident: ref_10 article-title: Using spatial co-occurrence texture to increase forest structure and species composition classification accuracy publication-title: Photogramm. Eng. Remote Sens. – volume: 36 start-page: 442 year: 2015 ident: ref_14 article-title: Integrating multiple texture methods and NDVI to the Random Forest classification algorithm to detect tea and hazelnut plantation areas in northeast Turkey publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.995276 – volume: 26 start-page: 3621 year: 2019 ident: ref_52 article-title: Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: A case site within the Niger Delta region of Nigeria publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-3824-y – volume: XXXIX-B7 start-page: 203 year: 2012 ident: ref_63 article-title: Random Forests-Based Feature Selection for Land-Use Classification Using Lidar Data and Orthoimagery publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprsarchives-XXXIX-B7-203-2012 – volume: 37 start-page: 53 year: 2015 ident: ref_25 article-title: Tree species classification using WorldView-2 images based on recursive texture feature elimination publication-title: J. Beijing For. Univ. – volume: 40 start-page: 3495 year: 2020 ident: ref_77 article-title: The differences between extracting vegetation information from GF1-WFV and Landsat8-OLI publication-title: Acta Ecol. Sin. – volume: 183 start-page: 31 year: 2003 ident: ref_46 article-title: Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification publication-title: For. Ecol. Manag. doi: 10.1016/S0378-1127(03)00113-0 – volume: 121 start-page: 93 year: 2012 ident: ref_49 article-title: Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.12.003 – ident: ref_75 doi: 10.3390/rs11222599 – ident: ref_69 – volume: 50 start-page: 117 year: 2016 ident: ref_82 article-title: Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 186 start-page: 64 year: 2016 ident: ref_16 article-title: Review of studies on tree species classification from remotely sensed data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.08.013 – ident: ref_50 doi: 10.3390/rs9111184 – volume: 27 start-page: 73 year: 2006 ident: ref_67 article-title: On the optimization and selection of wavelet texture for feature extraction from high-resolution satellite imagery with application towards urban-tree delineation publication-title: Int. J. Remote Sens. doi: 10.1080/01431160500295885 – volume: 23 start-page: 1325 year: 2021 ident: ref_71 article-title: Mapping the Spatial Distribution of Tea Plantations with 10m Resolution in Fujian Province Using Google Earth Engine publication-title: J. Geo-Inf. Sci. – volume: 210 start-page: 193 year: 2018 ident: ref_48 article-title: Improved mapping of forest type using spectral-temporal Landsat features publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.064 – volume: 55 start-page: 905 year: 2018 ident: ref_22 article-title: Expansion dynamics of deciduous rubber plantations in Xishuangbanna, China during 2000–2010 publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2018.1466441 – volume: 35 start-page: 41 year: 2019 ident: ref_31 article-title: The utility of Sentinel-2 Vegetation Indices (VIs) and Sentinel-1 Synthetic Aperture Radar (SAR) for invasive alien species detection and mapping publication-title: Nat. Conserv. doi: 10.3897/natureconservation.35.29588 – volume: 29 start-page: 3417 year: 2008 ident: ref_40 article-title: Analysis of co-occurrence and discrete wavelet transform textures for differentiation of forest and non-forest vegetation in very-high-resolution optical-sensor imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701601782 – volume: 1 start-page: 355 year: 2009 ident: ref_4 article-title: A simple algorithm for large-scale mapping of evergreen forests in tropical America, Africa and Asia publication-title: Remote Sens. doi: 10.3390/rs1030355 – volume: 25 start-page: 4287 year: 2004 ident: ref_39 article-title: A multiscale texture analysis procedure for improved forest stand classification publication-title: Int. J. Remote Sens. doi: 10.1080/0143116042000192367 – volume: 26 start-page: 4 year: 2010 ident: ref_73 article-title: Spafio—Temporal Dynamic Analysis and Evaluation of Forest Resources in Yanqing County publication-title: For. Eng. – volume: 41 start-page: 992 year: 2019 ident: ref_24 article-title: Land-cover classification of random forest based on Sentinel-2A image feature optimization publication-title: Resour. Sci. – ident: ref_47 – ident: ref_38 doi: 10.3390/f11040399 – volume: 32 start-page: 8207 year: 2011 ident: ref_34 article-title: Land-cover classification in a moist tropical region of Brazil with Landsat Thematic Mapper imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.532831 – ident: ref_53 doi: 10.3390/rs10060807 – volume: 7 start-page: 6041 year: 2015 ident: ref_32 article-title: Phenology-based vegetation index differencing for mapping of rubber plantations using landsat OLI data publication-title: Remote Sens. doi: 10.3390/rs70506041 – ident: ref_70 doi: 10.3390/rs12081270 – volume: 33 start-page: 3966 year: 2012 ident: ref_81 article-title: Google Earth as a virtual globe tool for Earth science applications at the global scale: Progress and perspectives publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2011.636081 – volume: 19 start-page: 2815 year: 2020 ident: ref_83 article-title: Comparison of machine learning algorithms for mapping mango plantations based on Gaofen-1 imagery publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(20)63208-7 – volume: 7 start-page: 1702 year: 2015 ident: ref_20 article-title: Mapping spatial distribution of larch plantations from multi-seasonal landsat-8 OLI imagery and multi-scale textures using random forests publication-title: Remote Sens. doi: 10.3390/rs70201702 – ident: ref_5 doi: 10.3390/f10070559 – volume: 20 start-page: 1777 year: 2018 ident: ref_56 article-title: The classification of urban greening tree species based on feature selection of random forest publication-title: J. Geo-Inf. Sci. – volume: 115 start-page: 1301 year: 2011 ident: ref_33 article-title: Object-based crop identification using multiple vegetation indices, textural features and crop phenology publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.01.009 – volume: 7 start-page: 1048 year: 2015 ident: ref_11 article-title: Mapping deciduous rubber plantation areas and stand ages with PALSAR and landsat images publication-title: Remote Sens. doi: 10.3390/rs70101048 – volume: 134 start-page: 392 year: 2013 ident: ref_12 article-title: Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.03.014 – volume: 5 start-page: 2838 year: 2013 ident: ref_72 article-title: The performance of random forests in an operational setting for large area sclerophyll forest classification publication-title: Remote Sens. doi: 10.3390/rs5062838 – ident: ref_79 – volume: 52 start-page: 54 year: 2016 ident: ref_8 article-title: Multi-source data for forest land type precise classication publication-title: Sci. Silvae Sin. – volume: 112 start-page: 735 year: 2008 ident: ref_9 article-title: Estimating proportional change in forest cover as a continuous variable from multi-year MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.06.003 – volume: 29 start-page: 3986 year: 2018 ident: ref_65 article-title: Forest tree species identification and its response to spatial scale based on multispectral and multi-resolution remotely sensed data publication-title: Chin. J. Appl. Ecol. – volume: 12 start-page: 25 year: 2013 ident: ref_85 article-title: Monitoring and Evaluation System of Ecological and Environmental Management of Plantation publication-title: J. Beijing For. Univ. (Soc. Sci.) – volume: 216 start-page: 345 year: 2018 ident: ref_29 article-title: Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.07.006 – volume: 21 start-page: 360 year: 2019 ident: ref_44 article-title: Random forest classification of Landsat 8 imagery for the complex terrain area based on the combination of spectral, topographic and texture information publication-title: J. Geo-Inf. Sci. – ident: ref_59 doi: 10.1109/Agro-Geoinformatics.2017.8047000 – volume: 11 start-page: 12 year: 2007 ident: ref_27 article-title: Land Use/cover Change Detection with Multi-Source Data publication-title: J. Remote Sens. – volume: 3 start-page: 610 year: 1973 ident: ref_62 article-title: Textural features for image classification publication-title: IEEE Trans. Syst. Man Cybern. SMC doi: 10.1109/TSMC.1973.4309314 – volume: 26 start-page: 217 year: 2005 ident: ref_58 article-title: Random forest classifier for remote sensing classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431160412331269698 – ident: ref_76 doi: 10.3390/rs11101197 – ident: ref_2 – volume: 179 start-page: 66 year: 2016 ident: ref_18 article-title: Mapping tree species in tropical seasonal semi-deciduous forests with hyperspectral and multispectral data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.03.021 – volume: 29 start-page: 1407 year: 2018 ident: ref_7 article-title: Forest type identification by random forest classification combined with SPOT and multitemporal SAR data publication-title: J. For. Res. doi: 10.1007/s11676-017-0530-4 – ident: ref_13 doi: 10.3390/rs8030236 – volume: 39 start-page: 2189 year: 2018 ident: ref_21 article-title: Monitoring rubber plantation distribution on Hainan Island using Landsat OLI imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1420933 – ident: ref_60 – volume: 110 start-page: 29 year: 2007 ident: ref_42 article-title: Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.02.014 |
SSID | ssj0000331904 |
Score | 2.3606904 |
Snippet | The expansion of plantation poses new challenges for mapping forest, especially in mountainous regions. Using multi-source data, this study explored the... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4946 |
SubjectTerms | Accuracy Algorithms Classification Entropy feature importance forest classification Mapping Mountain regions multi-source data plantation Plantations random forest Remote sensing Rubber Texture Time series Topography Variables Vegetation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-yi17ET5xOCejFQ7Ft3prkuPnBEOZBHexW0iTdBNfKVg_-976k3QcoePFWSqDN60ve7_Xl_X6EXCmRhFJrRG4WsgAi64XccV0Jgeg1ZEZ4nu3hUzIYweO4O96Q-nJnwmp64NpwNzrnhgsFkQIBUaSzTGNETcAIlWcsztzuizFvI5nyezBD1wqh5iNlmNffzBcRYMIuHdLdiECeqP_HPuyDy8Me2W1QIe3Vb7NPtmxxQLYbgfLp1yGZ9NaFZlrm1PfNBi_-zzu9U5WiCD7pUDm2hQl1SkR1iZ32MUoZihfPqjDljDopzkVFe--Tcv5WTWf0raC-dkO9kvYRGT3cv94OgkYjIdAsiaqAiTyJhXXtatyAzHGGRjLDjQYRxlZgdidBRbIbY6LFtM21zEOupcq5ZtIwdkxaRVnYE0JDtGaXq6zLLAPFQGSA6CAGrRKBwIC3yfXSbqluCMSdjsV7iomEs3G6tnGbXK7GftS0Gb-O6jvzr0Y4qmt_Ax0gbRwg_csB2qSz_Hhps_4WacxxtiEAg9P_eMYZ2Yld24M_xNchrWr-ac8RjFTZhfe7byk82yo priority: 102 providerName: Directory of Open Access Journals |
Title | Application of Multi-Source Data for Mapping Plantation Based on Random Forest Algorithm in North China |
URI | https://www.proquest.com/docview/2724304434 https://doaj.org/article/cf7d78a41a48411cbbc93764d8afb32b |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1BT9swFH4CetguaGObVmCVJbjsEJHEr7F9mtpBhxBFEwyJW-TYTkGCBNrssH-_Z9dtJ23aLUp8iJ_t5-97z34fwLGWRaqMIeTmsEowc0HIndaVlIReU25lqLM9vSrOb_HibngXA26LeKxy5RODo7at8THyk1zkSNQbOX55fkm8apTPrkYJjW3okQuWRL5647Or79frKEvKaYqluKxLyonfn8wXGRJxVx7x_rEThYL9f_njsMlM3sBuRIdstBzOt7Dlmj14FYXK73-9g9lok3Bmbc3C_dnkJkTg2anuNCMQyqbaV12YMa9ItEy1szHtVpbRw7VubPvEvCTnomOjxxl1srt_Yg8NCzkcFhS138Pt5OzH1_MkaiUkhhdZl3BZF7l0_tqasKhq6qFV3AprUKa5k8TyFOpMDXMiXNy42qg6FUbpWhiuLOcfYKdpG_cRWMrzaih0NeSOo-YoKySUkKPRhSSAIPrweWW30sRC4l7P4rEkQuFtXG5s3IejddvnZfmMf7Yae_OvW_iS1-FFO5-VcQWVphZWSI2ZRolZZqrKELQq0EpdV_TLfThcDV4Z1-Gi3Mya_f9_PoDXub_YEI7pHcJON__pPhHc6KoBbMvJtwH0RqfTy5tBnGGDQN5_A3o41po |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELUQHOilKv1QtwVqifbQQ0Riz8b2AaEFuiyF5dCCxC11bGepBAnsBiH-FL-RsZPsVmrVG7cotpRoPDN-4_HMI-SzlmmsjEHk5iCPIHGByB3tSkpErzG3MvTZHp-mo3P4ftG_WCKPXS2Mv1bZ-cTgqG1l_Bn5NhMMMPQGDrs3t5FnjfLZ1Y5Co1GLY_dwjyHbbOfoANf3C2PDb2f7o6hlFYgMT5M64rJImXS-wEtYUIUCZRW3whqQMXMS4yEFOlF9hqEJN64wqoiFUboQhivrD0DR5a8A58pblBwezs90Yo4KHUPTBRXH4-3pLIEEv-Dx9R_7XqAH-Mv7hy1t-Iq8bLEoHTTKs0aWXPmarLa06JcPb8hksEhv06qgoVo3-hnO--mBrjVFyEvH2vd4mFDPf9Qk9uke7o2W4sMPXdrqmnoC0FlNB1cTFGl9eU1_lzRkjGjg735Lzp9Fhu_IclmV7j2hMWd5X-i8zx0HzUHmgJiEgdGpRDgieuRrJ7fMtG3LPXvGVYbhi5dxtpBxj2zN5940zTr-OWvPi38-wzfYDi-q6SRr7TUzhbBCakg0SEgSk-cGgVwKVuoix1_ukfVu8bLW6mfZQkc__H_4E1kdnY1PspOj0-OP5AXzJRXhguA6Wa6nd24DgU6dbwbtouTXc6vzE9vbDVw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamTgJe0MYPUdjAEvDAQ9TEvsb2A0LtumpjrJoGk_YWHNvpkLZka4PQ_rX9dZydpEUC8ba3KLGU5Hw-f3fnu4-Qd1qmsTIGkZuDPILEBSJ3XFdSInqNuZWhz_bxLD04g8_nw_MNctfVwvhjlZ1NDIbaVsbHyAdMMEDXGzgMivZYxMlk-un6JvIMUj7T2tFpNCpy5G5_ofu2_Hg4wbl-z9h0_9veQdQyDESGp0kdcVmkTDpf7CUsqEKBsopbYQ3ImDmJvpECnaghQzeFG1cYVcTCKF0Iw5X1wVA0_5v4UyLukc3x_uzkdBXhiTmqdwxNT1TOVTxYLBNI8B0ebf-xCwaygL_2grDBTbfI4xaZ0lGjSttkw5VPyMOWJP3i9imZj9bJbloVNNTuRl9D9J9OdK0pAmB6rH3Hhzn1bEhNmp-Ocae0FC9OdWmrK-rpQJc1HV3OUaj1xRX9UdKQP6KBzfsZObsXKT4nvbIq3QtCY87yodD5kDsOmoPMAREKA6NTieBE9MmHTm6ZaZuYey6NywydGS_jbC3jPnm7GnvdtO7456ixF_9qhG-3HW5Ui3nWrt7MFMIKqSHRICFJTJ4bhHUpWKmLHD-5T3a6yctaG7DM1hr78v-P35AHqMrZl8PZ0SvyiPn6inBacIf06sVPt4uop85ft-pFyff71ujf4DoS7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Multi-Source+Data+for+Mapping+Plantation+Based+on+Random+Forest+Algorithm+in+North+China&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Wu%2C+Fan&rft.au=Ren%2C+Yufen&rft.au=Wang%2C+Xiaoke&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=19&rft.spage=4946&rft_id=info:doi/10.3390%2Frs14194946&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |