Application of Multi-Source Data for Mapping Plantation Based on Random Forest Algorithm in North China

The expansion of plantation poses new challenges for mapping forest, especially in mountainous regions. Using multi-source data, this study explored the capability of the random forest (RF) algorithm for the extraction and mapping of five forest types located in Yanqing, north China. The Google Eart...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 19; p. 4946
Main Authors Wu, Fan, Ren, Yufen, Wang, Xiaoke
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The expansion of plantation poses new challenges for mapping forest, especially in mountainous regions. Using multi-source data, this study explored the capability of the random forest (RF) algorithm for the extraction and mapping of five forest types located in Yanqing, north China. The Google Earth imagery, forest inventory data, GaoFen-1 wide-field-of-view (GF-1 WFV) images and DEM were applied for obtaining 125 features in total. The recursive feature elimination (RFE) method selected 32 features for mapping five forest types. The results attained overall accuracy of 87.06%, with a Kappa coefficient of 0.833. The mean decrease accuracy (MDA) reveals that the DEM, LAI and EVI in winter and three texture features (entropy, variance and mean) make great contributions to forest classification. The texture features from the NIR band are important, while the other texture features have little contribution. This study has demonstrated the potential of applying multi-source data based on RF algorithm for extracting and mapping plantation forest in north China.
AbstractList The expansion of plantation poses new challenges for mapping forest, especially in mountainous regions. Using multi-source data, this study explored the capability of the random forest (RF) algorithm for the extraction and mapping of five forest types located in Yanqing, north China. The Google Earth imagery, forest inventory data, GaoFen-1 wide-field-of-view (GF-1 WFV) images and DEM were applied for obtaining 125 features in total. The recursive feature elimination (RFE) method selected 32 features for mapping five forest types. The results attained overall accuracy of 87.06%, with a Kappa coefficient of 0.833. The mean decrease accuracy (MDA) reveals that the DEM, LAI and EVI in winter and three texture features (entropy, variance and mean) make great contributions to forest classification. The texture features from the NIR band are important, while the other texture features have little contribution. This study has demonstrated the potential of applying multi-source data based on RF algorithm for extracting and mapping plantation forest in north China.
Author Wu, Fan
Ren, Yufen
Wang, Xiaoke
Author_xml – sequence: 1
  givenname: Fan
  surname: Wu
  fullname: Wu, Fan
– sequence: 2
  givenname: Yufen
  orcidid: 0000-0003-0082-976X
  surname: Ren
  fullname: Ren, Yufen
– sequence: 3
  givenname: Xiaoke
  orcidid: 0000-0002-2421-3970
  surname: Wang
  fullname: Wang, Xiaoke
BookMark eNptkU1vFDEMhiNUJNrSC78gErdKQ_NhNpPjsqW0UguIj3PkzcduVrPJNJM98O8JnapFCF9iRY9f-7VPyFHKyRPyhrN3Ump2USYOXIOGxQtyLJgSHQgtjv7KX5GzadqxFlJyzeCYbJbjOESLNeZEc6B3h6HG7ns-FOvpJVakIRd6h-MY04Z-HTDVmf2Ak3e0Jd8wubynV7n4qdLlsMkl1u2exkQ_51K3dLWNCV-TlwGHyZ89vqfk59XHH6vr7vbLp5vV8razcsFrJ_uwEL0HAaAc6NDcOC2dchZ6JnzPmdKAXL9vZkBaH6wOTFmNQVmpnZSn5GbWdRl3Zixxj-WXyRjNw0cuG4OlRjt4Y4NyqkfgCD1wbtdrq6VagOsxrKVYN623s9ZY8v2huTO7tpfUxjdCtfYMQEKjzmfKljxNxYenrpyZP3cxz3dpMPsHtnFeaC0Yh_-V_Aa6KZBO
CitedBy_id crossref_primary_10_3390_rs15020312
crossref_primary_10_3389_fevo_2023_1201161
crossref_primary_10_3390_s23239486
crossref_primary_10_3390_f15020390
crossref_primary_10_3390_f14081630
crossref_primary_10_15547_ast_2024_02_012
Cites_doi 10.3390/rs10060946
10.1080/01431161.2017.1395968
10.1016/j.rse.2009.02.014
10.1016/j.foreco.2012.10.007
10.1016/j.foreco.2005.04.004
10.1016/j.rse.2009.04.015
10.1016/j.isprsjprs.2020.11.023
10.1016/j.rse.2013.06.004
10.1088/1755-1315/17/1/012071
10.3390/rs5062795
10.3390/rs70505660
10.1016/S0034-4257(01)00318-2
10.1080/014311600210993
10.1016/j.rse.2008.02.011
10.3390/rs10111794
10.1080/01431161.2012.695095
10.3390/rs13234762
10.1007/s11676-017-0518-0
10.1080/01431161.2014.995276
10.1007/s11356-018-3824-y
10.5194/isprsarchives-XXXIX-B7-203-2012
10.1016/S0378-1127(03)00113-0
10.1016/j.rse.2011.12.003
10.3390/rs11222599
10.1016/j.rse.2016.08.013
10.3390/rs9111184
10.1080/01431160500295885
10.1016/j.rse.2018.02.064
10.1080/15481603.2018.1466441
10.3897/natureconservation.35.29588
10.1080/01431160701601782
10.3390/rs1030355
10.1080/0143116042000192367
10.3390/f11040399
10.1080/01431161.2010.532831
10.3390/rs10060807
10.3390/rs70506041
10.3390/rs12081270
10.1080/01431161.2011.636081
10.1016/S2095-3119(20)63208-7
10.3390/rs70201702
10.3390/f10070559
10.1016/j.rse.2011.01.009
10.3390/rs70101048
10.1016/j.rse.2013.03.014
10.3390/rs5062838
10.1016/j.rse.2007.06.003
10.1016/j.rse.2018.07.006
10.1109/Agro-Geoinformatics.2017.8047000
10.1109/TSMC.1973.4309314
10.1080/01431160412331269698
10.3390/rs11101197
10.1016/j.rse.2016.03.021
10.1007/s11676-017-0530-4
10.3390/rs8030236
10.1080/01431161.2017.1420933
10.1016/j.rse.2007.02.014
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs14194946
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_cf7d78a41a48411cbbc93764d8afb32b
10_3390_rs14194946
GeographicLocations Beijing China
China
GeographicLocations_xml – name: China
– name: Beijing China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c361t-38f628e42447d49f949d93d7dc4802e810794a19529243cefc9f07c9af7c39d33
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:10:20 EDT 2025
Wed Sep 03 15:11:17 EDT 2025
Tue Jul 01 03:10:48 EDT 2025
Thu Apr 24 22:53:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-38f628e42447d49f949d93d7dc4802e810794a19529243cefc9f07c9af7c39d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0082-976X
0000-0002-2421-3970
OpenAccessLink https://www.proquest.com/docview/2724304434?pq-origsite=%requestingapplication%
PQID 2724304434
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_cf7d78a41a48411cbbc93764d8afb32b
proquest_journals_2724304434
crossref_primary_10_3390_rs14194946
crossref_citationtrail_10_3390_rs14194946
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kou (ref_22) 2018; 55
ref_50
Lu (ref_17) 2005; 213
Wilson (ref_15) 2002; 80
Ouma (ref_40) 2008; 29
ref_13
Ouma (ref_67) 2006; 27
Fagan (ref_6) 2015; 7
Wen (ref_56) 2018; 20
Pal (ref_58) 2005; 26
ref_53
Shi (ref_54) 2018; 39
ref_19
Ozigis (ref_52) 2019; 26
ref_59
Pacifici (ref_66) 2009; 113
Chen (ref_82) 2016; 50
Johansen (ref_42) 2007; 110
Atkinson (ref_49) 2012; 121
ref_61
ref_60
Haralick (ref_62) 1973; 3
Chan (ref_57) 2008; 112
Guan (ref_63) 2012; XXXIX-B7
Dorren (ref_46) 2003; 183
Dong (ref_12) 2013; 134
Watts (ref_55) 2009; 113
ref_69
Lan (ref_85) 2013; 12
ref_68
Shang (ref_84) 2018; 29
Zhang (ref_73) 2010; 26
Ngugi (ref_33) 2011; 115
Bhattarai (ref_28) 2021; 172
Franklin (ref_41) 2000; 21
Yun (ref_24) 2019; 41
Fan (ref_32) 2015; 7
Xu (ref_65) 2018; 29
Wang (ref_64) 2014; 17
Kou (ref_11) 2015; 7
Mellor (ref_72) 2013; 5
Li (ref_80) 2017; 37
ref_70
Pasquarella (ref_48) 2018; 210
Jinshui (ref_27) 2007; 11
ref_79
Ma (ref_44) 2019; 21
ref_78
ref_76
ref_75
ref_74
Ferreira (ref_18) 2016; 179
ref_38
Wu (ref_43) 2012; 40
Erinjery (ref_29) 2018; 216
Xiao (ref_4) 2009; 1
Han (ref_21) 2018; 39
Akar (ref_14) 2015; 36
Zeng (ref_45) 2005; 3
Zhao (ref_77) 2020; 40
Huaipeng (ref_25) 2015; 37
Senf (ref_36) 2013; 5
Ling (ref_37) 2015; 37
Yu (ref_7) 2018; 29
Fassnacht (ref_16) 2016; 186
Puissant (ref_51) 2014; 26
ref_47
Coburn (ref_39) 2004; 25
Luo (ref_83) 2020; 19
Hayes (ref_9) 2008; 112
Rajah (ref_31) 2019; 35
Jia (ref_35) 2014; 33
ref_1
ref_3
ref_2
Gao (ref_20) 2015; 7
Hill (ref_30) 2013; 137
Zhou (ref_23) 2013; 301
Chong (ref_8) 2016; 52
Li (ref_34) 2011; 32
Yu (ref_81) 2012; 33
ref_5
Franklin (ref_10) 2001; 67
Xiong (ref_71) 2021; 23
Falkowski (ref_26) 2012; 33
References_xml – ident: ref_19
  doi: 10.3390/rs10060946
– volume: 37
  start-page: 10
  year: 2015
  ident: ref_37
  article-title: The latest applications of optical image texture in forestry
  publication-title: J. Beijing For. Univ.
– volume: 40
  start-page: 96
  year: 2012
  ident: ref_43
  article-title: Analysis of correlation between terrain and forest spatial distribution based on DEM
  publication-title: J. North-East For. Univ.
– volume: 39
  start-page: 1175
  year: 2018
  ident: ref_54
  article-title: A Random Forests classification method for urban land-use mapping integrating spatial metrics and texture analysis
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1395968
– volume: 113
  start-page: 1276
  year: 2009
  ident: ref_66
  article-title: A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.02.014
– volume: 301
  start-page: 129
  year: 2013
  ident: ref_23
  article-title: Mapping local density of young Eucalyptus plantations by individual tree detection in high spatial resolution satellite images
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2012.10.007
– ident: ref_78
– volume: 213
  start-page: 369
  year: 2005
  ident: ref_17
  article-title: Integration of vegetation inventory data and Landsat TM image for vegetation classification in the western Brazilian Amazon
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2005.04.004
– volume: 113
  start-page: 1843
  year: 2009
  ident: ref_55
  article-title: Monitoring of cropland practices for carbon sequestration purposes in north central Montana by Landsat remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.04.015
– volume: 172
  start-page: 28
  year: 2021
  ident: ref_28
  article-title: Spruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.11.023
– ident: ref_74
– volume: 137
  start-page: 94
  year: 2013
  ident: ref_30
  article-title: Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated SENTINEL 2 data for a North American transect
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.06.004
– volume: 33
  start-page: 32
  year: 2014
  ident: ref_35
  article-title: Forest cover classification using Landsat ETM+ data and time series MODIS NDVI data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 17
  start-page: 012071
  year: 2014
  ident: ref_64
  article-title: Forest classification based on forest texture in Northwest Yunnan Province
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/17/1/012071
– volume: 5
  start-page: 2795
  year: 2013
  ident: ref_36
  article-title: Mapping rubber plantations and natural forests in Xishuangbanna (Southwest China) using multi-spectral phenological metrics from modis time series
  publication-title: Remote Sens.
  doi: 10.3390/rs5062795
– volume: 7
  start-page: 5660
  year: 2015
  ident: ref_6
  article-title: Mapping species composition of forests and tree plantations in northeastern Costa Rica with an integration of hyperspectral and multitemporal landsat imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs70505660
– volume: 80
  start-page: 385
  year: 2002
  ident: ref_15
  article-title: Detection of forest harvest type using multiple dates of Landsat TM imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00318-2
– volume: 26
  start-page: 235
  year: 2014
  ident: ref_51
  article-title: Object-oriented mapping of urban trees using random forestclassifiers
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 37
  start-page: 52
  year: 2017
  ident: ref_80
  article-title: Identification of forest type with Landsat-8 image based on SVM
  publication-title: J. Cent. South Univ. For. Technol.
– volume: 21
  start-page: 61
  year: 2000
  ident: ref_41
  article-title: Incorporating texture into classification of forest species composition from airborne multispectral images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311600210993
– volume: 112
  start-page: 2999
  year: 2008
  ident: ref_57
  article-title: Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.02.011
– ident: ref_3
  doi: 10.3390/rs10111794
– volume: 3
  start-page: 85
  year: 2005
  ident: ref_45
  article-title: Analysis on forest spatial distr ibution based on DEM
  publication-title: Territ. Resour. Study
– volume: 33
  start-page: 6956
  year: 2012
  ident: ref_26
  article-title: Classification of Landsat images based on spectral and topographic variables for land-cover change detection in Zagros forests
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.695095
– ident: ref_61
– ident: ref_1
– ident: ref_68
  doi: 10.3390/rs13234762
– volume: 29
  start-page: 889
  year: 2018
  ident: ref_84
  article-title: Using multi-source remote sensing data to classify larch plantations in Northeast China and support the development of multi-purpose silviculture
  publication-title: J. For. Res.
  doi: 10.1007/s11676-017-0518-0
– volume: 67
  start-page: 849
  year: 2001
  ident: ref_10
  article-title: Using spatial co-occurrence texture to increase forest structure and species composition classification accuracy
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 36
  start-page: 442
  year: 2015
  ident: ref_14
  article-title: Integrating multiple texture methods and NDVI to the Random Forest classification algorithm to detect tea and hazelnut plantation areas in northeast Turkey
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.995276
– volume: 26
  start-page: 3621
  year: 2019
  ident: ref_52
  article-title: Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: A case site within the Niger Delta region of Nigeria
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-3824-y
– volume: XXXIX-B7
  start-page: 203
  year: 2012
  ident: ref_63
  article-title: Random Forests-Based Feature Selection for Land-Use Classification Using Lidar Data and Orthoimagery
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprsarchives-XXXIX-B7-203-2012
– volume: 37
  start-page: 53
  year: 2015
  ident: ref_25
  article-title: Tree species classification using WorldView-2 images based on recursive texture feature elimination
  publication-title: J. Beijing For. Univ.
– volume: 40
  start-page: 3495
  year: 2020
  ident: ref_77
  article-title: The differences between extracting vegetation information from GF1-WFV and Landsat8-OLI
  publication-title: Acta Ecol. Sin.
– volume: 183
  start-page: 31
  year: 2003
  ident: ref_46
  article-title: Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification
  publication-title: For. Ecol. Manag.
  doi: 10.1016/S0378-1127(03)00113-0
– volume: 121
  start-page: 93
  year: 2012
  ident: ref_49
  article-title: Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.12.003
– ident: ref_75
  doi: 10.3390/rs11222599
– ident: ref_69
– volume: 50
  start-page: 117
  year: 2016
  ident: ref_82
  article-title: Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 186
  start-page: 64
  year: 2016
  ident: ref_16
  article-title: Review of studies on tree species classification from remotely sensed data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.08.013
– ident: ref_50
  doi: 10.3390/rs9111184
– volume: 27
  start-page: 73
  year: 2006
  ident: ref_67
  article-title: On the optimization and selection of wavelet texture for feature extraction from high-resolution satellite imagery with application towards urban-tree delineation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500295885
– volume: 23
  start-page: 1325
  year: 2021
  ident: ref_71
  article-title: Mapping the Spatial Distribution of Tea Plantations with 10m Resolution in Fujian Province Using Google Earth Engine
  publication-title: J. Geo-Inf. Sci.
– volume: 210
  start-page: 193
  year: 2018
  ident: ref_48
  article-title: Improved mapping of forest type using spectral-temporal Landsat features
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.064
– volume: 55
  start-page: 905
  year: 2018
  ident: ref_22
  article-title: Expansion dynamics of deciduous rubber plantations in Xishuangbanna, China during 2000–2010
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2018.1466441
– volume: 35
  start-page: 41
  year: 2019
  ident: ref_31
  article-title: The utility of Sentinel-2 Vegetation Indices (VIs) and Sentinel-1 Synthetic Aperture Radar (SAR) for invasive alien species detection and mapping
  publication-title: Nat. Conserv.
  doi: 10.3897/natureconservation.35.29588
– volume: 29
  start-page: 3417
  year: 2008
  ident: ref_40
  article-title: Analysis of co-occurrence and discrete wavelet transform textures for differentiation of forest and non-forest vegetation in very-high-resolution optical-sensor imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701601782
– volume: 1
  start-page: 355
  year: 2009
  ident: ref_4
  article-title: A simple algorithm for large-scale mapping of evergreen forests in tropical America, Africa and Asia
  publication-title: Remote Sens.
  doi: 10.3390/rs1030355
– volume: 25
  start-page: 4287
  year: 2004
  ident: ref_39
  article-title: A multiscale texture analysis procedure for improved forest stand classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116042000192367
– volume: 26
  start-page: 4
  year: 2010
  ident: ref_73
  article-title: Spafio—Temporal Dynamic Analysis and Evaluation of Forest Resources in Yanqing County
  publication-title: For. Eng.
– volume: 41
  start-page: 992
  year: 2019
  ident: ref_24
  article-title: Land-cover classification of random forest based on Sentinel-2A image feature optimization
  publication-title: Resour. Sci.
– ident: ref_47
– ident: ref_38
  doi: 10.3390/f11040399
– volume: 32
  start-page: 8207
  year: 2011
  ident: ref_34
  article-title: Land-cover classification in a moist tropical region of Brazil with Landsat Thematic Mapper imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.532831
– ident: ref_53
  doi: 10.3390/rs10060807
– volume: 7
  start-page: 6041
  year: 2015
  ident: ref_32
  article-title: Phenology-based vegetation index differencing for mapping of rubber plantations using landsat OLI data
  publication-title: Remote Sens.
  doi: 10.3390/rs70506041
– ident: ref_70
  doi: 10.3390/rs12081270
– volume: 33
  start-page: 3966
  year: 2012
  ident: ref_81
  article-title: Google Earth as a virtual globe tool for Earth science applications at the global scale: Progress and perspectives
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2011.636081
– volume: 19
  start-page: 2815
  year: 2020
  ident: ref_83
  article-title: Comparison of machine learning algorithms for mapping mango plantations based on Gaofen-1 imagery
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(20)63208-7
– volume: 7
  start-page: 1702
  year: 2015
  ident: ref_20
  article-title: Mapping spatial distribution of larch plantations from multi-seasonal landsat-8 OLI imagery and multi-scale textures using random forests
  publication-title: Remote Sens.
  doi: 10.3390/rs70201702
– ident: ref_5
  doi: 10.3390/f10070559
– volume: 20
  start-page: 1777
  year: 2018
  ident: ref_56
  article-title: The classification of urban greening tree species based on feature selection of random forest
  publication-title: J. Geo-Inf. Sci.
– volume: 115
  start-page: 1301
  year: 2011
  ident: ref_33
  article-title: Object-based crop identification using multiple vegetation indices, textural features and crop phenology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.01.009
– volume: 7
  start-page: 1048
  year: 2015
  ident: ref_11
  article-title: Mapping deciduous rubber plantation areas and stand ages with PALSAR and landsat images
  publication-title: Remote Sens.
  doi: 10.3390/rs70101048
– volume: 134
  start-page: 392
  year: 2013
  ident: ref_12
  article-title: Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.03.014
– volume: 5
  start-page: 2838
  year: 2013
  ident: ref_72
  article-title: The performance of random forests in an operational setting for large area sclerophyll forest classification
  publication-title: Remote Sens.
  doi: 10.3390/rs5062838
– ident: ref_79
– volume: 52
  start-page: 54
  year: 2016
  ident: ref_8
  article-title: Multi-source data for forest land type precise classication
  publication-title: Sci. Silvae Sin.
– volume: 112
  start-page: 735
  year: 2008
  ident: ref_9
  article-title: Estimating proportional change in forest cover as a continuous variable from multi-year MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.06.003
– volume: 29
  start-page: 3986
  year: 2018
  ident: ref_65
  article-title: Forest tree species identification and its response to spatial scale based on multispectral and multi-resolution remotely sensed data
  publication-title: Chin. J. Appl. Ecol.
– volume: 12
  start-page: 25
  year: 2013
  ident: ref_85
  article-title: Monitoring and Evaluation System of Ecological and Environmental Management of Plantation
  publication-title: J. Beijing For. Univ. (Soc. Sci.)
– volume: 216
  start-page: 345
  year: 2018
  ident: ref_29
  article-title: Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.07.006
– volume: 21
  start-page: 360
  year: 2019
  ident: ref_44
  article-title: Random forest classification of Landsat 8 imagery for the complex terrain area based on the combination of spectral, topographic and texture information
  publication-title: J. Geo-Inf. Sci.
– ident: ref_59
  doi: 10.1109/Agro-Geoinformatics.2017.8047000
– volume: 11
  start-page: 12
  year: 2007
  ident: ref_27
  article-title: Land Use/cover Change Detection with Multi-Source Data
  publication-title: J. Remote Sens.
– volume: 3
  start-page: 610
  year: 1973
  ident: ref_62
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man Cybern. SMC
  doi: 10.1109/TSMC.1973.4309314
– volume: 26
  start-page: 217
  year: 2005
  ident: ref_58
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160412331269698
– ident: ref_76
  doi: 10.3390/rs11101197
– ident: ref_2
– volume: 179
  start-page: 66
  year: 2016
  ident: ref_18
  article-title: Mapping tree species in tropical seasonal semi-deciduous forests with hyperspectral and multispectral data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.021
– volume: 29
  start-page: 1407
  year: 2018
  ident: ref_7
  article-title: Forest type identification by random forest classification combined with SPOT and multitemporal SAR data
  publication-title: J. For. Res.
  doi: 10.1007/s11676-017-0530-4
– ident: ref_13
  doi: 10.3390/rs8030236
– volume: 39
  start-page: 2189
  year: 2018
  ident: ref_21
  article-title: Monitoring rubber plantation distribution on Hainan Island using Landsat OLI imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1420933
– ident: ref_60
– volume: 110
  start-page: 29
  year: 2007
  ident: ref_42
  article-title: Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.02.014
SSID ssj0000331904
Score 2.3606904
Snippet The expansion of plantation poses new challenges for mapping forest, especially in mountainous regions. Using multi-source data, this study explored the...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4946
SubjectTerms Accuracy
Algorithms
Classification
Entropy
feature importance
forest classification
Mapping
Mountain regions
multi-source data
plantation
Plantations
random forest
Remote sensing
Rubber
Texture
Time series
Topography
Variables
Vegetation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-yi17ET5xOCejFQ7Ft3prkuPnBEOZBHexW0iTdBNfKVg_-976k3QcoePFWSqDN60ve7_Xl_X6EXCmRhFJrRG4WsgAi64XccV0Jgeg1ZEZ4nu3hUzIYweO4O96Q-nJnwmp64NpwNzrnhgsFkQIBUaSzTGNETcAIlWcsztzuizFvI5nyezBD1wqh5iNlmNffzBcRYMIuHdLdiECeqP_HPuyDy8Me2W1QIe3Vb7NPtmxxQLYbgfLp1yGZ9NaFZlrm1PfNBi_-zzu9U5WiCD7pUDm2hQl1SkR1iZ32MUoZihfPqjDljDopzkVFe--Tcv5WTWf0raC-dkO9kvYRGT3cv94OgkYjIdAsiaqAiTyJhXXtatyAzHGGRjLDjQYRxlZgdidBRbIbY6LFtM21zEOupcq5ZtIwdkxaRVnYE0JDtGaXq6zLLAPFQGSA6CAGrRKBwIC3yfXSbqluCMSdjsV7iomEs3G6tnGbXK7GftS0Gb-O6jvzr0Y4qmt_Ax0gbRwg_csB2qSz_Hhps_4WacxxtiEAg9P_eMYZ2Yld24M_xNchrWr-ac8RjFTZhfe7byk82yo
  priority: 102
  providerName: Directory of Open Access Journals
Title Application of Multi-Source Data for Mapping Plantation Based on Random Forest Algorithm in North China
URI https://www.proquest.com/docview/2724304434
https://doaj.org/article/cf7d78a41a48411cbbc93764d8afb32b
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1BT9swFH4CetguaGObVmCVJbjsEJHEr7F9mtpBhxBFEwyJW-TYTkGCBNrssH-_Z9dtJ23aLUp8iJ_t5-97z34fwLGWRaqMIeTmsEowc0HIndaVlIReU25lqLM9vSrOb_HibngXA26LeKxy5RODo7at8THyk1zkSNQbOX55fkm8apTPrkYJjW3okQuWRL5647Or79frKEvKaYqluKxLyonfn8wXGRJxVx7x_rEThYL9f_njsMlM3sBuRIdstBzOt7Dlmj14FYXK73-9g9lok3Bmbc3C_dnkJkTg2anuNCMQyqbaV12YMa9ItEy1szHtVpbRw7VubPvEvCTnomOjxxl1srt_Yg8NCzkcFhS138Pt5OzH1_MkaiUkhhdZl3BZF7l0_tqasKhq6qFV3AprUKa5k8TyFOpMDXMiXNy42qg6FUbpWhiuLOcfYKdpG_cRWMrzaih0NeSOo-YoKySUkKPRhSSAIPrweWW30sRC4l7P4rEkQuFtXG5s3IejddvnZfmMf7Yae_OvW_iS1-FFO5-VcQWVphZWSI2ZRolZZqrKELQq0EpdV_TLfThcDV4Z1-Gi3Mya_f9_PoDXub_YEI7pHcJON__pPhHc6KoBbMvJtwH0RqfTy5tBnGGDQN5_A3o41po
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELUQHOilKv1QtwVqifbQQ0Riz8b2AaEFuiyF5dCCxC11bGepBAnsBiH-FL-RsZPsVmrVG7cotpRoPDN-4_HMI-SzlmmsjEHk5iCPIHGByB3tSkpErzG3MvTZHp-mo3P4ftG_WCKPXS2Mv1bZ-cTgqG1l_Bn5NhMMMPQGDrs3t5FnjfLZ1Y5Co1GLY_dwjyHbbOfoANf3C2PDb2f7o6hlFYgMT5M64rJImXS-wEtYUIUCZRW3whqQMXMS4yEFOlF9hqEJN64wqoiFUboQhivrD0DR5a8A58pblBwezs90Yo4KHUPTBRXH4-3pLIEEv-Dx9R_7XqAH-Mv7hy1t-Iq8bLEoHTTKs0aWXPmarLa06JcPb8hksEhv06qgoVo3-hnO--mBrjVFyEvH2vd4mFDPf9Qk9uke7o2W4sMPXdrqmnoC0FlNB1cTFGl9eU1_lzRkjGjg735Lzp9Fhu_IclmV7j2hMWd5X-i8zx0HzUHmgJiEgdGpRDgieuRrJ7fMtG3LPXvGVYbhi5dxtpBxj2zN5940zTr-OWvPi38-wzfYDi-q6SRr7TUzhbBCakg0SEgSk-cGgVwKVuoix1_ukfVu8bLW6mfZQkc__H_4E1kdnY1PspOj0-OP5AXzJRXhguA6Wa6nd24DgU6dbwbtouTXc6vzE9vbDVw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamTgJe0MYPUdjAEvDAQ9TEvsb2A0LtumpjrJoGk_YWHNvpkLZka4PQ_rX9dZydpEUC8ba3KLGU5Hw-f3fnu4-Qd1qmsTIGkZuDPILEBSJ3XFdSInqNuZWhz_bxLD04g8_nw_MNctfVwvhjlZ1NDIbaVsbHyAdMMEDXGzgMivZYxMlk-un6JvIMUj7T2tFpNCpy5G5_ofu2_Hg4wbl-z9h0_9veQdQyDESGp0kdcVmkTDpf7CUsqEKBsopbYQ3ImDmJvpECnaghQzeFG1cYVcTCKF0Iw5X1wVA0_5v4UyLukc3x_uzkdBXhiTmqdwxNT1TOVTxYLBNI8B0ebf-xCwaygL_2grDBTbfI4xaZ0lGjSttkw5VPyMOWJP3i9imZj9bJbloVNNTuRl9D9J9OdK0pAmB6rH3Hhzn1bEhNmp-Ocae0FC9OdWmrK-rpQJc1HV3OUaj1xRX9UdKQP6KBzfsZObsXKT4nvbIq3QtCY87yodD5kDsOmoPMAREKA6NTieBE9MmHTm6ZaZuYey6NywydGS_jbC3jPnm7GnvdtO7456ixF_9qhG-3HW5Ui3nWrt7MFMIKqSHRICFJTJ4bhHUpWKmLHD-5T3a6yctaG7DM1hr78v-P35AHqMrZl8PZ0SvyiPn6inBacIf06sVPt4uop85ft-pFyff71ujf4DoS7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Multi-Source+Data+for+Mapping+Plantation+Based+on+Random+Forest+Algorithm+in+North+China&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Wu%2C+Fan&rft.au=Ren%2C+Yufen&rft.au=Wang%2C+Xiaoke&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=19&rft.spage=4946&rft_id=info:doi/10.3390%2Frs14194946&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon