An E-Nose-based indoor air quality monitoring system: prediction of combustible and toxic gas concentrations

A system for monitoring and predicting indoor air quality level is proposed in this paper. The system comprises a computer with a monitoring program and a sensor cell, which has an array of metal oxide gas sensors along with a temperature and humidity sensor. The gas sensors in the cell have been ch...

Full description

Saved in:
Bibliographic Details
Published inElektrik : Turkish journal of electrical engineering & computer sciences Vol. 23; pp. 729 - 740
Main Authors MUMYAKMAZ, BEKİR, KARABACAK, KERİM
Format Journal Article
LanguageEnglish
Published TUBITAK 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A system for monitoring and predicting indoor air quality level is proposed in this paper. The system comprises a computer with a monitoring program and a sensor cell, which has an array of metal oxide gas sensors along with a temperature and humidity sensor. The gas sensors in the cell have been chosen to detect only hydrogen, methane, and carbon monoxide gases. Methane was selected as a representative for indoor combustible gases, and carbon monoxide was used to represent indoor toxic gases. Hydrogen was used as an interfering (and also combustible) gas in the study. A number of experiments were conducted to train the three artificial neural networks of the monitoring system. The networks have been trained using 80% of the gathered data with the Levenberg-Marquardt algorithm. The results of this work show that the performance rate of the proposed monitoring system in determining gas type for the limited sample space is 100% even when there is an interfering gas such as hydrogen in the environment. The trained system can predict the concentration level of the methane and carbon dioxide gases with a low absolute mean percent error rate of almost 1%.
AbstractList A system for monitoring and predicting indoor air quality level is proposed in this paper. The system comprises a computer with a monitoring program and a sensor cell, which has an array of metal oxide gas sensors along with a temperature and humidity sensor. The gas sensors in the cell have been chosen to detect only hydrogen, methane, and carbon monoxide gases. Methane was selected as a representative for indoor combustible gases, and carbon monoxide was used to represent indoor toxic gases. Hydrogen was used as an interfering (and also combustible) gas in the study. A number of experiments were conducted to train the three artificial neural networks of the monitoring system. The networks have been trained using 80% of the gathered data with the Levenberg-Marquardt algorithm. The results of this work show that the performance rate of the proposed monitoring system in determining gas type for the limited sample space is 100% even when there is an interfering gas such as hydrogen in the environment. The trained system can predict the concentration level of the methane and carbon dioxide gases with a low absolute mean percent error rate of almost 1%.
Author MUMYAKMAZ, BEKİR
KARABACAK, KERİM
Author_xml – sequence: 1
  fullname: MUMYAKMAZ, BEKİR
– sequence: 2
  fullname: KARABACAK, KERİM
BookMark eNotkE1LAzEURYNUsK3u3Ar5AUZf8iaZqbtS6gcUBanrIZNkSnSa1GQK9t87ta7uhXu4izMhoxCDI-Sawx3OQN277otxhIIJDmdkPFRkSgCO_jowUCguyCTnTwCQUJRj0s0DXbLXmB1rdHaW-mBjTFT7RL_3uvP9gW5j8H1MPmxoPuTebR_oLjnrTe9joLGlJm6bfe590zmqg6V9_PGGbnQelmBc6JM-ovmSnLe6y-7qP6fk43G5Xjyz1dvTy2K-YgYV7xnirEEpFGLJdTkTppFGVhpcgaawQoJVzmLVtqJpJBqpHZaVLh0aq4q2kjglt6dfk2LOybX1LvmtToeaQ300VQ-m6qOpejA14DcnvNWx1pvkc71-F8AVCJBc4S_9IWhs
CitedBy_id crossref_primary_10_1016_j_chemolab_2017_05_013
crossref_primary_10_3390_s23104824
crossref_primary_10_1016_j_snb_2023_135201
crossref_primary_10_1021_acs_jpcc_6b09740
crossref_primary_10_1007_s12161_019_01443_5
crossref_primary_10_1007_s11633_019_1212_9
crossref_primary_10_3390_s150511665
crossref_primary_10_1007_s40820_020_0407_5
crossref_primary_10_1002_admt_201800488
crossref_primary_10_1108_SR_02_2022_0089
crossref_primary_10_3390_chemosensors9040078
crossref_primary_10_3390_chemosensors10070261
ContentType Journal Article
DBID FBQ
AAYXX
CITATION
DOI 10.3906/elk-1304-210
DatabaseName AGRIS
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1303-6203
EndPage 740
ExternalDocumentID 10_3906_elk_1304_210
TR2016020516
GroupedDBID .4S
.DC
123
29G
2WC
AAKPC
ABDBF
ABPTK
AEGXH
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
B0M
E3Z
EAD
EAP
ECS
EDO
EMK
EOJEC
EPL
EST
ESX
FBQ
GIY
I-F
KKE
L8X
MK~
ML~
OBODZ
OK1
P2P
QF4
QN7
RNS
TR2
TUS
XSB
~8M
AAYXX
CITATION
XXG
ID FETCH-LOGICAL-c361t-339b35263371a792cb5c58a0e43c4d250d6ed38ff2bb53c5ae378a7e3cd64f853
ISSN 1300-0632
1303-6203
IngestDate Fri Aug 23 03:49:29 EDT 2024
Tue Nov 07 23:22:31 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c361t-339b35263371a792cb5c58a0e43c4d250d6ed38ff2bb53c5ae378a7e3cd64f853
Notes http://dergipark.ulakbim.gov.tr/tbtkelektrik/article/view/5000138150
OpenAccessLink https://doi.org/10.3906/elk-1304-210
PageCount 12
ParticipantIDs crossref_primary_10_3906_elk_1304_210
fao_agris_TR2016020516
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Elektrik : Turkish journal of electrical engineering & computer sciences
PublicationYear 2015
Publisher TUBITAK
Publisher_xml – name: TUBITAK
SSID ssj0005047
Score 2.0865881
Snippet A system for monitoring and predicting indoor air quality level is proposed in this paper. The system comprises a computer with a monitoring program and a...
SourceID crossref
fao
SourceType Aggregation Database
Publisher
StartPage 729
SubjectTerms Electronic nose, E-Nose, air quality monitoring, artificial neural networks
Title An E-Nose-based indoor air quality monitoring system: prediction of combustible and toxic gas concentrations
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZcZ2mHPtIGTV_g0E6GWonUw-omtwmCGs4Q2EDaRSApKjDs2IFiA03-Rv9w70RKooMMaRfBIEDa0n3mHU_ffUfIx4CpoAhUDGcTLMkphsobyjLypM9E6XMZlgrrnSen8cks_HEenfd6fxzW0nYjP6vbe-tK_seqMAZ2xSrZf7BsuygMwGewL1zBwnB9kI2z1eDIO11faw-dEaooFWskRc4rWyx5M7is_7M1yc6INmMK4KrC1zNNrAi_TGJPL6yhqvmU699zNbgQ10hJN-TNLqvXJPGXerGp5os6ozDdVgsURnJUKEx3nRoAulM8rHGmbB-JgXW-bVA_mU1-ZuNJ9qvGnF7MW97wODvLRgCasakkquaXbrIiiJxkhdlfORayxzalqZsx7sXM5-6mzLizqyY2KWIcdGL0ne7u_Tz16-Y0y4UHK4Yes3TZHYntO66vJSTCUQjn5zAbX_CFOcOyvT2G8vt9speNvo-OO-aQX_eta-_F1FPg_C_ut-9EOo9K4QYu0-fkqT1x0MzA5wXp6dU-edZ086B2c98nTxxpypdkma2oiy1qsEUBW9Rii3bYogZbX2mHLLouqYMsCsiiNbIoIIvuIusVmR0fTb-deLYzh6d4HGw8zlOJjRU4TwKRpEzJSEVD4euQq7CAqLqIdcGHZcmkjLiKhObJUCSaqyIOS4gQD0h_tV7p14RGWpSJ5EUQiyhMZSSEQmJCXKQ6ZUyKQ_KpeYr5lRFgye-z1iE5gEeciwvwjfn0jKFyIgOPE7954AJvyeMOse9If1Nt9XsIODfygwXAX0_ugqQ
link.rule.ids 315,786,790,27946,27947
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+E-Nose-based+indoor+air+quality+monitoring+system%3A+prediction+of+combustible+and+toxic+gas+concentrations&rft.jtitle=Elektrik+%3A+Turkish+journal+of+electrical+engineering+%26+computer+sciences&rft.au=MUMYAKMAZ%2C+Bekir&rft.au=KARABACAK%2C+Kerim&rft.date=2015-01-01&rft.issn=1300-0632&rft.eissn=1303-6203&rft.volume=23&rft.spage=729&rft.epage=740&rft_id=info:doi/10.3906%2Felk-1304-210&rft.externalDBID=n%2Fa&rft.externalDocID=10_3906_elk_1304_210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1300-0632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1300-0632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1300-0632&client=summon