An E-Nose-based indoor air quality monitoring system: prediction of combustible and toxic gas concentrations
A system for monitoring and predicting indoor air quality level is proposed in this paper. The system comprises a computer with a monitoring program and a sensor cell, which has an array of metal oxide gas sensors along with a temperature and humidity sensor. The gas sensors in the cell have been ch...
Saved in:
Published in | Elektrik : Turkish journal of electrical engineering & computer sciences Vol. 23; pp. 729 - 740 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
TUBITAK
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A system for monitoring and predicting indoor air quality level is proposed in this paper. The system comprises a computer with a monitoring program and a sensor cell, which has an array of metal oxide gas sensors along with a temperature and humidity sensor. The gas sensors in the cell have been chosen to detect only hydrogen, methane, and carbon monoxide gases. Methane was selected as a representative for indoor combustible gases, and carbon monoxide was used to represent indoor toxic gases. Hydrogen was used as an interfering (and also combustible) gas in the study. A number of experiments were conducted to train the three artificial neural networks of the monitoring system. The networks have been trained using 80% of the gathered data with the Levenberg-Marquardt algorithm. The results of this work show that the performance rate of the proposed monitoring system in determining gas type for the limited sample space is 100% even when there is an interfering gas such as hydrogen in the environment. The trained system can predict the concentration level of the methane and carbon dioxide gases with a low absolute mean percent error rate of almost 1%. |
---|---|
AbstractList | A system for monitoring and predicting indoor air quality level is proposed in this paper. The system comprises a computer with a monitoring program and a sensor cell, which has an array of metal oxide gas sensors along with a temperature and humidity sensor. The gas sensors in the cell have been chosen to detect only hydrogen, methane, and carbon monoxide gases. Methane was selected as a representative for indoor combustible gases, and carbon monoxide was used to represent indoor toxic gases. Hydrogen was used as an interfering (and also combustible) gas in the study. A number of experiments were conducted to train the three artificial neural networks of the monitoring system. The networks have been trained using 80% of the gathered data with the Levenberg-Marquardt algorithm. The results of this work show that the performance rate of the proposed monitoring system in determining gas type for the limited sample space is 100% even when there is an interfering gas such as hydrogen in the environment. The trained system can predict the concentration level of the methane and carbon dioxide gases with a low absolute mean percent error rate of almost 1%. |
Author | MUMYAKMAZ, BEKİR KARABACAK, KERİM |
Author_xml | – sequence: 1 fullname: MUMYAKMAZ, BEKİR – sequence: 2 fullname: KARABACAK, KERİM |
BookMark | eNotkE1LAzEURYNUsK3u3Ar5AUZf8iaZqbtS6gcUBanrIZNkSnSa1GQK9t87ta7uhXu4izMhoxCDI-Sawx3OQN277otxhIIJDmdkPFRkSgCO_jowUCguyCTnTwCQUJRj0s0DXbLXmB1rdHaW-mBjTFT7RL_3uvP9gW5j8H1MPmxoPuTebR_oLjnrTe9joLGlJm6bfe590zmqg6V9_PGGbnQelmBc6JM-ovmSnLe6y-7qP6fk43G5Xjyz1dvTy2K-YgYV7xnirEEpFGLJdTkTppFGVhpcgaawQoJVzmLVtqJpJBqpHZaVLh0aq4q2kjglt6dfk2LOybX1LvmtToeaQ300VQ-m6qOpejA14DcnvNWx1pvkc71-F8AVCJBc4S_9IWhs |
CitedBy_id | crossref_primary_10_1016_j_chemolab_2017_05_013 crossref_primary_10_3390_s23104824 crossref_primary_10_1016_j_snb_2023_135201 crossref_primary_10_1021_acs_jpcc_6b09740 crossref_primary_10_1007_s12161_019_01443_5 crossref_primary_10_1007_s11633_019_1212_9 crossref_primary_10_3390_s150511665 crossref_primary_10_1007_s40820_020_0407_5 crossref_primary_10_1002_admt_201800488 crossref_primary_10_1108_SR_02_2022_0089 crossref_primary_10_3390_chemosensors9040078 crossref_primary_10_3390_chemosensors10070261 |
ContentType | Journal Article |
DBID | FBQ AAYXX CITATION |
DOI | 10.3906/elk-1304-210 |
DatabaseName | AGRIS CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1303-6203 |
EndPage | 740 |
ExternalDocumentID | 10_3906_elk_1304_210 TR2016020516 |
GroupedDBID | .4S .DC 123 29G 2WC AAKPC ABDBF ABPTK AEGXH AENEX ALMA_UNASSIGNED_HOLDINGS ARCSS B0M E3Z EAD EAP ECS EDO EMK EOJEC EPL EST ESX FBQ GIY I-F KKE L8X MK~ ML~ OBODZ OK1 P2P QF4 QN7 RNS TR2 TUS XSB ~8M AAYXX CITATION XXG |
ID | FETCH-LOGICAL-c361t-339b35263371a792cb5c58a0e43c4d250d6ed38ff2bb53c5ae378a7e3cd64f853 |
ISSN | 1300-0632 1303-6203 |
IngestDate | Fri Aug 23 03:49:29 EDT 2024 Tue Nov 07 23:22:31 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c361t-339b35263371a792cb5c58a0e43c4d250d6ed38ff2bb53c5ae378a7e3cd64f853 |
Notes | http://dergipark.ulakbim.gov.tr/tbtkelektrik/article/view/5000138150 |
OpenAccessLink | https://doi.org/10.3906/elk-1304-210 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_3906_elk_1304_210 fao_agris_TR2016020516 |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Elektrik : Turkish journal of electrical engineering & computer sciences |
PublicationYear | 2015 |
Publisher | TUBITAK |
Publisher_xml | – name: TUBITAK |
SSID | ssj0005047 |
Score | 2.0865881 |
Snippet | A system for monitoring and predicting indoor air quality level is proposed in this paper. The system comprises a computer with a monitoring program and a... |
SourceID | crossref fao |
SourceType | Aggregation Database Publisher |
StartPage | 729 |
SubjectTerms | Electronic nose, E-Nose, air quality monitoring, artificial neural networks |
Title | An E-Nose-based indoor air quality monitoring system: prediction of combustible and toxic gas concentrations |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZcZ2mHPtIGTV_g0E6GWonUw-omtwmCGs4Q2EDaRSApKjDs2IFiA03-Rv9w70RKooMMaRfBIEDa0n3mHU_ffUfIx4CpoAhUDGcTLMkphsobyjLypM9E6XMZlgrrnSen8cks_HEenfd6fxzW0nYjP6vbe-tK_seqMAZ2xSrZf7BsuygMwGewL1zBwnB9kI2z1eDIO11faw-dEaooFWskRc4rWyx5M7is_7M1yc6INmMK4KrC1zNNrAi_TGJPL6yhqvmU699zNbgQ10hJN-TNLqvXJPGXerGp5os6ozDdVgsURnJUKEx3nRoAulM8rHGmbB-JgXW-bVA_mU1-ZuNJ9qvGnF7MW97wODvLRgCasakkquaXbrIiiJxkhdlfORayxzalqZsx7sXM5-6mzLizqyY2KWIcdGL0ne7u_Tz16-Y0y4UHK4Yes3TZHYntO66vJSTCUQjn5zAbX_CFOcOyvT2G8vt9speNvo-OO-aQX_eta-_F1FPg_C_ut-9EOo9K4QYu0-fkqT1x0MzA5wXp6dU-edZ086B2c98nTxxpypdkma2oiy1qsEUBW9Rii3bYogZbX2mHLLouqYMsCsiiNbIoIIvuIusVmR0fTb-deLYzh6d4HGw8zlOJjRU4TwKRpEzJSEVD4euQq7CAqLqIdcGHZcmkjLiKhObJUCSaqyIOS4gQD0h_tV7p14RGWpSJ5EUQiyhMZSSEQmJCXKQ6ZUyKQ_KpeYr5lRFgye-z1iE5gEeciwvwjfn0jKFyIgOPE7954AJvyeMOse9If1Nt9XsIODfygwXAX0_ugqQ |
link.rule.ids | 315,786,790,27946,27947 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+E-Nose-based+indoor+air+quality+monitoring+system%3A+prediction+of+combustible+and+toxic+gas+concentrations&rft.jtitle=Elektrik+%3A+Turkish+journal+of+electrical+engineering+%26+computer+sciences&rft.au=MUMYAKMAZ%2C+Bekir&rft.au=KARABACAK%2C+Kerim&rft.date=2015-01-01&rft.issn=1300-0632&rft.eissn=1303-6203&rft.volume=23&rft.spage=729&rft.epage=740&rft_id=info:doi/10.3906%2Felk-1304-210&rft.externalDBID=n%2Fa&rft.externalDocID=10_3906_elk_1304_210 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1300-0632&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1300-0632&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1300-0632&client=summon |