Optimization of Laminar Boundary Layers in Flow over a Flat Plate Using Recent Metaheuristic Algorithms
Heat transfer is one of the most fundamental engineering subjects and is found in every moment of life. Heat transfer problems, such as heating and cooling, where the transfer of heat between regions is calculated, are problems that can give exact solutions with parametric equations, many of which w...
Saved in:
Published in | Energies (Basel) Vol. 15; no. 14; p. 5069 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heat transfer is one of the most fundamental engineering subjects and is found in every moment of life. Heat transfer problems, such as heating and cooling, where the transfer of heat between regions is calculated, are problems that can give exact solutions with parametric equations, many of which were obtained by solving differential equations in the past. Today, the fact that heat transfer problems have a more complex structure has led to the emergence of multivariate models, and problems that are very difficult to solve with differential equations have emerged. Optimization techniques, which are also the subject of computer science, are frequently used to solve complex problems. In this study, laminar thermal boundary layers in flow over a flat plate, a sub-problem of heat transfer, is solved with recent metaheuristic algorithms. Teaching learning-based optimization (TLBO), sine cosine optimization (SCO), gray wolf optimization (GWO), whale optimization (WO), salp swarm optimization (SSO), and Harris hawk optimization (HHO) algorithms are used in the study. In the optimization problem, the laminar boundary layer thickness, heat flow, and distance from the leading edge are determined. These three models’ minimum, maximum, and target values are found under the specified design variables and constraints. In the study, 540 optimization models are run, and it is seen that HHO is the most suitable optimization technique for heat transfer problems. Additionally, SSO and WO algorithms gave results close to HHO. Other algorithms also set model targets with an average of less than 0.07% and acceptable error rates. In addition, the average problem solution time of all optimization algorithms and all models was 0.9 s. To conclude, the recent metaheuristic algorithms are found to be powerful and fast in solving heat transfer problems. |
---|---|
AbstractList | Heat transfer is one of the most fundamental engineering subjects and is found in every moment of life. Heat transfer problems, such as heating and cooling, where the transfer of heat between regions is calculated, are problems that can give exact solutions with parametric equations, many of which were obtained by solving differential equations in the past. Today, the fact that heat transfer problems have a more complex structure has led to the emergence of multivariate models, and problems that are very difficult to solve with differential equations have emerged. Optimization techniques, which are also the subject of computer science, are frequently used to solve complex problems. In this study, laminar thermal boundary layers in flow over a flat plate, a sub-problem of heat transfer, is solved with recent metaheuristic algorithms. Teaching learning-based optimization (TLBO), sine cosine optimization (SCO), gray wolf optimization (GWO), whale optimization (WO), salp swarm optimization (SSO), and Harris hawk optimization (HHO) algorithms are used in the study. In the optimization problem, the laminar boundary layer thickness, heat flow, and distance from the leading edge are determined. These three models’ minimum, maximum, and target values are found under the specified design variables and constraints. In the study, 540 optimization models are run, and it is seen that HHO is the most suitable optimization technique for heat transfer problems. Additionally, SSO and WO algorithms gave results close to HHO. Other algorithms also set model targets with an average of less than 0.07% and acceptable error rates. In addition, the average problem solution time of all optimization algorithms and all models was 0.9 s. To conclude, the recent metaheuristic algorithms are found to be powerful and fast in solving heat transfer problems. |
Author | Ovaz Akpinar, Kevser Gunal, Ozen Akpinar, Mustafa |
Author_xml | – sequence: 1 givenname: Ozen orcidid: 0000-0001-9948-7362 surname: Gunal fullname: Gunal, Ozen – sequence: 2 givenname: Mustafa orcidid: 0000-0003-4926-3779 surname: Akpinar fullname: Akpinar, Mustafa – sequence: 3 givenname: Kevser surname: Ovaz Akpinar fullname: Ovaz Akpinar, Kevser |
BookMark | eNptUU1PHDEMjSoqlQKX_oJIvSFtScYzmeQIqHxIW4Gqco48Wc-S1WyyTbKt4Nc3sFStEDk41tPz87P9ke2FGIixT1J8ATDihILsZNsJZd6xfWmMmknRw95_-Qd2lPNK1AcgAWCfLW82xa_9IxYfA48jn-PaB0z8LG7DAtNDBR4oZe4Dv5jibx5_UeJYcyz8tgbid9mHJf9OjkLh36jgPW2Tz8U7fjotY_Llfp0P2fsRp0xHL_8Bu7v4-uP8aja_ubw-P53PHChZZs2iabte61EBGlQDGCLdNp1TqEyFGyWJOgfDqGnsXa_lqBaAoh9c2zmt4YBd73QXEVd2k_y6zmAjevsMxLS0mKq1iSxo2dVeHWkpW6MaBDMA6kGYHnshqWp93mltUvy5pVzsKm5TqPZto0wrhOwbWVlix3Ip5pxotM6X53WWhH6yUtin69h_16klx69K_hp9g_wHfB-QJA |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e16955 crossref_primary_10_1016_j_applthermaleng_2024_123727 |
Cites_doi | 10.1016/j.expthermflusci.2011.12.007 10.3390/app12052383 10.1109/ITT56123.2022.9863959 10.1016/j.advengsoft.2016.01.008 10.3390/su13052773 10.1080/01457630050144514 10.1007/s10489-014-0645-7 10.3390/en14113333 10.1016/j.ijpvp.2018.09.009 10.1016/j.future.2019.02.028 10.1016/j.apenergy.2004.02.009 10.3390/su13052994 10.3390/en12214175 10.3390/app11209477 10.1016/j.knosys.2015.12.022 10.3390/su13052884 10.1109/TGCN.2022.3143991 10.1080/01457639808939935 10.1109/DASA54658.2022.9765281 10.3390/en15093003 10.1016/j.egyr.2021.06.085 10.1016/j.advengsoft.2017.07.002 10.1016/j.ijheatmasstransfer.2007.08.033 10.1016/j.energy.2014.12.008 10.1007/s00366-019-00828-8 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en15145069 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_38155785e8114962a39b3a8b097a701e 10_3390_en15145069 |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-2d245788f63a9a6b39ee8425c6a6988f261ee5c3bf8ef7c781f6d3a07bc45c883 |
IEDL.DBID | DOA |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:23:59 EDT 2025 Mon Jun 30 07:30:28 EDT 2025 Thu Apr 24 23:05:22 EDT 2025 Tue Jul 01 01:28:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-2d245788f63a9a6b39ee8425c6a6988f261ee5c3bf8ef7c781f6d3a07bc45c883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9948-7362 0000-0003-4926-3779 |
OpenAccessLink | https://doaj.org/article/38155785e8114962a39b3a8b097a701e |
PQID | 2694001721 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_38155785e8114962a39b3a8b097a701e proquest_journals_2694001721 crossref_citationtrail_10_3390_en15145069 crossref_primary_10_3390_en15145069 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Mirjalili (ref_29) 2017; 114 Musayev (ref_15) 2019; 2 Mirjalili (ref_28) 2016; 95 ref_13 ref_35 ref_12 Demirci (ref_25) 2021; 4 ref_34 Fabbri (ref_1) 1998; 19 Akdag (ref_33) 2020; 22 ref_19 Ozdemir (ref_4) 2006; 91 ref_18 Akpinar (ref_11) 2019; 23 ref_17 ref_16 Naeijian (ref_37) 2021; 7 Moayedi (ref_32) 2021; 37 Mirjalili (ref_24) 2016; 96 Karami (ref_8) 2012; 38 Ozsaglam (ref_30) 2008; 11 Mirjalili (ref_27) 2015; 43 Zaki (ref_2) 2000; 21 (ref_14) 2018; 1 Dev (ref_36) 2022; 6 Li (ref_3) 2005; 80 Yang (ref_10) 2018; 168 Heidari (ref_31) 2019; 97 ref_22 ref_21 ref_20 (ref_23) 2018; 1 Rao (ref_9) 2015; 80 ref_5 Rao (ref_26) 2011; 43 Madadi (ref_6) 2008; 51 ref_7 |
References_xml | – ident: ref_7 – volume: 43 start-page: 303 year: 2011 ident: ref_26 article-title: Teaching–Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems publication-title: Comput. Des. – volume: 38 start-page: 195 year: 2012 ident: ref_8 article-title: Optimization of Heat Transfer in an Air Cooler Equipped with Classic Twisted Tape Inserts Using Imperialist Competitive Algorithm publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2011.12.007 – volume: 22 start-page: 481 year: 2020 ident: ref_33 article-title: Minimization of Active Power Losses Using Harris Hawks Optimization Algorithm publication-title: Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Derg. – ident: ref_5 – volume: 11 start-page: 299 year: 2008 ident: ref_30 article-title: Particle Swarm Optimization Algorithm for Solving Optimızation Problems publication-title: J. Polytech. – ident: ref_22 doi: 10.3390/app12052383 – ident: ref_34 – ident: ref_13 doi: 10.1109/ITT56123.2022.9863959 – volume: 95 start-page: 51 year: 2016 ident: ref_28 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref_20 doi: 10.3390/su13052773 – volume: 21 start-page: 63 year: 2000 ident: ref_2 article-title: Optimization of Multilayer Thermal Insulation for Pipelines publication-title: Heat Transf. Eng. doi: 10.1080/01457630050144514 – volume: 1 start-page: 44 year: 2018 ident: ref_14 article-title: Nature Inspired Optimization Algorithms and Their Performance on the Solution of Nonlinear Equation Systems publication-title: Sak. Univ. J. Comput. Inf. Sci. – volume: 43 start-page: 150 year: 2015 ident: ref_27 article-title: How Effective Is the Grey Wolf Optimizer in Training Multi-Layer Perceptrons publication-title: Appl. Intell. doi: 10.1007/s10489-014-0645-7 – volume: 91 start-page: 39 year: 2006 ident: ref_4 article-title: Mekanik Tesisatta Ekonomik Yalıtım Kalınlığı publication-title: Tesisat Mühendisliği Derg. – ident: ref_17 doi: 10.3390/en14113333 – volume: 4 start-page: 120 year: 2021 ident: ref_25 article-title: Effect of the Chaotic Crossover Operator on Breeding Swarms Algorithm publication-title: Sak. Univ. J. Comput. Inf. Sci. – volume: 168 start-page: 100 year: 2018 ident: ref_10 article-title: Thermal Insulation of Subsea Pipelines for Different Materials publication-title: Int. J. Press. Vessel. Pip. doi: 10.1016/j.ijpvp.2018.09.009 – volume: 97 start-page: 849 year: 2019 ident: ref_31 article-title: Harris Hawks Optimization: Algorithm and Applications publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 1 start-page: B2 year: 2018 ident: ref_23 article-title: A New Solution Approach for Non-Linear Equation Systems with Grey Wolf Optimizer publication-title: Sak. Univ. J. Comput. Inf. Sci. – volume: 80 start-page: 23 year: 2005 ident: ref_3 article-title: Optimum Insulation-Thickness for Thermal and Freezing Protection publication-title: Appl. Energy doi: 10.1016/j.apenergy.2004.02.009 – ident: ref_18 doi: 10.3390/su13052994 – ident: ref_21 doi: 10.3390/en12214175 – ident: ref_19 doi: 10.3390/app11209477 – volume: 96 start-page: 120 year: 2016 ident: ref_24 article-title: SCA: A Sine Cosine Algorithm for Solving Optimization Problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – ident: ref_16 doi: 10.3390/su13052884 – volume: 6 start-page: 685 year: 2022 ident: ref_36 article-title: Energy Optimization for Green Communication in IoT Using Harris Hawks Optimization publication-title: IEEE Trans. Green Commun. Netw. doi: 10.1109/TGCN.2022.3143991 – volume: 19 start-page: 42 year: 1998 ident: ref_1 article-title: Heat Transfer Optimization in Finned Annular Ducts under Laminar-Flow Conditions publication-title: Heat Transf. Eng. doi: 10.1080/01457639808939935 – ident: ref_12 doi: 10.1109/DASA54658.2022.9765281 – ident: ref_35 doi: 10.3390/en15093003 – volume: 7 start-page: 4047 year: 2021 ident: ref_37 article-title: Parameter Estimation of PV Solar Cells and Modules Using Whippy Harris Hawks Optimization Algorithm publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.06.085 – volume: 114 start-page: 163 year: 2017 ident: ref_29 article-title: Salp Swarm Algorithm: A Bio-Inspired Optimizer for Engineering Design Problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – volume: 2 start-page: 108 year: 2019 ident: ref_15 article-title: Electrical Load Forecasting Using Genetic Algorithm Based Holt-Winters Exponential Smoothing Method publication-title: Sak. Univ. J. Comput. Inf. Sci. – volume: 23 start-page: 1123 year: 2019 ident: ref_11 article-title: Application of Genetic Algorithm for Multi-Objective Optimizing of Heat-Transfer Parameters publication-title: Sak. Univ. J. Sci. – volume: 51 start-page: 2299 year: 2008 ident: ref_6 article-title: Optimization of the Location of Multiple Discrete Heat Sources in a Ventilated Cavity Using Artificial Neural Networks and Micro Genetic Algorithm publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2007.08.033 – volume: 80 start-page: 535 year: 2015 ident: ref_9 article-title: Optimal Design of the Heat Pipe Using TLBO (Teaching–Learning-Based Optimization) Algorithm publication-title: Energy doi: 10.1016/j.energy.2014.12.008 – volume: 37 start-page: 369 year: 2021 ident: ref_32 article-title: A Novel Harris Hawks’ Optimization and k-Fold Cross-Validation Predicting Slope Stability publication-title: Eng. Comput. doi: 10.1007/s00366-019-00828-8 |
SSID | ssj0000331333 |
Score | 2.3059633 |
Snippet | Heat transfer is one of the most fundamental engineering subjects and is found in every moment of life. Heat transfer problems, such as heating and cooling,... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 5069 |
SubjectTerms | flat plate Genetic algorithms Heat transfer Heuristic Insulation laminar boundary layers laminar flow Learning optimization Optimization algorithms Optimization techniques Random variables Teaching teaching learning-based optimization Wolves |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XfQgfuJ0SkAvHsrapk3Tk2yyMUTnEAe7lTRNprC1s-sQ_3tf2uwDFC-lpLn0vbyPX_LyewjdKpU4kCiHlh84vgYoxGKKhhYkJx5hCRU2LwtkB7Q_8h7H_thsuC1MWeXKJ5aOOsmE3iNv6RuXFWC5n39aumuUPl01LTR2UR1cMAPwVe90B8PX9S6LTQiAMFLxkhLA9y2ZQozzfFtXOG9FopKw_5c_LoNM7xAdmOwQtyt1HqEdmR6j_S3OwBM0eQEjn5nbkzhT-InrapYcd8oGSfk3DOg0Gn-kuDfNvrCu0cQc3nmBh_CQuCwTwJAwQsDBz7Lg73JZETbj9nQCP128zxanaNTrvj30LdMtwRKEOoXlJq4H5geSJjzkNCahlPqMTVBOQxgGqCSlL0ismFSBCJijaEK4HcTC8wVj5AzV0iyV5whD0OICoAr1ZOzZiWJuomLHlgB9SAJRr4HuVpKLhKES1x0tphFACi3laCPlBrpZz51XBBp_zupoBaxnaNLrciDLJ5GxoQiSC19z80gGIC6kLidhTDiL7TDgge3IBmqu1BcZS1xEm3Vz8f_nS7Tn6qsNZSluE9WKfCmvIOEo4muzqn4AKWDUPQ priority: 102 providerName: ProQuest |
Title | Optimization of Laminar Boundary Layers in Flow over a Flat Plate Using Recent Metaheuristic Algorithms |
URI | https://www.proquest.com/docview/2694001721 https://doaj.org/article/38155785e8114962a39b3a8b097a701e |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA46L3oQf-J0joBePJS1TZumx032A9E5xMFuJU2TOdha2TrE_96XtJsFBS9eQgkPWl5e8r2PvnwPoVulEgcS5dDyA8fXBIVYTNHQguTEIyyhwuamQHZIB2PvYeJPKq2-dE1YIQ9cOK4FiOJrQRbJIHMPqctJGBPOYjsMeGA7Up--gHkVMmXOYEKAfJFCj5QAr2_JFLDN821d2VxBICPU_-McNuDSO0KHZVaI28XXHKMdmZ6gg4pW4CmaPsPmXpS3JnGm8CPXVSxL3DGNkZafMKHTZzxLcW-efWBdm4k5PPMcj2CQ2JQHYEgUAWjwk8z5m1wXQs24PZ9my1n-tlidoXGv-3o_sMouCZYg1MktN3E9cBB4mPCQ05iEUup_a4JyGsI0UCQpfUFixaQKRMAcRRPC7SAWni8YI-eolmapvEAYwIoLoCjUk7FnJ4q5iYodWwLlIQmgXR3dbTwXiVJCXHeymEdAJbSXo28v19HN1va9EM741aqjF2BrocWuzQSEQFSGQPRXCNRRY7N8UbkDV5G-oVsQ3Mv_eMcV2nf1xQdTqNtAtXy5lteQjuRxE-2yXr-J9jrd4eilaeIQxv7E-QIjP90j |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKe6UMAScOAQ1YkTxz4g1ALLlm4Lh1bqLTiOvUXaJmU3VdU_xW9kxkm2lUDceoki24qimfHMfPY8AN54X8XoKOsoy-OMAIqIlJc6QuckFaqSlpsQIHsgJ0fp1-PseA1-D7kwFFY56MSgqKvG0hn5FmVcdoDlw9mviLpG0e3q0EKjE4s9d3mBkG35fvcT8vdtkow_H36cRH1XgcgKGbdRUiUpiin-kTDayFJo5-guykojNQ4jpHAus6L0yvnc5ir2shKG56VNM6uUwO_egtupEJp2lBp_WZ3pcCEQ8omuCirO8y1Xo0VNM07x1NfsXmgP8Jf2DyZt_ADu974o2-6E5yGsufoR3LtWofAxzL6hSjntczVZ49nUUOzMgu2EdkyLSxwgp539rNl43lwwighlBt9Ny77jw7EQlMDQPUXzxvZda07ceVcemm3PZ0ji9uR0-QSOboSKT2G9bmq3AQxNpLEIjGTqypRXXiWVL2PuEGiJCm3sCN4NlCtsX7ic-mfMCwQwROXiisojeL1ae9aV6_jnqh1iwGoFldgOA81iVvQ7tkBXJqNKQE4hZNQyMUKXwqiS69zkPHYj2BzYV_T7fllcSemz_0-_gjuTw_1pMd092HsOdxNKqghBwJuw3i7O3Qt0ddryZZAvBj9uWqD_ACQSD-Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiqCwUsAQcO0Tpx4tgHhLq0q5aWZYWo1FtwHHuLtE3Kbqqqf41fx0we20ogbr1EkWNF0XgyM5_9zQzAW--LEANlHSRpmBBAEYHyUgcYnMRCFdJy0xBkp3L_OP58kpxswO8-F4Zolb1NbAx1UVnaIx9RxmULWEa-o0XMdicfz38F1EGKTlr7dhqtihy6q0uEb6sPB7u41u-iaLL3_dN-0HUYCKyQYR1ERRSjyuLXCaONzIV2js6lrDRS4zDCC-cSK3KvnE9tqkIvC2F4mts4sUoJfO8d2EwRFfEBbI73prNv6x0eLgQCQNHWRBVC85Er0b_GCSd29Q0v2DQL-MsXNA5u8hAedJEp22lV6RFsuPIx3L9Rr_AJzL-igTnrMjdZ5dmRISbNko2b5kzLKxygEJ79LNlkUV0y4ocyg_emZjO8ONZQFBgGq-js2BdXm1N30RaLZjuLOQq5Pj1bPYXjW5HjMxiUVem2gKHDNBZhkoxdHvPCq6jwecgdwi5RoMcdwvtecpntyphTN41FhnCGpJxdS3kIb9Zzz9viHf-cNaYFWM-ggtvNQLWcZ93_m2Fgk1BdIKcQQGoZGaFzYVTOdWpSHrohbPfLl3VWYJVd6-zz_z9-DXdRmbOjg-nhC7gXUYZFwwjehkG9vHAvMe6p81edgjH4cds6_Qc1bRV4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Laminar+Boundary+Layers+in+Flow+over+a+Flat+Plate+Using+Recent+Metaheuristic+Algorithms&rft.jtitle=Energies+%28Basel%29&rft.au=Gunal%2C+Ozen&rft.au=Akpinar%2C+Mustafa&rft.au=Ovaz+Akpinar%2C+Kevser&rft.date=2022-07-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=15&rft.issue=14&rft.spage=5069&rft_id=info:doi/10.3390%2Fen15145069&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en15145069 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |