Optimization of Laminar Boundary Layers in Flow over a Flat Plate Using Recent Metaheuristic Algorithms

Heat transfer is one of the most fundamental engineering subjects and is found in every moment of life. Heat transfer problems, such as heating and cooling, where the transfer of heat between regions is calculated, are problems that can give exact solutions with parametric equations, many of which w...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 15; no. 14; p. 5069
Main Authors Gunal, Ozen, Akpinar, Mustafa, Ovaz Akpinar, Kevser
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heat transfer is one of the most fundamental engineering subjects and is found in every moment of life. Heat transfer problems, such as heating and cooling, where the transfer of heat between regions is calculated, are problems that can give exact solutions with parametric equations, many of which were obtained by solving differential equations in the past. Today, the fact that heat transfer problems have a more complex structure has led to the emergence of multivariate models, and problems that are very difficult to solve with differential equations have emerged. Optimization techniques, which are also the subject of computer science, are frequently used to solve complex problems. In this study, laminar thermal boundary layers in flow over a flat plate, a sub-problem of heat transfer, is solved with recent metaheuristic algorithms. Teaching learning-based optimization (TLBO), sine cosine optimization (SCO), gray wolf optimization (GWO), whale optimization (WO), salp swarm optimization (SSO), and Harris hawk optimization (HHO) algorithms are used in the study. In the optimization problem, the laminar boundary layer thickness, heat flow, and distance from the leading edge are determined. These three models’ minimum, maximum, and target values are found under the specified design variables and constraints. In the study, 540 optimization models are run, and it is seen that HHO is the most suitable optimization technique for heat transfer problems. Additionally, SSO and WO algorithms gave results close to HHO. Other algorithms also set model targets with an average of less than 0.07% and acceptable error rates. In addition, the average problem solution time of all optimization algorithms and all models was 0.9 s. To conclude, the recent metaheuristic algorithms are found to be powerful and fast in solving heat transfer problems.
AbstractList Heat transfer is one of the most fundamental engineering subjects and is found in every moment of life. Heat transfer problems, such as heating and cooling, where the transfer of heat between regions is calculated, are problems that can give exact solutions with parametric equations, many of which were obtained by solving differential equations in the past. Today, the fact that heat transfer problems have a more complex structure has led to the emergence of multivariate models, and problems that are very difficult to solve with differential equations have emerged. Optimization techniques, which are also the subject of computer science, are frequently used to solve complex problems. In this study, laminar thermal boundary layers in flow over a flat plate, a sub-problem of heat transfer, is solved with recent metaheuristic algorithms. Teaching learning-based optimization (TLBO), sine cosine optimization (SCO), gray wolf optimization (GWO), whale optimization (WO), salp swarm optimization (SSO), and Harris hawk optimization (HHO) algorithms are used in the study. In the optimization problem, the laminar boundary layer thickness, heat flow, and distance from the leading edge are determined. These three models’ minimum, maximum, and target values are found under the specified design variables and constraints. In the study, 540 optimization models are run, and it is seen that HHO is the most suitable optimization technique for heat transfer problems. Additionally, SSO and WO algorithms gave results close to HHO. Other algorithms also set model targets with an average of less than 0.07% and acceptable error rates. In addition, the average problem solution time of all optimization algorithms and all models was 0.9 s. To conclude, the recent metaheuristic algorithms are found to be powerful and fast in solving heat transfer problems.
Author Ovaz Akpinar, Kevser
Gunal, Ozen
Akpinar, Mustafa
Author_xml – sequence: 1
  givenname: Ozen
  orcidid: 0000-0001-9948-7362
  surname: Gunal
  fullname: Gunal, Ozen
– sequence: 2
  givenname: Mustafa
  orcidid: 0000-0003-4926-3779
  surname: Akpinar
  fullname: Akpinar, Mustafa
– sequence: 3
  givenname: Kevser
  surname: Ovaz Akpinar
  fullname: Ovaz Akpinar, Kevser
BookMark eNptUU1PHDEMjSoqlQKX_oJIvSFtScYzmeQIqHxIW4Gqco48Wc-S1WyyTbKt4Nc3sFStEDk41tPz87P9ke2FGIixT1J8ATDihILsZNsJZd6xfWmMmknRw95_-Qd2lPNK1AcgAWCfLW82xa_9IxYfA48jn-PaB0z8LG7DAtNDBR4oZe4Dv5jibx5_UeJYcyz8tgbid9mHJf9OjkLh36jgPW2Tz8U7fjotY_Llfp0P2fsRp0xHL_8Bu7v4-uP8aja_ubw-P53PHChZZs2iabte61EBGlQDGCLdNp1TqEyFGyWJOgfDqGnsXa_lqBaAoh9c2zmt4YBd73QXEVd2k_y6zmAjevsMxLS0mKq1iSxo2dVeHWkpW6MaBDMA6kGYHnshqWp93mltUvy5pVzsKm5TqPZto0wrhOwbWVlix3Ip5pxotM6X53WWhH6yUtin69h_16klx69K_hp9g_wHfB-QJA
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e16955
crossref_primary_10_1016_j_applthermaleng_2024_123727
Cites_doi 10.1016/j.expthermflusci.2011.12.007
10.3390/app12052383
10.1109/ITT56123.2022.9863959
10.1016/j.advengsoft.2016.01.008
10.3390/su13052773
10.1080/01457630050144514
10.1007/s10489-014-0645-7
10.3390/en14113333
10.1016/j.ijpvp.2018.09.009
10.1016/j.future.2019.02.028
10.1016/j.apenergy.2004.02.009
10.3390/su13052994
10.3390/en12214175
10.3390/app11209477
10.1016/j.knosys.2015.12.022
10.3390/su13052884
10.1109/TGCN.2022.3143991
10.1080/01457639808939935
10.1109/DASA54658.2022.9765281
10.3390/en15093003
10.1016/j.egyr.2021.06.085
10.1016/j.advengsoft.2017.07.002
10.1016/j.ijheatmasstransfer.2007.08.033
10.1016/j.energy.2014.12.008
10.1007/s00366-019-00828-8
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en15145069
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_38155785e8114962a39b3a8b097a701e
10_3390_en15145069
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-2d245788f63a9a6b39ee8425c6a6988f261ee5c3bf8ef7c781f6d3a07bc45c883
IEDL.DBID DOA
ISSN 1996-1073
IngestDate Wed Aug 27 01:23:59 EDT 2025
Mon Jun 30 07:30:28 EDT 2025
Thu Apr 24 23:05:22 EDT 2025
Tue Jul 01 01:28:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-2d245788f63a9a6b39ee8425c6a6988f261ee5c3bf8ef7c781f6d3a07bc45c883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9948-7362
0000-0003-4926-3779
OpenAccessLink https://doaj.org/article/38155785e8114962a39b3a8b097a701e
PQID 2694001721
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_38155785e8114962a39b3a8b097a701e
proquest_journals_2694001721
crossref_citationtrail_10_3390_en15145069
crossref_primary_10_3390_en15145069
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Mirjalili (ref_29) 2017; 114
Musayev (ref_15) 2019; 2
Mirjalili (ref_28) 2016; 95
ref_13
ref_35
ref_12
Demirci (ref_25) 2021; 4
ref_34
Fabbri (ref_1) 1998; 19
Akdag (ref_33) 2020; 22
ref_19
Ozdemir (ref_4) 2006; 91
ref_18
Akpinar (ref_11) 2019; 23
ref_17
ref_16
Naeijian (ref_37) 2021; 7
Moayedi (ref_32) 2021; 37
Mirjalili (ref_24) 2016; 96
Karami (ref_8) 2012; 38
Ozsaglam (ref_30) 2008; 11
Mirjalili (ref_27) 2015; 43
Zaki (ref_2) 2000; 21
(ref_14) 2018; 1
Dev (ref_36) 2022; 6
Li (ref_3) 2005; 80
Yang (ref_10) 2018; 168
Heidari (ref_31) 2019; 97
ref_22
ref_21
ref_20
(ref_23) 2018; 1
Rao (ref_9) 2015; 80
ref_5
Rao (ref_26) 2011; 43
Madadi (ref_6) 2008; 51
ref_7
References_xml – ident: ref_7
– volume: 43
  start-page: 303
  year: 2011
  ident: ref_26
  article-title: Teaching–Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems
  publication-title: Comput. Des.
– volume: 38
  start-page: 195
  year: 2012
  ident: ref_8
  article-title: Optimization of Heat Transfer in an Air Cooler Equipped with Classic Twisted Tape Inserts Using Imperialist Competitive Algorithm
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2011.12.007
– volume: 22
  start-page: 481
  year: 2020
  ident: ref_33
  article-title: Minimization of Active Power Losses Using Harris Hawks Optimization Algorithm
  publication-title: Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Derg.
– ident: ref_5
– volume: 11
  start-page: 299
  year: 2008
  ident: ref_30
  article-title: Particle Swarm Optimization Algorithm for Solving Optimızation Problems
  publication-title: J. Polytech.
– ident: ref_22
  doi: 10.3390/app12052383
– ident: ref_34
– ident: ref_13
  doi: 10.1109/ITT56123.2022.9863959
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_28
  article-title: The Whale Optimization Algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref_20
  doi: 10.3390/su13052773
– volume: 21
  start-page: 63
  year: 2000
  ident: ref_2
  article-title: Optimization of Multilayer Thermal Insulation for Pipelines
  publication-title: Heat Transf. Eng.
  doi: 10.1080/01457630050144514
– volume: 1
  start-page: 44
  year: 2018
  ident: ref_14
  article-title: Nature Inspired Optimization Algorithms and Their Performance on the Solution of Nonlinear Equation Systems
  publication-title: Sak. Univ. J. Comput. Inf. Sci.
– volume: 43
  start-page: 150
  year: 2015
  ident: ref_27
  article-title: How Effective Is the Grey Wolf Optimizer in Training Multi-Layer Perceptrons
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-014-0645-7
– volume: 91
  start-page: 39
  year: 2006
  ident: ref_4
  article-title: Mekanik Tesisatta Ekonomik Yalıtım Kalınlığı
  publication-title: Tesisat Mühendisliği Derg.
– ident: ref_17
  doi: 10.3390/en14113333
– volume: 4
  start-page: 120
  year: 2021
  ident: ref_25
  article-title: Effect of the Chaotic Crossover Operator on Breeding Swarms Algorithm
  publication-title: Sak. Univ. J. Comput. Inf. Sci.
– volume: 168
  start-page: 100
  year: 2018
  ident: ref_10
  article-title: Thermal Insulation of Subsea Pipelines for Different Materials
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/j.ijpvp.2018.09.009
– volume: 97
  start-page: 849
  year: 2019
  ident: ref_31
  article-title: Harris Hawks Optimization: Algorithm and Applications
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 1
  start-page: B2
  year: 2018
  ident: ref_23
  article-title: A New Solution Approach for Non-Linear Equation Systems with Grey Wolf Optimizer
  publication-title: Sak. Univ. J. Comput. Inf. Sci.
– volume: 80
  start-page: 23
  year: 2005
  ident: ref_3
  article-title: Optimum Insulation-Thickness for Thermal and Freezing Protection
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2004.02.009
– ident: ref_18
  doi: 10.3390/su13052994
– ident: ref_21
  doi: 10.3390/en12214175
– ident: ref_19
  doi: 10.3390/app11209477
– volume: 96
  start-page: 120
  year: 2016
  ident: ref_24
  article-title: SCA: A Sine Cosine Algorithm for Solving Optimization Problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– ident: ref_16
  doi: 10.3390/su13052884
– volume: 6
  start-page: 685
  year: 2022
  ident: ref_36
  article-title: Energy Optimization for Green Communication in IoT Using Harris Hawks Optimization
  publication-title: IEEE Trans. Green Commun. Netw.
  doi: 10.1109/TGCN.2022.3143991
– volume: 19
  start-page: 42
  year: 1998
  ident: ref_1
  article-title: Heat Transfer Optimization in Finned Annular Ducts under Laminar-Flow Conditions
  publication-title: Heat Transf. Eng.
  doi: 10.1080/01457639808939935
– ident: ref_12
  doi: 10.1109/DASA54658.2022.9765281
– ident: ref_35
  doi: 10.3390/en15093003
– volume: 7
  start-page: 4047
  year: 2021
  ident: ref_37
  article-title: Parameter Estimation of PV Solar Cells and Modules Using Whippy Harris Hawks Optimization Algorithm
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.06.085
– volume: 114
  start-page: 163
  year: 2017
  ident: ref_29
  article-title: Salp Swarm Algorithm: A Bio-Inspired Optimizer for Engineering Design Problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 2
  start-page: 108
  year: 2019
  ident: ref_15
  article-title: Electrical Load Forecasting Using Genetic Algorithm Based Holt-Winters Exponential Smoothing Method
  publication-title: Sak. Univ. J. Comput. Inf. Sci.
– volume: 23
  start-page: 1123
  year: 2019
  ident: ref_11
  article-title: Application of Genetic Algorithm for Multi-Objective Optimizing of Heat-Transfer Parameters
  publication-title: Sak. Univ. J. Sci.
– volume: 51
  start-page: 2299
  year: 2008
  ident: ref_6
  article-title: Optimization of the Location of Multiple Discrete Heat Sources in a Ventilated Cavity Using Artificial Neural Networks and Micro Genetic Algorithm
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2007.08.033
– volume: 80
  start-page: 535
  year: 2015
  ident: ref_9
  article-title: Optimal Design of the Heat Pipe Using TLBO (Teaching–Learning-Based Optimization) Algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2014.12.008
– volume: 37
  start-page: 369
  year: 2021
  ident: ref_32
  article-title: A Novel Harris Hawks’ Optimization and k-Fold Cross-Validation Predicting Slope Stability
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-019-00828-8
SSID ssj0000331333
Score 2.3059633
Snippet Heat transfer is one of the most fundamental engineering subjects and is found in every moment of life. Heat transfer problems, such as heating and cooling,...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5069
SubjectTerms flat plate
Genetic algorithms
Heat transfer
Heuristic
Insulation
laminar boundary layers
laminar flow
Learning
optimization
Optimization algorithms
Optimization techniques
Random variables
Teaching
teaching learning-based optimization
Wolves
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XfQgfuJ0SkAvHsrapk3Tk2yyMUTnEAe7lTRNprC1s-sQ_3tf2uwDFC-lpLn0vbyPX_LyewjdKpU4kCiHlh84vgYoxGKKhhYkJx5hCRU2LwtkB7Q_8h7H_thsuC1MWeXKJ5aOOsmE3iNv6RuXFWC5n39aumuUPl01LTR2UR1cMAPwVe90B8PX9S6LTQiAMFLxkhLA9y2ZQozzfFtXOG9FopKw_5c_LoNM7xAdmOwQtyt1HqEdmR6j_S3OwBM0eQEjn5nbkzhT-InrapYcd8oGSfk3DOg0Gn-kuDfNvrCu0cQc3nmBh_CQuCwTwJAwQsDBz7Lg73JZETbj9nQCP128zxanaNTrvj30LdMtwRKEOoXlJq4H5geSJjzkNCahlPqMTVBOQxgGqCSlL0ismFSBCJijaEK4HcTC8wVj5AzV0iyV5whD0OICoAr1ZOzZiWJuomLHlgB9SAJRr4HuVpKLhKES1x0tphFACi3laCPlBrpZz51XBBp_zupoBaxnaNLrciDLJ5GxoQiSC19z80gGIC6kLidhTDiL7TDgge3IBmqu1BcZS1xEm3Vz8f_nS7Tn6qsNZSluE9WKfCmvIOEo4muzqn4AKWDUPQ
  priority: 102
  providerName: ProQuest
Title Optimization of Laminar Boundary Layers in Flow over a Flat Plate Using Recent Metaheuristic Algorithms
URI https://www.proquest.com/docview/2694001721
https://doaj.org/article/38155785e8114962a39b3a8b097a701e
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA46L3oQf-J0joBePJS1TZumx032A9E5xMFuJU2TOdha2TrE_96XtJsFBS9eQgkPWl5e8r2PvnwPoVulEgcS5dDyA8fXBIVYTNHQguTEIyyhwuamQHZIB2PvYeJPKq2-dE1YIQ9cOK4FiOJrQRbJIHMPqctJGBPOYjsMeGA7Up--gHkVMmXOYEKAfJFCj5QAr2_JFLDN821d2VxBICPU_-McNuDSO0KHZVaI28XXHKMdmZ6gg4pW4CmaPsPmXpS3JnGm8CPXVSxL3DGNkZafMKHTZzxLcW-efWBdm4k5PPMcj2CQ2JQHYEgUAWjwk8z5m1wXQs24PZ9my1n-tlidoXGv-3o_sMouCZYg1MktN3E9cBB4mPCQ05iEUup_a4JyGsI0UCQpfUFixaQKRMAcRRPC7SAWni8YI-eolmapvEAYwIoLoCjUk7FnJ4q5iYodWwLlIQmgXR3dbTwXiVJCXHeymEdAJbSXo28v19HN1va9EM741aqjF2BrocWuzQSEQFSGQPRXCNRRY7N8UbkDV5G-oVsQ3Mv_eMcV2nf1xQdTqNtAtXy5lteQjuRxE-2yXr-J9jrd4eilaeIQxv7E-QIjP90j
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKe6UMAScOAQ1YkTxz4g1ALLlm4Lh1bqLTiOvUXaJmU3VdU_xW9kxkm2lUDceoki24qimfHMfPY8AN54X8XoKOsoy-OMAIqIlJc6QuckFaqSlpsQIHsgJ0fp1-PseA1-D7kwFFY56MSgqKvG0hn5FmVcdoDlw9mviLpG0e3q0EKjE4s9d3mBkG35fvcT8vdtkow_H36cRH1XgcgKGbdRUiUpiin-kTDayFJo5-guykojNQ4jpHAus6L0yvnc5ir2shKG56VNM6uUwO_egtupEJp2lBp_WZ3pcCEQ8omuCirO8y1Xo0VNM07x1NfsXmgP8Jf2DyZt_ADu974o2-6E5yGsufoR3LtWofAxzL6hSjntczVZ49nUUOzMgu2EdkyLSxwgp539rNl43lwwighlBt9Ny77jw7EQlMDQPUXzxvZda07ceVcemm3PZ0ji9uR0-QSOboSKT2G9bmq3AQxNpLEIjGTqypRXXiWVL2PuEGiJCm3sCN4NlCtsX7ic-mfMCwQwROXiisojeL1ae9aV6_jnqh1iwGoFldgOA81iVvQ7tkBXJqNKQE4hZNQyMUKXwqiS69zkPHYj2BzYV_T7fllcSemz_0-_gjuTw_1pMd092HsOdxNKqghBwJuw3i7O3Qt0ddryZZAvBj9uWqD_ACQSD-Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiqCwUsAQcO0Tpx4tgHhLq0q5aWZYWo1FtwHHuLtE3Kbqqqf41fx0we20ogbr1EkWNF0XgyM5_9zQzAW--LEANlHSRpmBBAEYHyUgcYnMRCFdJy0xBkp3L_OP58kpxswO8-F4Zolb1NbAx1UVnaIx9RxmULWEa-o0XMdicfz38F1EGKTlr7dhqtihy6q0uEb6sPB7u41u-iaLL3_dN-0HUYCKyQYR1ERRSjyuLXCaONzIV2js6lrDRS4zDCC-cSK3KvnE9tqkIvC2F4mts4sUoJfO8d2EwRFfEBbI73prNv6x0eLgQCQNHWRBVC85Er0b_GCSd29Q0v2DQL-MsXNA5u8hAedJEp22lV6RFsuPIx3L9Rr_AJzL-igTnrMjdZ5dmRISbNko2b5kzLKxygEJ79LNlkUV0y4ocyg_emZjO8ONZQFBgGq-js2BdXm1N30RaLZjuLOQq5Pj1bPYXjW5HjMxiUVem2gKHDNBZhkoxdHvPCq6jwecgdwi5RoMcdwvtecpntyphTN41FhnCGpJxdS3kIb9Zzz9viHf-cNaYFWM-ggtvNQLWcZ93_m2Fgk1BdIKcQQGoZGaFzYVTOdWpSHrohbPfLl3VWYJVd6-zz_z9-DXdRmbOjg-nhC7gXUYZFwwjehkG9vHAvMe6p81edgjH4cds6_Qc1bRV4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Laminar+Boundary+Layers+in+Flow+over+a+Flat+Plate+Using+Recent+Metaheuristic+Algorithms&rft.jtitle=Energies+%28Basel%29&rft.au=Gunal%2C+Ozen&rft.au=Akpinar%2C+Mustafa&rft.au=Ovaz+Akpinar%2C+Kevser&rft.date=2022-07-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=15&rft.issue=14&rft.spage=5069&rft_id=info:doi/10.3390%2Fen15145069&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en15145069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon