Water Network-Failure Data Assessment

The water-supply system is one of the basic and most important critical infrastructures. Water supply service disruption (water quality or quantity) may have serious consequences in modern societies. Water supply service is subject to various failure modes. Failure modes are specified by their degra...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 13; no. 11; p. 2990
Main Authors Pietrucha-Urbanik, Katarzyna, Tchórzewska-Cieślak, Barbara, Eid, Mohamed
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2020
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en13112990

Cover

Abstract The water-supply system is one of the basic and most important critical infrastructures. Water supply service disruption (water quality or quantity) may have serious consequences in modern societies. Water supply service is subject to various failure modes. Failure modes are specified by their degradation mechanisms, criticality, occurrence frequency and intensity. These failure modes have a random nature that impacts on the network disruption indicators, such as disruption frequency, network downtime, network repair time and network back-to-service time, i.e., the network resilience. This paper focuses on the water leakage failure mode. The water leakage failure mode assessment considers the unavoidable annual real water losses and the infrastructure leakage index recommended by the International Water Association’s Water Loss Task Force specialist group. Probabilistic statistical modelling was implemented to assess the seasonal index, the failure rates and the expectation value of the “mean time between failures.” The assessment is based on real operational data of the network. Specific attention is paid to the sensitivity of failures to seasonal variations. The presented methodology of the analysis of the water leakage failure mode is extendable to other failure modes and can help in developing new strategies in the management of the water-supply system in normal operation and crisis situations.
AbstractList The water-supply system is one of the basic and most important critical infrastructures. Water supply service disruption (water quality or quantity) may have serious consequences in modern societies. Water supply service is subject to various failure modes. Failure modes are specified by their degradation mechanisms, criticality, occurrence frequency and intensity. These failure modes have a random nature that impacts on the network disruption indicators, such as disruption frequency, network downtime, network repair time and network back-to-service time, i.e., the network resilience. This paper focuses on the water leakage failure mode. The water leakage failure mode assessment considers the unavoidable annual real water losses and the infrastructure leakage index recommended by the International Water Association’s Water Loss Task Force specialist group. Probabilistic statistical modelling was implemented to assess the seasonal index, the failure rates and the expectation value of the “mean time between failures.” The assessment is based on real operational data of the network. Specific attention is paid to the sensitivity of failures to seasonal variations. The presented methodology of the analysis of the water leakage failure mode is extendable to other failure modes and can help in developing new strategies in the management of the water-supply system in normal operation and crisis situations.
Author Pietrucha-Urbanik, Katarzyna
Eid, Mohamed
Tchórzewska-Cieślak, Barbara
Author_xml – sequence: 1
  givenname: Katarzyna
  orcidid: 0000-0003-1160-9009
  surname: Pietrucha-Urbanik
  fullname: Pietrucha-Urbanik, Katarzyna
– sequence: 2
  givenname: Barbara
  orcidid: 0000-0002-7622-6749
  surname: Tchórzewska-Cieślak
  fullname: Tchórzewska-Cieślak, Barbara
– sequence: 3
  givenname: Mohamed
  surname: Eid
  fullname: Eid, Mohamed
BookMark eNptUE1LAzEQDVLBWnvxFxTEi7CaSbbZ5Fiq1ULRi-IxJNlZ2dpuapIi_nujVRRxLjMM74t3SHqd75CQY6DnnCt6gR1wAKYU3SN9UEoUQCve-3UfkGGMS5qHc-Cc98npo0kYRreYXn14LmamXW0Dji5NMqNJjBjjGrt0RPYbs4o4_NoD8jC7up_eFIu76_l0sigcF5AKJrlglWmooNY6Ky0KbrNZCU4aWbmmlLYuWcOosUpSaIQBqIHKMUPulOQDMt_p1t4s9Sa0axPetDet_nz48KRNSK1boXaZYZngBlCUWFlra8EEWqE4bWDMstbJTmsT_MsWY9JLvw1djq9ZCawSwMoqo-gO5YKPMWCjXZtMan2XQu5CA9Uf3eqfbjPl7A_lO-g_4HfgqXiK
CitedBy_id crossref_primary_10_3390_en17030633
crossref_primary_10_3390_en15155484
crossref_primary_10_1088_1755_1315_900_1_012034
crossref_primary_10_3390_en16062809
crossref_primary_10_3390_resources10090089
crossref_primary_10_1016_j_uclim_2024_102146
crossref_primary_10_3390_en14113305
crossref_primary_10_3390_en15124240
crossref_primary_10_1061__ASCE_PS_1949_1204_0000602
crossref_primary_10_3390_en14040947
Cites_doi 10.3390/resources9010005
10.3311/pp.ci.2011-2.08
10.3390/ijerph16050767
10.1016/j.ress.2019.106754
10.3390/w9090704
10.3390/environments4030044
10.3390/w12010054
10.1186/s40537-019-0235-y
10.1007/s11269-016-1266-1
10.1016/j.measurement.2019.107026
10.3390/en12173228
10.1016/j.watres.2019.114926
10.20944/preprints201712.0120.v2
10.3390/w11061220
10.1002/cjce.23674
10.3390/su11113189
10.1016/j.measurement.2020.107962
10.1061/(ASCE)WR.1943-5452.0001025
10.1002/cjce.23319
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en13112990
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_ce3cb263a1e64e7bbbd626eb6930f152
10_3390_en13112990
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-283627af060bbcb8be63b00041c8a87cf48bd42f20ab9801f6a11d10852e3c983
IEDL.DBID 8FG
ISSN 1996-1073
IngestDate Wed Aug 27 01:29:11 EDT 2025
Mon Jun 30 11:11:34 EDT 2025
Tue Jul 01 04:21:35 EDT 2025
Thu Apr 24 23:07:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-283627af060bbcb8be63b00041c8a87cf48bd42f20ab9801f6a11d10852e3c983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1160-9009
0000-0002-7622-6749
OpenAccessLink https://www.proquest.com/docview/2412761247?pq-origsite=%requestingapplication%
PQID 2412761247
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_ce3cb263a1e64e7bbbd626eb6930f152
proquest_journals_2412761247
crossref_citationtrail_10_3390_en13112990
crossref_primary_10_3390_en13112990
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ciaponi (ref_18) 2016; 30
Barton (ref_5) 2019; 164
Geng (ref_24) 2019; 97
ref_14
Roccetti (ref_6) 2019; 6
Onieva (ref_13) 2020; 196
ref_11
ref_10
ref_16
Kowalski (ref_12) 2015; 63
Thornton (ref_19) 2003; 6
Zimoch (ref_17) 2012; 34
Bogardi (ref_3) 2011; 55
ref_22
(ref_15) 2017; 61
ref_20
(ref_9) 2011; 13
ref_1
ref_2
ref_29
ref_28
ref_27
ref_26
ref_8
Geng (ref_21) 2019; 145
ref_4
Hasilova (ref_7) 2020; 149
Geng (ref_23) 2020; 98
Cai (ref_25) 2020; 163
References_xml – ident: ref_10
  doi: 10.3390/resources9010005
– ident: ref_28
– volume: 34
  start-page: 57
  year: 2012
  ident: ref_17
  article-title: Pressure control as part of risk management for a water-pipe network in service
  publication-title: Ochr. Srodowiska
– volume: 55
  start-page: 161
  year: 2011
  ident: ref_3
  article-title: Spatial probabilistic model of pipeline failures
  publication-title: Period Polytech. Civ. Eng.
  doi: 10.3311/pp.ci.2011-2.08
– ident: ref_26
– ident: ref_11
  doi: 10.3390/ijerph16050767
– volume: 196
  start-page: 106754
  year: 2020
  ident: ref_13
  article-title: Prediction of pipe failures in water supply networks using logistic regression and support vector classification
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2019.106754
– ident: ref_1
  doi: 10.3390/w9090704
– ident: ref_16
  doi: 10.3390/environments4030044
– ident: ref_22
  doi: 10.3390/w12010054
– volume: 6
  start-page: 70
  year: 2019
  ident: ref_6
  article-title: Is bigger always better? A controversial journey to the center of machine learning design, with uses and misuses of big data for predicting water meter failures
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0235-y
– volume: 6
  start-page: 43
  year: 2003
  ident: ref_19
  article-title: Managing leakage by managing pressure: A practical approach
  publication-title: Water
– volume: 30
  start-page: 2021
  year: 2016
  ident: ref_18
  article-title: Modularity-Based Procedure for Partitioning Water Distribution Systems into Independent Districts
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-016-1266-1
– volume: 149
  start-page: 107026
  year: 2020
  ident: ref_7
  article-title: Reliability modelling and analysis of water distribution network based on backpropagation recursive processes with real field data
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107026
– ident: ref_14
  doi: 10.3390/en12173228
– ident: ref_8
– volume: 164
  start-page: 114926
  year: 2019
  ident: ref_5
  article-title: Improving pipe failure predictions: Factors affecting pipe failure in drinking water networks
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.114926
– ident: ref_29
– ident: ref_27
– volume: 63
  start-page: 155
  year: 2015
  ident: ref_12
  article-title: Monitoring of water distribution system effectiveness using fractal geometry
  publication-title: Bull. Pol. Acad. Sci. Tech. Sci.
– ident: ref_4
  doi: 10.20944/preprints201712.0120.v2
– ident: ref_20
  doi: 10.3390/w11061220
– volume: 98
  start-page: 1307
  year: 2020
  ident: ref_23
  article-title: An improved intelligent early warning method based on MWSPCA and its application in complex chemical processes
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.23674
– volume: 61
  start-page: 1
  year: 2017
  ident: ref_15
  article-title: Comparison of two types of artificial neural networks for predicting failure frequency of water conduits
  publication-title: Period. Polytech. Civ. Eng.
– ident: ref_2
  doi: 10.3390/su11113189
– volume: 13
  start-page: 693
  year: 2011
  ident: ref_9
  article-title: Application of PHA Method for Assessing Risk of Failure on the Example of Sewage System in the City of Krakow
  publication-title: Rocz. Ochr. Srodowiska
– volume: 163
  start-page: 107962
  year: 2020
  ident: ref_25
  article-title: A pointer meter recognition method based on virtual sample generation technology
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107962
– volume: 145
  start-page: 04018094
  year: 2019
  ident: ref_21
  article-title: A Novel Leakage-Detection Method Based on Sensitivity Matrix of Pipe Flow: Case Study of Water Distribution Systems
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0001025
– volume: 97
  start-page: 1129
  year: 2019
  ident: ref_24
  article-title: A fault detection method based on horizontal visibility graph-integrated complex networks: Application to complex chemical processes
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.23319
SSID ssj0000331333
Score 2.2886734
Snippet The water-supply system is one of the basic and most important critical infrastructures. Water supply service disruption (water quality or quantity) may have...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2990
SubjectTerms Aging
Consumption
Drinking water
Failure
leakage failure data
Polyethylene
Polyvinyl chloride
probabilistic
Regression analysis
Statistical analysis
statistics
Steel pipes
Stochastic models
water network
Water shortages
Water supply
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEB2kJz2IVsVqlYB68BCa_ehmc6wfpQj2ZLG3sLPZgCBRavz_zmbTGlDw4jUMJLzZnfcm7L4BuOQqYzIVjBavxlhyW8baWmpWjBlbhWOumb-c_DhXs4V8WI6XnVFf_kxYsAcOwI2sExa5EoY5JV2KiAVpcId-hF9J5OOrb5IlnWaqqcFCUPMlgh-poL5-5CpvLBOKb4eBGqP-H3W4IZfpHuy2qjCahK_Zhy1X9WGn4xXYh20vC4Or8gFcPZNEXEXzcIY7npoXf7o8ujO1iSYbr81DWEzvn25ncTvwILZCsTomqlc8NWWiEkSLGp0SjepiVhud2lJqLCQveWIwI2oplWGs8PcHOKGUaXEEveqtcscQETNLJ4xSmTOyLEiVFImwiuRSYm0mcQDXaxBy27qB-6EUrzl1BR6w_BuwAVxsYt-DB8avUTcey02E961uHlA28zab-V_ZHMBwnYm83UwfOYkMnpISk-nJf7zjFLa5b5qbXylD6NWrT3dGyqLG82YRfQE768l2
  priority: 102
  providerName: Directory of Open Access Journals
Title Water Network-Failure Data Assessment
URI https://www.proquest.com/docview/2412761247
https://doaj.org/article/ce3cb263a1e64e7bbbd626eb6930f152
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66XfQg_sTpHAX14KHY_FianmTTdUNwiDjcrSRpKoJ0c6v_vy9t1g0ULz20ObQvr-9730vyPYSuCI8wCykG5xXKZ0RnvtAayIqUXc1VlwhsDyc_jflowh6n3akruC3dtspVTCwDdTrTtkZ-C0hDgHITFt7Nv3zbNcqurroWGtuoiQFprJ-LeFjXWAJKgYLRSpWUAru_NbmVl6lC8AYOlXL9v6JxCTHxPtpzuaHXqybzAG2Z_BDtbigGHqHrN8gNF9642rztx_LDbiv3HmQhvV4tsnmMJvHg9X7ku04HvqYcFz5gPCehzAIeKKWVUIbTMt3CWkgR6owJlTKSkUCqCDAl4xLj1B4cIIbqSNAT1MhnuTlFHkAyM1RyHhnJshTSkTSgmkOeFGgdMdVCN6vvTrSTAbfdKD4ToAPWRsnaRi10WY-dV-IXf47qW_PVI6xgdXljtnhPnP8nGt5TEU4lNpyZUCmVApUyynZizCCHaKH2yviJ-4uWyXrOz_5_fI52iOXBZXWkjRrF4ttcQLJQqE7pER3U7A_Gzy-dknLDdTjFP7icv1w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qe1AP4hOrVQPqwUNosrvdJAeR1lpaH0XEYm9xd7MRQdraVsQ_5W90No8qKN56TZaQTGZnvm939huAI8IDl3nURef1pc2Iim1fKSQrQtQUlzXiu-Zw8k2Xt3vssl_rF-AzPwtjyirzmJgE6miozBp5FTMNQcpNmHc2erVN1yizu5q30Ejd4kp_vCNlm5x2mvh_jwlpXdyft-2sq4CtKHenNuZTTjwRO9yRUklfak4TaOMqX_ieipkvI0Zi4ggZYPyOuXDdyBTpE01V4FN87gKUmDnRWoRS46J7ezdb1XEoRdJHUx1USgOnqgdG0CYN-j8yX9Ig4Ff8T5JaaxVWMjRq1VP3WYOCHqzD8g-Nwg04fkA0Ora6abm43RLPppDdaoqpsOozWc9N6M3FCltQHAwHehssBAFMU8F5oAWLIwRAkUMVR2TmKBUwWYaT_LtDlQmPm_4XLyESEGOj8NtGZTicjR2lcht_jmoY881GGIns5MJw_BRmMy5U-J6ScCpczZn2pJQRkjctTe_HGFFLGSq58cNs3k7Cby_b-f_2ASy272-uw-tO92oXlohh4cnaTAWK0_Gb3kOoMpX7mX9Y8Dhvl_wClLn5WQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60guhBfGK1akA9eAhNdrebzUGkWmN9FQ-K3uLuZiOCtLWtiH_NX-dsHrWgePOaLCGZfDvzfbuzMwB7hIc-C6iP4BXKZUSnrtAaxYqUDc1VgwjfHk6-7vD2Hbt4aDxMwWd5FsamVZY-MXPUSU_bNfI6RhqCkpuwoJ4WaRE3reio_-raDlJ2p7Vsp5FD5NJ8vKN8Gx6et_Bf7xMSnd6etN2iw4CrKfdHLsZWTgKZetxTSiuhDKcZzfG1kCLQKRMqYSQlnlQh-vKUS99PbMI-MVSHguJzp2EmoEFohZ-IzsbrOx6lKP9oXhGV0tCrm64tbZO7_4kYmLUK-BEJsvAWLcJCwUudZg6kJZgy3WWYn6hWuAL798hLB04nTxx3I_lsU9qdlhxJpzku8LkKd_9igzWodHtdsw4O0gFmqOQ8NJKlCVKhxKOaI0fztA6ZqsJB-d2xLkqQ204YLzFKEWuj-NtGVdgdj-3nhTd-HXVszTceYYtlZxd6g6e4mHuxxvdUhFPpG85MoJRKUMYZZbtApshfqlArjR8XM3gYf-Nt4-_bOzCLQIyvzjuXmzBHrBzPFmlqUBkN3swWcpaR2s7A4cDjf6PxC6va_Ck
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+Network-Failure+Data+Assessment&rft.jtitle=Energies+%28Basel%29&rft.au=Pietrucha-Urbanik%2C+Katarzyna&rft.au=Tch%C3%B3rzewska-Cie%C5%9Blak%2C+Barbara&rft.au=Eid%2C+Mohamed&rft.date=2020-06-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=13&rft.issue=11&rft.spage=2990&rft_id=info:doi/10.3390%2Fen13112990&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon