Skeleton Optical Spectra-Based Action Recognition Using Convolutional Neural Networks
This letter presents an effective method to encode the spatiotemporal information of a skeleton sequence into color texture images, referred to as skeleton optical spectra, and employs convolutional neural networks (ConvNets) to learn the discriminative features for action recognition. Such spectrum...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 28; no. 3; pp. 807 - 811 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This letter presents an effective method to encode the spatiotemporal information of a skeleton sequence into color texture images, referred to as skeleton optical spectra, and employs convolutional neural networks (ConvNets) to learn the discriminative features for action recognition. Such spectrum representation makes it possible to use a standard ConvNet architecture to learn suitable "dynamic" features from skeleton sequences without training millions of parameters afresh and it is especially valuable when there is insufficient annotated training video data. Specifically, the encoding consists of four steps: mapping of joint distribution, spectrum coding of joint trajectories, spectrum coding of body parts, and joint velocity weighted saturation and brightness. Experimental results on three widely used datasets have demonstrated the efficacy of the proposed method. |
---|---|
AbstractList | This letter presents an effective method to encode the spatiotemporal information of a skeleton sequence into color texture images, referred to as skeleton optical spectra, and employs convolutional neural networks (ConvNets) to learn the discriminative features for action recognition. Such spectrum representation makes it possible to use a standard ConvNet architecture to learn suitable “dynamic” features from skeleton sequences without training millions of parameters afresh and it is especially valuable when there is insufficient annotated training video data. Specifically, the encoding consists of four steps: mapping of joint distribution, spectrum coding of joint trajectories, spectrum coding of body parts, and joint velocity weighted saturation and brightness. Experimental results on three widely used datasets have demonstrated the efficacy of the proposed method. |
Author | Hou, Yonghong Wang, Pichao Li, Wanqing Li, Zhaoyang |
Author_xml | – sequence: 1 givenname: Yonghong surname: Hou fullname: Hou, Yonghong email: houroy@tju.edu.cn organization: School of Electronic Information Engineering, Tianjin University, Tianjin, China – sequence: 2 givenname: Zhaoyang surname: Li fullname: Li, Zhaoyang email: lizhaoyang@tju.edu.cn organization: School of Electronic Information Engineering, Tianjin University, Tianjin, China – sequence: 3 givenname: Pichao orcidid: 0000-0002-1430-0237 surname: Wang fullname: Wang, Pichao email: pw212@uowmail.edu.au organization: Advanced Multimedia Research Lab, University of Wollongong, Wollongong, NSW, Australia – sequence: 4 givenname: Wanqing orcidid: 0000-0002-4427-2687 surname: Li fullname: Li, Wanqing email: wanqing@uow.edu.au organization: Advanced Multimedia Research Lab, University of Wollongong, Wollongong, NSW, Australia |
BookMark | eNp9kMtOwzAQRS0EEm3hB2ATiXWKH3GcLEvES6qoRFu2keNMqrQhDrYD4u9x2ooFC1b3ambOaOaO0WmrW0DoiuApITi9XWXLt9WUYhJPaUwTxtITNCKcJyGlmJ96jzkJE0r4ORpbu8WYREkkRmi93EEDTrfBonO1kk2w7EA5I8M7aaEMZsrVvvkKSm_aeu_Xtm43QabbT930Q8VDL9CbvbgvbXb2Ap1VsrFwedQJWj_cr7KncL54fM5m81CxmLiQikIxoYpUxlFZ8aoo4rJMKgURcJXwmFUCKwIyVV4BJMMxVrE3kQBM0oRN0M1hb2f0Rw_W5VvdG3-QzSkREWeeoH4qOUwpo601UOWqdnK43P9ZNznB-RBivg8xH0LMjyF6lP5BO1O_S_P9P3R9gGoA-AWEiGhKUvYDfW6BkQ |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1145_3700878 crossref_primary_10_1109_TPAMI_2022_3183112 crossref_primary_10_1109_ACCESS_2019_2931804 crossref_primary_10_1016_j_jvcir_2023_103781 crossref_primary_10_3390_sym12101580 crossref_primary_10_1016_j_ins_2019_07_007 crossref_primary_10_1109_ACCESS_2024_3360929 crossref_primary_10_1109_TCSVT_2019_2890829 crossref_primary_10_3389_fpsyg_2021_663359 crossref_primary_10_1016_j_patrec_2020_07_042 crossref_primary_10_1016_j_eswa_2020_114179 crossref_primary_10_3390_s23042182 crossref_primary_10_1109_TPAMI_2021_3050918 crossref_primary_10_2139_ssrn_4191360 crossref_primary_10_3390_s21093112 crossref_primary_10_1016_j_cmpb_2020_105486 crossref_primary_10_1016_j_neucom_2018_08_066 crossref_primary_10_3389_fnbot_2025_1482281 crossref_primary_10_1007_s00521_021_06097_1 crossref_primary_10_1109_TIP_2017_2708506 crossref_primary_10_1109_TMM_2022_3164261 crossref_primary_10_1016_j_imavis_2024_104985 crossref_primary_10_3390_app12157811 crossref_primary_10_1109_ACCESS_2021_3051375 crossref_primary_10_1016_j_robot_2020_103441 crossref_primary_10_1109_ACCESS_2020_2976496 crossref_primary_10_1109_TNNLS_2021_3061115 crossref_primary_10_1109_LRA_2021_3059624 crossref_primary_10_1016_j_eswa_2023_123061 crossref_primary_10_3390_inventions5030049 crossref_primary_10_1007_s11042_022_13441_7 crossref_primary_10_1007_s10339_020_00986_4 crossref_primary_10_1109_TCYB_2019_2919648 crossref_primary_10_1155_2018_2404089 crossref_primary_10_1016_j_patcog_2019_107053 crossref_primary_10_1109_TIM_2021_3125980 crossref_primary_10_2139_ssrn_4170495 crossref_primary_10_1007_s00371_018_1489_7 crossref_primary_10_1007_s11042_022_14193_0 crossref_primary_10_3390_app12094165 crossref_primary_10_1109_TMM_2020_2990082 crossref_primary_10_1109_TMM_2018_2818329 crossref_primary_10_1109_TCSVT_2024_3360452 crossref_primary_10_1007_s12652_021_03567_1 crossref_primary_10_1007_s12652_019_01239_9 crossref_primary_10_3233_JIFS_189229 crossref_primary_10_1007_s10278_024_01078_x crossref_primary_10_1007_s10489_021_02517_w crossref_primary_10_1007_s10489_021_02994_z crossref_primary_10_1007_s11042_019_08261_1 crossref_primary_10_1109_JSEN_2024_3443308 crossref_primary_10_3390_s23020778 crossref_primary_10_1007_s00521_022_07584_9 crossref_primary_10_1007_s13735_021_00226_1 crossref_primary_10_1109_LSP_2017_2678539 crossref_primary_10_1016_j_neucom_2020_03_126 crossref_primary_10_1016_j_neucom_2020_10_037 crossref_primary_10_1109_TMM_2021_3086758 crossref_primary_10_1111_1755_0998_13861 crossref_primary_10_1007_s10845_021_01815_x crossref_primary_10_3389_fnbot_2022_1091361 crossref_primary_10_1109_ACCESS_2019_2954744 crossref_primary_10_1109_TII_2019_2910876 crossref_primary_10_3390_electronics12010117 crossref_primary_10_1016_j_asoc_2025_112797 crossref_primary_10_1016_j_inffus_2021_10_009 crossref_primary_10_1016_j_jvcir_2020_102942 crossref_primary_10_1016_j_asoc_2023_110575 crossref_primary_10_1016_j_bspc_2022_103512 crossref_primary_10_1109_TMM_2018_2875510 crossref_primary_10_1109_TMM_2021_3070127 crossref_primary_10_1016_j_neucom_2020_07_068 crossref_primary_10_1049_iet_ipr_2018_5769 crossref_primary_10_1016_j_eswa_2022_118406 crossref_primary_10_3390_inventions4010009 crossref_primary_10_1007_s00521_020_04961_0 crossref_primary_10_32604_csse_2023_034862 crossref_primary_10_1109_TMM_2019_2962304 crossref_primary_10_1016_j_ins_2024_121832 crossref_primary_10_1109_TCSVT_2021_3077512 crossref_primary_10_1145_3441628 crossref_primary_10_1109_TMM_2018_2859620 crossref_primary_10_1109_TNSRE_2021_3091320 crossref_primary_10_1109_ACCESS_2017_2782258 crossref_primary_10_1109_ACCESS_2019_2913393 crossref_primary_10_1109_TCYB_2020_3034755 crossref_primary_10_1109_TETCI_2019_2901540 crossref_primary_10_1007_s10489_024_05719_0 crossref_primary_10_1007_s11042_022_11947_8 crossref_primary_10_3390_app11062675 crossref_primary_10_1016_j_jvcir_2023_103953 crossref_primary_10_1109_TCSVT_2022_3232373 crossref_primary_10_11834_jig_230046 crossref_primary_10_1177_1729881418825093 crossref_primary_10_1007_s00521_022_08049_9 crossref_primary_10_1016_j_imavis_2020_104070 crossref_primary_10_1016_j_jvcir_2020_102772 crossref_primary_10_1007_s11063_022_11012_3 crossref_primary_10_1109_THMS_2018_2883001 crossref_primary_10_3390_iot5040041 crossref_primary_10_1007_s10489_024_05319_y crossref_primary_10_3390_s22186841 crossref_primary_10_1049_ipr2_12754 crossref_primary_10_1007_s00530_024_01358_0 crossref_primary_10_1007_s11760_020_01644_0 crossref_primary_10_1016_j_jvcir_2019_102691 crossref_primary_10_29252_jsdp_17_4_139 crossref_primary_10_1049_ipr2_13104 crossref_primary_10_2478_amns_2023_1_00149 crossref_primary_10_1007_s10489_020_01905_y crossref_primary_10_3390_s19051007 crossref_primary_10_3390_s25051567 crossref_primary_10_3390_s21113642 crossref_primary_10_1109_ACCESS_2020_3023599 crossref_primary_10_1117_1_JEI_27_4_043050 crossref_primary_10_1007_s11760_018_1354_1 crossref_primary_10_1016_j_jvcir_2020_102923 crossref_primary_10_1109_TCSVT_2021_3124562 crossref_primary_10_1016_j_patcog_2019_05_020 crossref_primary_10_3390_s20174946 crossref_primary_10_1016_j_jestch_2019_04_014 crossref_primary_10_1109_TCSVT_2024_3465845 crossref_primary_10_1007_s00371_019_01751_1 crossref_primary_10_1016_j_neucom_2020_04_034 crossref_primary_10_1109_TCSVT_2023_3285416 crossref_primary_10_1016_j_neucom_2019_11_048 crossref_primary_10_1007_s00500_023_07862_1 crossref_primary_10_1049_ipr2_12006 crossref_primary_10_1016_j_eswa_2024_124980 crossref_primary_10_1109_LSP_2023_3267975 crossref_primary_10_1109_TMM_2019_2897902 crossref_primary_10_1007_s00371_021_02167_6 crossref_primary_10_1049_iet_cvi_2018_5014 crossref_primary_10_3390_s24237609 crossref_primary_10_1109_ACCESS_2019_2949269 crossref_primary_10_1142_S0129065723500478 crossref_primary_10_1117_1_JRS_16_036503 crossref_primary_10_1016_j_patcog_2020_107293 crossref_primary_10_1016_j_neucom_2023_126827 crossref_primary_10_1109_TCSVT_2021_3100128 crossref_primary_10_1038_s41598_022_09293_8 crossref_primary_10_1109_JSEN_2018_2884443 crossref_primary_10_1109_TIP_2019_2913544 crossref_primary_10_1016_j_ijcce_2020_12_004 crossref_primary_10_1016_j_neucom_2025_129820 crossref_primary_10_1109_TCSVT_2020_2973301 crossref_primary_10_1007_s00521_019_04241_6 crossref_primary_10_1109_JSEN_2023_3316137 crossref_primary_10_1109_TCSVT_2021_3112214 crossref_primary_10_1109_TCSVT_2022_3217763 crossref_primary_10_3390_app12042006 crossref_primary_10_1109_LSP_2018_2841649 crossref_primary_10_4018_IJDCF_2018070101 crossref_primary_10_1109_TCSVT_2024_3410301 crossref_primary_10_1016_j_neunet_2020_10_015 crossref_primary_10_1109_TSMC_2018_2850149 crossref_primary_10_1109_LSP_2024_3356808 crossref_primary_10_1109_JSEN_2024_3491183 crossref_primary_10_1109_JBHI_2018_2819182 crossref_primary_10_3390_s23104899 crossref_primary_10_1109_TCSVT_2018_2879913 crossref_primary_10_32604_csse_2024_052931 crossref_primary_10_1109_ACCESS_2020_3032533 crossref_primary_10_1016_j_bspc_2023_105819 crossref_primary_10_3390_technologies8040055 crossref_primary_10_1007_s00521_020_05162_5 crossref_primary_10_1007_s11042_023_17345_y crossref_primary_10_3390_s20113305 crossref_primary_10_1016_j_cviu_2024_104012 crossref_primary_10_1007_s11600_022_00871_y crossref_primary_10_1109_TCSVT_2022_3194350 crossref_primary_10_1155_2022_2603939 crossref_primary_10_1109_ACCESS_2021_3111633 crossref_primary_10_1177_17298806221103708 crossref_primary_10_1007_s11042_019_08448_6 crossref_primary_10_1142_S0218001421500051 crossref_primary_10_3390_app13042058 crossref_primary_10_3390_s20102940 crossref_primary_10_1016_j_ins_2019_10_047 crossref_primary_10_1109_TCSVT_2023_3250646 crossref_primary_10_1155_2022_6230025 crossref_primary_10_2139_ssrn_4629098 crossref_primary_10_3390_app13158608 crossref_primary_10_1109_TCSVT_2020_2975065 crossref_primary_10_1109_ACCESS_2018_2889797 crossref_primary_10_1080_13682199_2023_2166193 |
Cites_doi | 10.1109/DICTA.2014.7008101 10.1145/2207676.2208303 10.1016/j.jvcir.2013.04.007 10.1016/j.patcog.2016.05.019 10.1016/j.cviu.2016.04.005 10.1109/ICCV.2015.460 10.1109/CVPR.2011.5995316 10.1109/ICIP.2015.7350781 10.1109/ICPR.2014.451 10.1109/DICTA.2014.7008115 10.1109/CVPRW.2012.6239175 10.1145/2733373.2806296 10.1109/CVPRW.2013.153 10.1109/CVPR.2012.6247813 10.1109/CVPR.2016.484 10.1109/ICCV.2013.342 10.1109/CVPRW.2012.6239233 10.1016/j.cviu.2014.12.005 10.1109/THMS.2015.2504550 10.1109/CVPR.2014.82 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2016.2628339 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 811 |
ExternalDocumentID | 10_1109_TCSVT_2016_2628339 7742919 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61571325 funderid: 10.13039/501100001809 – fundername: Key Projects in the Tianjin Science and Technology Pillar Program grantid: 15ZCZD GX001900 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c361t-27bc37cb9a64df5fbb6dd8fce4e5c8563f70c1ea9c70ceea3060c6eea47e01983 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 06:47:51 EDT 2025 Tue Jul 01 00:41:10 EDT 2025 Thu Apr 24 23:12:03 EDT 2025 Wed Aug 27 02:52:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-27bc37cb9a64df5fbb6dd8fce4e5c8563f70c1ea9c70ceea3060c6eea47e01983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4427-2687 0000-0002-1430-0237 |
PQID | 2174533062 |
PQPubID | 85433 |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1109_TCSVT_2016_2628339 crossref_citationtrail_10_1109_TCSVT_2016_2628339 ieee_primary_7742919 proquest_journals_2174533062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-01 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 yang (ref2) 2012 ref12 ref15 ref14 shao (ref6) 2013 ref11 ref10 ref1 ref17 ref19 gowayyed (ref7) 2013 hussein (ref25) 2013 ref24 ref23 ref26 ref20 ref22 ref21 krizhevsky (ref18) 2012 ref8 ref9 ref4 ref3 ref5 du (ref16) 2015 |
References_xml | – ident: ref24 doi: 10.1109/DICTA.2014.7008101 – ident: ref19 doi: 10.1145/2207676.2208303 – ident: ref9 doi: 10.1016/j.jvcir.2013.04.007 – ident: ref22 doi: 10.1016/j.patcog.2016.05.019 – ident: ref12 doi: 10.1016/j.cviu.2016.04.005 – ident: ref17 doi: 10.1109/ICCV.2015.460 – ident: ref1 doi: 10.1109/CVPR.2011.5995316 – ident: ref21 doi: 10.1109/ICIP.2015.7350781 – ident: ref23 doi: 10.1109/ICPR.2014.451 – ident: ref11 doi: 10.1109/DICTA.2014.7008115 – start-page: 14 year: 2012 ident: ref2 article-title: EigenJoints-based action recognition using Naïve-Bayes-Nearest-Neighbor publication-title: Proc Int Workshop Human Activity Understand 3D Data (HAU3D) – ident: ref20 doi: 10.1109/CVPRW.2012.6239175 – start-page: 1351 year: 2013 ident: ref7 article-title: Histogram of oriented displacements (HOD): Describing trajectories of human joints for action recognition publication-title: Proc Int Joint Conf Artif Intell – ident: ref14 doi: 10.1145/2733373.2806296 – ident: ref8 doi: 10.1109/CVPRW.2013.153 – start-page: 1110 year: 2015 ident: ref16 article-title: Hierarchical recurrent neural network for skeleton based action recognition publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref3 doi: 10.1109/CVPR.2012.6247813 – ident: ref13 doi: 10.1109/CVPR.2016.484 – ident: ref5 doi: 10.1109/ICCV.2013.342 – ident: ref4 doi: 10.1109/CVPRW.2012.6239233 – start-page: 1106 year: 2012 ident: ref18 article-title: Imagenet classification with deep convolutional neural networks publication-title: Proc Annu Conf Neural Inf Process Syst – ident: ref26 doi: 10.1016/j.cviu.2014.12.005 – ident: ref15 doi: 10.1109/THMS.2015.2504550 – start-page: 4749 year: 2013 ident: ref6 article-title: A new descriptor for multiple 3D motion trajectories recognition publication-title: Proc IEEE Int Conf Robot Autom – start-page: 2466 year: 2013 ident: ref25 article-title: Human action recognition using a temporal hierarchy of covariance descriptors on 3D joint locations publication-title: Proc Int Joint Conf Artif Intell – ident: ref10 doi: 10.1109/CVPR.2014.82 |
SSID | ssj0014847 |
Score | 2.6119206 |
Snippet | This letter presents an effective method to encode the spatiotemporal information of a skeleton sequence into color texture images, referred to as skeleton... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 807 |
SubjectTerms | Action recognition Artificial neural networks Body parts Coding Color texture convolutional neural network (ConvNet) Encoding Feature recognition Image coding Image color analysis Image recognition Joints (anatomy) Mapping Neural networks Skeleton Training Video data |
Title | Skeleton Optical Spectra-Based Action Recognition Using Convolutional Neural Networks |
URI | https://ieeexplore.ieee.org/document/7742919 https://www.proquest.com/docview/2174533062 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUShoAxs4DRpHMcZS0VVIRUk2qJukV9ZitKqTRn49ZydhypAiMk32Jbls30Pf3eH0C3RMuSCCmzMD0xY6GHOpcJEKN-XHidUGdfA-JmOZuRpHs4b6L6OhdFaW_CZdg1p__LVUm6Nq6wLqkovNjk-98BwK2K16h8DwmwxMVAXfMxAjlUBMl7cnQ4mb1OD4qJuj4I4NYXBd4SQrary4ym28mV4hMbVygpYycLd5sKVn9-SNv536cfosFQ0nX5xMk5QQ2en6GAn_WALzSYLEDqg_DkvK-vSdkw1-nzN8QPINuX0bcyD81phjIC2CANnsMw-yiMLg0x-D9tYQPnmDM2Gj9PBCJdlFrAMqJ_jXiRkEEkRc0pUGqZCUKVYKjXRoWQhDdLIk77msYRWaw5GhicpECTSoCCy4Bw1s2WmL5ATmecqkJ6GKYiv01jwiMrAU0QxnsZpG_nVvieyzEFuSmG8J9YW8eLE8ioxvEpKXrXRXT1mVWTg-LN3y2x-3bPc9zbqVOxNyku6SYw1ZsC1tHf5-6grtA9zswJy1kHNfL3V16CD5OLGHr4vA7zaKA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5ROLQceJQilldzaE-VlzwcJzlwgAW0PCt1dytuwY_JBbSL2F0Q_Bb-Cv-NsZOsEEXckHqyD7GjeCaeb-xvZgB-cNSxVEIx634wnsY-k1IbxpUJAu1LLow9Gjg9E-0ePzqPz6fgcRILg4iOfIZN23V3-Wagx_aobIugSpgFWUWhPMb7O3LQhtuHeyTNn2F4sN9ttVlVQ4DpSAQjFiZKR4lWmRTcFHGhlDAmLTRyjHUai6hIfB2gzDS1iJIQtK8FdXiChH7SiOb9BDOEM-KwjA6b3FHw1JUvI4ASsJQsZx2S42db3Vbnb9fyxkQzFGTAbSnyF2bP1XH5Z_N3Fu1gHp7qtSiJLJfN8Ug19cOrNJH_62ItwFwFpb2dUvcXYQr7X2H2RYLFJeh1LsmsErz1fl-7Q3uvYyNLbyTbJettvB0X1eH9qVlU1HccCq816N9WPyUNshlMXOMo88Nv0PuQ71qG6f6gjyvgJXZDjrSPNAUPsMiUTISOfMNNKousaEBQyznXVZZ1W-zjKnfelp_lTjdyqxt5pRsN-DUZc13mGHn36SUr7MmTlZwbsF6rU15tQ8Pc-puWPizC1bdHfYfP7e7pSX5yeHa8Bl_oPWlJsFuH6dHNGDcIcY3UplN8Dy4-WnmeAXdrO2E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skeleton+Optical+Spectra-Based+Action+Recognition+Using+Convolutional+Neural+Networks&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Hou%2C+Yonghong&rft.au=Li%2C+Zhaoyang&rft.au=Wang%2C+Pichao&rft.au=Li%2C+Wanqing&rft.date=2018-03-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=28&rft.issue=3&rft.spage=807&rft.epage=811&rft_id=info:doi/10.1109%2FTCSVT.2016.2628339&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2016_2628339 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |