DPIR-Net: Direct PET Image Reconstruction Based on the Wasserstein Generative Adversarial Network

Positron emission tomography (PET) is an advanced medical imaging technique widely used in various clinical applications, such as tumor detection and neurologic disorders. Reducing the radiotracer dose is desirable in PET imaging because it decreases the patient's radiation exposure. However, r...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on radiation and plasma medical sciences Vol. 5; no. 1; pp. 35 - 43
Main Authors Hu, Zhanli, Xue, Hengzhi, Zhang, Qiyang, Gao, Juan, Zhang, Na, Zou, Sijuan, Teng, Yueyang, Liu, Xin, Yang, Yongfeng, Liang, Dong, Zhu, Xiaohua, Zheng, Hairong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Positron emission tomography (PET) is an advanced medical imaging technique widely used in various clinical applications, such as tumor detection and neurologic disorders. Reducing the radiotracer dose is desirable in PET imaging because it decreases the patient's radiation exposure. However, reducing the dose can also increase noise, affecting the image quality. Therefore, an advanced image reconstruction algorithm based on low-dose PET data is needed to improve the quality of the reconstructed image. In this article, we propose the use of a direct PET image reconstruction network (DPIR-Net) using an improved Wasserstein generative adversarial network (WGAN) framework to enhance image quality. This article provides two main findings. First, our network uses sinogram data as input and outputs high-quality PET images direct, resulting in shorter reconstruction times compared with traditional model-based reconstruction networks. Second, we combine perceptual loss, mean square error, and the Wasserstein distance as the loss function, which effectively solves the problem of excessive smoothness and loss of detailed information in traditional network image reconstruction. We performed a comparative study using maximum-likelihood expectation maximization (MLEM) with a post-Gaussian filter, a total variation (TV)-norm regularization, a nonlocal means (NLMs) denoising method, a neural network denoising method, a traditional deep learning PET reconstruction network, and our proposed DPIR-Net method and evaluated the proposed method using both human and mouse data. The mouse data were obtained from a small animal PET prototype system developed by our laboratory. The quantitative and qualitative results show that our proposed method outperformed the conventional methods.
AbstractList Positron emission tomography (PET) is an advanced medical imaging technique widely used in various clinical applications, such as tumor detection and neurologic disorders. Reducing the radiotracer dose is desirable in PET imaging because it decreases the patient’s radiation exposure. However, reducing the dose can also increase noise, affecting the image quality. Therefore, an advanced image reconstruction algorithm based on low-dose PET data is needed to improve the quality of the reconstructed image. In this article, we propose the use of a direct PET image reconstruction network (DPIR-Net) using an improved Wasserstein generative adversarial network (WGAN) framework to enhance image quality. This article provides two main findings. First, our network uses sinogram data as input and outputs high-quality PET images direct, resulting in shorter reconstruction times compared with traditional model-based reconstruction networks. Second, we combine perceptual loss, mean square error, and the Wasserstein distance as the loss function, which effectively solves the problem of excessive smoothness and loss of detailed information in traditional network image reconstruction. We performed a comparative study using maximum-likelihood expectation maximization (MLEM) with a post-Gaussian filter, a total variation (TV)-norm regularization, a nonlocal means (NLMs) denoising method, a neural network denoising method, a traditional deep learning PET reconstruction network, and our proposed DPIR-Net method and evaluated the proposed method using both human and mouse data. The mouse data were obtained from a small animal PET prototype system developed by our laboratory. The quantitative and qualitative results show that our proposed method outperformed the conventional methods.
Author Zheng, Hairong
Zhang, Qiyang
Xue, Hengzhi
Zhu, Xiaohua
Zhang, Na
Teng, Yueyang
Liu, Xin
Liang, Dong
Hu, Zhanli
Gao, Juan
Zou, Sijuan
Yang, Yongfeng
Author_xml – sequence: 1
  givenname: Zhanli
  orcidid: 0000-0003-0618-6240
  surname: Hu
  fullname: Hu, Zhanli
  organization: Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 2
  givenname: Hengzhi
  surname: Xue
  fullname: Xue, Hengzhi
  organization: Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 3
  givenname: Qiyang
  orcidid: 0000-0001-6185-3080
  surname: Zhang
  fullname: Zhang, Qiyang
  organization: Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 4
  givenname: Juan
  surname: Gao
  fullname: Gao, Juan
  organization: Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 5
  givenname: Na
  orcidid: 0000-0001-9510-4520
  surname: Zhang
  fullname: Zhang, Na
  organization: Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 6
  givenname: Sijuan
  surname: Zou
  fullname: Zou, Sijuan
  organization: Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
– sequence: 7
  givenname: Yueyang
  orcidid: 0000-0002-1487-8434
  surname: Teng
  fullname: Teng, Yueyang
  organization: College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
– sequence: 8
  givenname: Xin
  orcidid: 0000-0001-9075-7207
  surname: Liu
  fullname: Liu, Xin
  organization: Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 9
  givenname: Yongfeng
  orcidid: 0000-0003-1642-6631
  surname: Yang
  fullname: Yang, Yongfeng
  organization: Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 10
  givenname: Dong
  orcidid: 0000-0001-6257-0875
  surname: Liang
  fullname: Liang, Dong
  organization: Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 11
  givenname: Xiaohua
  orcidid: 0000-0003-0495-9510
  surname: Zhu
  fullname: Zhu, Xiaohua
  email: evazhu@vip.sina.com
  organization: Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
– sequence: 12
  givenname: Hairong
  orcidid: 0000-0002-8558-5102
  surname: Zheng
  fullname: Zheng, Hairong
  email: hr.zheng@siat.ac.cn
  organization: Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
BookMark eNp9kE9PAjEQxRujiYh8Ab008bzYP9t26w0BkQSVIMbjpuzOahF2sS0Yv72LEA4ePM3L5P3eZN4ZOi6rEhC6oKRNKdHX08n44bnNCCNtprVQVB2hBouljhQn_PigKT1FLe_nhBCqEqZj0UCmNx5OokcIN7hnHWQBj_tTPFyaN8ATyKrSB7fOgq1KfGs85LgW4R3wq_EenA9gSzyAEpwJdgO4k2_qrXHWLHAd-lW5j3N0UpiFh9Z-NtHLXX_avY9GT4NhtzOKMi5piBhPKBOEsoLpXBJi1CxmMucQ5zxPhJYyViIRQDljhZScJ4QbbYjWWUH1bMab6GqXu3LV5xp8SOfV2pX1yZTFKk6EErGoXcnOlbnKewdFmtlgtv8FZ-wipSTddpr-dppuO033ndYo-4OunF0a9_0_dLmDLAAcAE205IniP5hXgrA
CODEN ITRPFI
CitedBy_id crossref_primary_10_1016_j_media_2021_102335
crossref_primary_10_1016_j_radi_2024_06_010
crossref_primary_10_1088_1361_6560_ace49c
crossref_primary_10_1109_TRPMS_2020_3014786
crossref_primary_10_1002_mp_16830
crossref_primary_10_1177_14727978251319398
crossref_primary_10_1109_ACCESS_2022_3145192
crossref_primary_10_1109_TRPMS_2022_3204643
crossref_primary_10_1080_21681163_2024_2330524
crossref_primary_10_1088_1361_6560_ad40f6
crossref_primary_10_1016_j_cpet_2021_06_004
crossref_primary_10_1186_s12880_024_01417_y
crossref_primary_10_1088_2057_1976_ac086c
crossref_primary_10_1109_TII_2023_3261892
crossref_primary_10_1088_1361_6560_ad14c5
crossref_primary_10_1007_s00259_023_06422_x
crossref_primary_10_1088_1361_6560_ac950a
crossref_primary_10_1088_1361_6560_aba6f9
crossref_primary_10_3390_life14010145
crossref_primary_10_1002_mp_15577
crossref_primary_10_1016_j_media_2024_103291
crossref_primary_10_1088_1361_6560_ace240
crossref_primary_10_1016_j_media_2025_103558
crossref_primary_10_6009_jjrt_2024_2365
crossref_primary_10_1055_a_2198_0358
crossref_primary_10_3389_fradi_2024_1466498
crossref_primary_10_1109_TMI_2021_3076191
crossref_primary_10_1007_s00259_022_05861_2
crossref_primary_10_1109_TRPMS_2022_3194408
crossref_primary_10_1186_s40658_021_00426_y
crossref_primary_10_1088_1361_6560_ac1024
crossref_primary_10_1007_s12194_022_00652_8
crossref_primary_10_1002_mp_15089
crossref_primary_10_1002_mp_15368
crossref_primary_10_1016_j_cmpb_2021_106271
crossref_primary_10_1088_1361_6560_ac08b2
crossref_primary_10_1007_s00259_021_05341_z
crossref_primary_10_1109_ACCESS_2024_3365048
crossref_primary_10_1088_1361_6560_ad2882
crossref_primary_10_1109_TMI_2021_3120913
crossref_primary_10_1007_s12194_024_00780_3
crossref_primary_10_1016_j_media_2023_102993
crossref_primary_10_1109_TRPMS_2023_3349194
crossref_primary_10_1016_j_compmedimag_2021_101969
crossref_primary_10_1002_INMD_20230012
crossref_primary_10_1007_s00259_022_06003_4
crossref_primary_10_1109_TMI_2023_3293836
crossref_primary_10_1007_s10278_022_00720_w
crossref_primary_10_1007_s40336_022_00508_6
crossref_primary_10_1109_TRPMS_2022_3205283
crossref_primary_10_1109_TRPMS_2023_3347602
crossref_primary_10_3233_XST_210841
crossref_primary_10_6009_jjrt_2024_2386
crossref_primary_10_1259_bjr_20230292
crossref_primary_10_1007_s00259_022_05805_w
Cites_doi 10.1118/1.3638125
10.1109/ACCESS.2016.2624938
10.1109/TMI.2018.2869871
10.1038/nature25988
10.1109/TMI.2018.2827462
10.1109/TRPMS.2018.2877644
10.1109/TMI.2012.2211378
10.1109/CVPR.2005.38
10.1109/TMI.2012.2195669
10.1088/0031-9155/55/18/009
10.1109/TMI.2018.2832217
10.1002/mp.13415
10.1016/j.neuroimage.2018.03.045
10.1109/TMI.2017.2715284
10.1016/j.media.2019.03.013
10.1016/j.media.2019.05.001
10.1088/0031-9155/57/23/7923
10.1109/TRPMS.2018.2860788
10.1007/s00259-019-04468-4
10.2214/AJR.11.6987
10.1109/JPROC.2019.2936809
10.1016/j.cmpb.2015.10.004
10.1109/TMI.2006.882141
10.1109/TRPMS.2017.2771490
10.1088/0031-9155/56/18/011
10.1118/1.3232004
10.1109/TMI.2018.2888491
10.1117/12.2513096
10.1053/j.semnuclmed.2004.09.002
10.1109/TNS.2004.834824
10.1109/TRPMS.2018.2867611
10.1117/12.2534904
10.1088/0031-9155/53/17/021
10.1109/TMI.1982.4307558
10.1002/mp.13804
10.1109/TMI.2014.2336860
10.1109/TRPMS.2018.2890359
10.1088/0031-9155/58/16/5803
10.1109/TIP.2003.819861
10.1088/0031-9155/60/22/R363
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7QO
8FD
F28
FR3
K9.
NAPCQ
P64
DOI 10.1109/TRPMS.2020.2995717
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Biotechnology Research Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Nursing & Allied Health Premium

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2469-7303
EndPage 43
ExternalDocumentID 10_1109_TRPMS_2020_2995717
9096387
Genre orig-research
GrantInformation_xml – fundername: Guangdong Special Support Program of China
  grantid: 2017TQ04R395
– fundername: Shenzhen International Cooperation Research Project; Shenzhen International Cooperation Research Project of China
  grantid: GJHZ20180928115824168
  funderid: 10.13039/501100017608
– fundername: National Natural Science Foundation of China
  grantid: 81871441; 91959119; 81873903
  funderid: 10.13039/501100001809
– fundername: Guangdong International Science and Technology Cooperation Project of China
  grantid: 2018A050506064
– fundername: Natural Science Foundation of Guangdong Province in China
  grantid: 2020A1515010733
  funderid: 10.13039/501100003453
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
RIG
7QO
8FD
F28
FR3
K9.
NAPCQ
P64
ID FETCH-LOGICAL-c361t-238125012f29d600a7b426d3e4d3d8596647585e1322f6633803a9a099cf19bb3
IEDL.DBID RIE
ISSN 2469-7311
IngestDate Mon Jun 30 18:05:34 EDT 2025
Tue Jul 01 03:04:15 EDT 2025
Thu Apr 24 23:01:26 EDT 2025
Wed Aug 27 02:28:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-238125012f29d600a7b426d3e4d3d8596647585e1322f6633803a9a099cf19bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0618-6240
0000-0001-6185-3080
0000-0001-6257-0875
0000-0003-1642-6631
0000-0003-0495-9510
0000-0002-1487-8434
0000-0001-9510-4520
0000-0001-9075-7207
0000-0002-8558-5102
PQID 2474857545
PQPubID 4437208
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_TRPMS_2020_2995717
ieee_primary_9096387
proquest_journals_2474857545
crossref_primary_10_1109_TRPMS_2020_2995717
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Jan.
2021-1-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on radiation and plasma medical sciences
PublicationTitleAbbrev TRPMS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref10
kuang (ref46) 2019; 60
ref17
ref16
ref19
ref18
xu (ref11) 2012; 31
goodfellow (ref40) 2014
ref45
ref47
ref44
abadi (ref48) 2016
shan (ref28) 2018
ref49
ref8
ref7
ref9
ref4
ref3
ref5
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
martin (ref41) 2017; 70
ref24
ref23
ref26
ref25
ref20
ref22
ref21
beyer (ref1) 2000; 41
ref27
fitzpatrick (ref6) 2005
ref29
simonyan (ref43) 2014
gulrajani (ref42) 2017
References_xml – start-page: 2058
  year: 2005
  ident: ref6
  article-title: Sinogram noise reduction for low-dose CT by statistics-based nonlinear filters
  publication-title: Proc Med Imag Image Process
– volume: 60
  start-page: 527
  year: 2019
  ident: ref46
  article-title: Progress of a MRI compatible small animal PET scanner using dual-ended readout detectors
  publication-title: J Nucl Med
– ident: ref19
  doi: 10.1118/1.3638125
– ident: ref23
  doi: 10.1109/ACCESS.2016.2624938
– ident: ref36
  doi: 10.1109/TMI.2018.2869871
– ident: ref37
  doi: 10.1038/nature25988
– year: 2016
  ident: ref48
  article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems
– ident: ref26
  doi: 10.1109/TMI.2018.2827462
– ident: ref25
  doi: 10.1109/TRPMS.2018.2877644
– ident: ref45
  doi: 10.1109/TMI.2012.2211378
– ident: ref20
  doi: 10.1109/CVPR.2005.38
– volume: 31
  start-page: 1682
  year: 2012
  ident: ref11
  article-title: Low-dose X-ray CT reconstruction via dictionary learning
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2012.2195669
– start-page: 2672
  year: 2014
  ident: ref40
  article-title: Generative adversarial networks
  publication-title: Proc Adv Neural Inform Process Syst
– ident: ref21
  doi: 10.1088/0031-9155/55/18/009
– ident: ref49
  doi: 10.1109/TMI.2018.2832217
– ident: ref39
  doi: 10.1002/mp.13415
– start-page: 5767
  year: 2017
  ident: ref42
  article-title: Improved training of Wasserstein GANs
  publication-title: Proc Adv Neural Inform Process Syst (NIPS)
– ident: ref24
  doi: 10.1016/j.neuroimage.2018.03.045
– ident: ref30
  doi: 10.1109/TMI.2017.2715284
– ident: ref38
  doi: 10.1016/j.media.2019.03.013
– ident: ref47
  doi: 10.1016/j.media.2019.05.001
– ident: ref16
  doi: 10.1088/0031-9155/57/23/7923
– ident: ref27
  doi: 10.1109/TRPMS.2018.2860788
– ident: ref29
  doi: 10.1007/s00259-019-04468-4
– ident: ref7
  doi: 10.2214/AJR.11.6987
– ident: ref33
  doi: 10.1109/JPROC.2019.2936809
– ident: ref10
  doi: 10.1016/j.cmpb.2015.10.004
– ident: ref4
  doi: 10.1109/TMI.2006.882141
– ident: ref17
  doi: 10.1109/TRPMS.2017.2771490
– ident: ref15
  doi: 10.1088/0031-9155/56/18/011
– ident: ref8
  doi: 10.1118/1.3232004
– ident: ref32
  doi: 10.1109/TMI.2018.2888491
– ident: ref34
  doi: 10.1117/12.2513096
– ident: ref3
  doi: 10.1053/j.semnuclmed.2004.09.002
– year: 2018
  ident: ref28
  article-title: Can deep learning outperform modern commercial CT image reconstruction methods?
– ident: ref5
  doi: 10.1109/TNS.2004.834824
– year: 2014
  ident: ref43
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref31
  doi: 10.1109/TRPMS.2018.2867611
– volume: 41
  start-page: 1369
  year: 2000
  ident: ref1
  article-title: A combined PET/CT scanner for clinical oncology
  publication-title: J Nucl Med
– ident: ref35
  doi: 10.1117/12.2534904
– ident: ref14
  doi: 10.1088/0031-9155/53/17/021
– ident: ref9
  doi: 10.1109/TMI.1982.4307558
– volume: 70
  start-page: 214
  year: 2017
  ident: ref41
  article-title: Wasserstein generative adversarial networks
  publication-title: Proc 34th Int Conf Mach Learn
– ident: ref13
  doi: 10.1002/mp.13804
– ident: ref12
  doi: 10.1109/TMI.2014.2336860
– ident: ref22
  doi: 10.1109/TRPMS.2018.2890359
– ident: ref18
  doi: 10.1088/0031-9155/58/16/5803
– ident: ref44
  doi: 10.1109/TIP.2003.819861
– ident: ref2
  doi: 10.1088/0031-9155/60/22/R363
SSID ssj0001782945
Score 2.4400978
Snippet Positron emission tomography (PET) is an advanced medical imaging technique widely used in various clinical applications, such as tumor detection and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms Algorithms
Biomedical imaging
Comparative studies
Deep learning
Direct image reconstruction
Feature extraction
Generative adversarial networks
Image enhancement
Image processing
Image quality
Image reconstruction
Imaging techniques
Machine learning
Medical imaging
Neural networks
Noise reduction
Positron emission
Positron emission tomography
positron emission tomography (PET)
Radiation
Radiation effects
Radioactive tracers
Regularization
small animal PET
Smoothness
Tomography
Wasserstein generative adversarial network (WGAN)
Title DPIR-Net: Direct PET Image Reconstruction Based on the Wasserstein Generative Adversarial Network
URI https://ieeexplore.ieee.org/document/9096387
https://www.proquest.com/docview/2474857545
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGJCQuvBGDgXLgBh3NY2vDjccQQ2JCMAS3Km2SC7Ahbbvw67HTbpMAIW45JFIUu7Y_1_YHcBT7juekvKnIfaRSZSJtOI9ykxofW2lSSb3Dd_3OzZO6fWm_1OBk3gvjnAvFZ65Fy_Av346KKaXKTnVM6pIswRICt7JXa5FPQVenAyexQMQXJZLzWY9MrE8HCOIfEQ2KuIX2t50EfrKFHwrEKj-scXAx12twN7tcWVny2ppO8lbx-W1u439vvw6rVazJzkvl2ICaG27Ccqj5LMZbYK7uew9R303OWGn42H13wHrvaGEYodLFbFl2gb7OMlxguMieTWjRJJpMVk6tJpPJArXz2JBCs35ZXL4NT9fdweVNVDEuRIXs8ElE_htjIi680BZDIZPk6MGtdMpKm7YRGinCF44grMdYRaaxNNpglFl4rvNc7kB9OBq6XWDCCm5zTfSUqdKFNE55Y7X3TnbS2KsG8Nn7Z0U1jpxYMd6yAEtinQWZZSSzrJJZA47nZz7KYRx_7t4iIcx3Vu_fgOZMzFn1vY4zoRJFXKWqvff7qX1YEVTNEpIvTaijANwBhiOT_DDo4RcFP9mE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7x0AouPJZFlKcP3HZT4keamBtPtUArtBTBLXJi-wK0SC0Xfj0zTtpKC1px88GWLM9kZr7JzHwAh7FveU7Km4nCRypTJtKG86gwmfGxlSaT1Dvc7bXa9-rqMXmcgz_TXhjnXCg-c01ahn_5dli-UarsSMekLuk8LKLfT0TVrTXLqKCz04GVWCDmi1LJ-aRLJtZHfYTxd4gHRdxEC5ykgaFs5okCtconexyczOUqdCfXq2pLnppv46JZvv8zufG791-DlTraZCeVeqzDnBv8hB-h6rMcbYA5v-38jXpufMwq08duL_qs84I2hhEunU2XZafo7SzDBQaM7MGEJk0iymTV3GoymiyQO48MqTTrVeXlv-D-8qJ_1o5qzoWolC0-jsiDY1TEhRfaYjBk0gJ9uJVOWWmzBMGRIoThCMR6jFZkFkujDcaZpee6KOQmLAyGA7cFTFjBbaGJoDJTupTGKW-s9t7JVhZ71QA-ef-8rAeSEy_Gcx6ASazzILOcZJbXMmvA7-mZ12ocx393b5AQpjvr92_A7kTMef3FjnKhUkVspSrZ_vrUASy1-92b_KbTu96BZUG1LSEVswsLKAy3h8HJuNgPOvkBjUXczg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DPIR-Net%3A+Direct+PET+Image+Reconstruction+Based+on+the+Wasserstein+Generative+Adversarial+Network&rft.jtitle=IEEE+transactions+on+radiation+and+plasma+medical+sciences&rft.au=Hu%2C+Zhanli&rft.au=Xue%2C+Hengzhi&rft.au=Zhang%2C+Qiyang&rft.au=Gao%2C+Juan&rft.date=2021-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2469-7311&rft.eissn=2469-7303&rft.volume=5&rft.issue=1&rft.spage=35&rft_id=info:doi/10.1109%2FTRPMS.2020.2995717&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2469-7311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2469-7311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2469-7311&client=summon