DPIR-Net: Direct PET Image Reconstruction Based on the Wasserstein Generative Adversarial Network
Positron emission tomography (PET) is an advanced medical imaging technique widely used in various clinical applications, such as tumor detection and neurologic disorders. Reducing the radiotracer dose is desirable in PET imaging because it decreases the patient's radiation exposure. However, r...
Saved in:
Published in | IEEE transactions on radiation and plasma medical sciences Vol. 5; no. 1; pp. 35 - 43 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Positron emission tomography (PET) is an advanced medical imaging technique widely used in various clinical applications, such as tumor detection and neurologic disorders. Reducing the radiotracer dose is desirable in PET imaging because it decreases the patient's radiation exposure. However, reducing the dose can also increase noise, affecting the image quality. Therefore, an advanced image reconstruction algorithm based on low-dose PET data is needed to improve the quality of the reconstructed image. In this article, we propose the use of a direct PET image reconstruction network (DPIR-Net) using an improved Wasserstein generative adversarial network (WGAN) framework to enhance image quality. This article provides two main findings. First, our network uses sinogram data as input and outputs high-quality PET images direct, resulting in shorter reconstruction times compared with traditional model-based reconstruction networks. Second, we combine perceptual loss, mean square error, and the Wasserstein distance as the loss function, which effectively solves the problem of excessive smoothness and loss of detailed information in traditional network image reconstruction. We performed a comparative study using maximum-likelihood expectation maximization (MLEM) with a post-Gaussian filter, a total variation (TV)-norm regularization, a nonlocal means (NLMs) denoising method, a neural network denoising method, a traditional deep learning PET reconstruction network, and our proposed DPIR-Net method and evaluated the proposed method using both human and mouse data. The mouse data were obtained from a small animal PET prototype system developed by our laboratory. The quantitative and qualitative results show that our proposed method outperformed the conventional methods. |
---|---|
AbstractList | Positron emission tomography (PET) is an advanced medical imaging technique widely used in various clinical applications, such as tumor detection and neurologic disorders. Reducing the radiotracer dose is desirable in PET imaging because it decreases the patient’s radiation exposure. However, reducing the dose can also increase noise, affecting the image quality. Therefore, an advanced image reconstruction algorithm based on low-dose PET data is needed to improve the quality of the reconstructed image. In this article, we propose the use of a direct PET image reconstruction network (DPIR-Net) using an improved Wasserstein generative adversarial network (WGAN) framework to enhance image quality. This article provides two main findings. First, our network uses sinogram data as input and outputs high-quality PET images direct, resulting in shorter reconstruction times compared with traditional model-based reconstruction networks. Second, we combine perceptual loss, mean square error, and the Wasserstein distance as the loss function, which effectively solves the problem of excessive smoothness and loss of detailed information in traditional network image reconstruction. We performed a comparative study using maximum-likelihood expectation maximization (MLEM) with a post-Gaussian filter, a total variation (TV)-norm regularization, a nonlocal means (NLMs) denoising method, a neural network denoising method, a traditional deep learning PET reconstruction network, and our proposed DPIR-Net method and evaluated the proposed method using both human and mouse data. The mouse data were obtained from a small animal PET prototype system developed by our laboratory. The quantitative and qualitative results show that our proposed method outperformed the conventional methods. |
Author | Zheng, Hairong Zhang, Qiyang Xue, Hengzhi Zhu, Xiaohua Zhang, Na Teng, Yueyang Liu, Xin Liang, Dong Hu, Zhanli Gao, Juan Zou, Sijuan Yang, Yongfeng |
Author_xml | – sequence: 1 givenname: Zhanli orcidid: 0000-0003-0618-6240 surname: Hu fullname: Hu, Zhanli organization: Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 2 givenname: Hengzhi surname: Xue fullname: Xue, Hengzhi organization: Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 3 givenname: Qiyang orcidid: 0000-0001-6185-3080 surname: Zhang fullname: Zhang, Qiyang organization: Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 4 givenname: Juan surname: Gao fullname: Gao, Juan organization: Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 5 givenname: Na orcidid: 0000-0001-9510-4520 surname: Zhang fullname: Zhang, Na organization: Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 6 givenname: Sijuan surname: Zou fullname: Zou, Sijuan organization: Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China – sequence: 7 givenname: Yueyang orcidid: 0000-0002-1487-8434 surname: Teng fullname: Teng, Yueyang organization: College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China – sequence: 8 givenname: Xin orcidid: 0000-0001-9075-7207 surname: Liu fullname: Liu, Xin organization: Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 9 givenname: Yongfeng orcidid: 0000-0003-1642-6631 surname: Yang fullname: Yang, Yongfeng organization: Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 10 givenname: Dong orcidid: 0000-0001-6257-0875 surname: Liang fullname: Liang, Dong organization: Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 11 givenname: Xiaohua orcidid: 0000-0003-0495-9510 surname: Zhu fullname: Zhu, Xiaohua email: evazhu@vip.sina.com organization: Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China – sequence: 12 givenname: Hairong orcidid: 0000-0002-8558-5102 surname: Zheng fullname: Zheng, Hairong email: hr.zheng@siat.ac.cn organization: Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China |
BookMark | eNp9kE9PAjEQxRujiYh8Ab008bzYP9t26w0BkQSVIMbjpuzOahF2sS0Yv72LEA4ePM3L5P3eZN4ZOi6rEhC6oKRNKdHX08n44bnNCCNtprVQVB2hBouljhQn_PigKT1FLe_nhBCqEqZj0UCmNx5OokcIN7hnHWQBj_tTPFyaN8ATyKrSB7fOgq1KfGs85LgW4R3wq_EenA9gSzyAEpwJdgO4k2_qrXHWLHAd-lW5j3N0UpiFh9Z-NtHLXX_avY9GT4NhtzOKMi5piBhPKBOEsoLpXBJi1CxmMucQ5zxPhJYyViIRQDljhZScJ4QbbYjWWUH1bMab6GqXu3LV5xp8SOfV2pX1yZTFKk6EErGoXcnOlbnKewdFmtlgtv8FZ-wipSTddpr-dppuO033ndYo-4OunF0a9_0_dLmDLAAcAE205IniP5hXgrA |
CODEN | ITRPFI |
CitedBy_id | crossref_primary_10_1016_j_media_2021_102335 crossref_primary_10_1016_j_radi_2024_06_010 crossref_primary_10_1088_1361_6560_ace49c crossref_primary_10_1109_TRPMS_2020_3014786 crossref_primary_10_1002_mp_16830 crossref_primary_10_1177_14727978251319398 crossref_primary_10_1109_ACCESS_2022_3145192 crossref_primary_10_1109_TRPMS_2022_3204643 crossref_primary_10_1080_21681163_2024_2330524 crossref_primary_10_1088_1361_6560_ad40f6 crossref_primary_10_1016_j_cpet_2021_06_004 crossref_primary_10_1186_s12880_024_01417_y crossref_primary_10_1088_2057_1976_ac086c crossref_primary_10_1109_TII_2023_3261892 crossref_primary_10_1088_1361_6560_ad14c5 crossref_primary_10_1007_s00259_023_06422_x crossref_primary_10_1088_1361_6560_ac950a crossref_primary_10_1088_1361_6560_aba6f9 crossref_primary_10_3390_life14010145 crossref_primary_10_1002_mp_15577 crossref_primary_10_1016_j_media_2024_103291 crossref_primary_10_1088_1361_6560_ace240 crossref_primary_10_1016_j_media_2025_103558 crossref_primary_10_6009_jjrt_2024_2365 crossref_primary_10_1055_a_2198_0358 crossref_primary_10_3389_fradi_2024_1466498 crossref_primary_10_1109_TMI_2021_3076191 crossref_primary_10_1007_s00259_022_05861_2 crossref_primary_10_1109_TRPMS_2022_3194408 crossref_primary_10_1186_s40658_021_00426_y crossref_primary_10_1088_1361_6560_ac1024 crossref_primary_10_1007_s12194_022_00652_8 crossref_primary_10_1002_mp_15089 crossref_primary_10_1002_mp_15368 crossref_primary_10_1016_j_cmpb_2021_106271 crossref_primary_10_1088_1361_6560_ac08b2 crossref_primary_10_1007_s00259_021_05341_z crossref_primary_10_1109_ACCESS_2024_3365048 crossref_primary_10_1088_1361_6560_ad2882 crossref_primary_10_1109_TMI_2021_3120913 crossref_primary_10_1007_s12194_024_00780_3 crossref_primary_10_1016_j_media_2023_102993 crossref_primary_10_1109_TRPMS_2023_3349194 crossref_primary_10_1016_j_compmedimag_2021_101969 crossref_primary_10_1002_INMD_20230012 crossref_primary_10_1007_s00259_022_06003_4 crossref_primary_10_1109_TMI_2023_3293836 crossref_primary_10_1007_s10278_022_00720_w crossref_primary_10_1007_s40336_022_00508_6 crossref_primary_10_1109_TRPMS_2022_3205283 crossref_primary_10_1109_TRPMS_2023_3347602 crossref_primary_10_3233_XST_210841 crossref_primary_10_6009_jjrt_2024_2386 crossref_primary_10_1259_bjr_20230292 crossref_primary_10_1007_s00259_022_05805_w |
Cites_doi | 10.1118/1.3638125 10.1109/ACCESS.2016.2624938 10.1109/TMI.2018.2869871 10.1038/nature25988 10.1109/TMI.2018.2827462 10.1109/TRPMS.2018.2877644 10.1109/TMI.2012.2211378 10.1109/CVPR.2005.38 10.1109/TMI.2012.2195669 10.1088/0031-9155/55/18/009 10.1109/TMI.2018.2832217 10.1002/mp.13415 10.1016/j.neuroimage.2018.03.045 10.1109/TMI.2017.2715284 10.1016/j.media.2019.03.013 10.1016/j.media.2019.05.001 10.1088/0031-9155/57/23/7923 10.1109/TRPMS.2018.2860788 10.1007/s00259-019-04468-4 10.2214/AJR.11.6987 10.1109/JPROC.2019.2936809 10.1016/j.cmpb.2015.10.004 10.1109/TMI.2006.882141 10.1109/TRPMS.2017.2771490 10.1088/0031-9155/56/18/011 10.1118/1.3232004 10.1109/TMI.2018.2888491 10.1117/12.2513096 10.1053/j.semnuclmed.2004.09.002 10.1109/TNS.2004.834824 10.1109/TRPMS.2018.2867611 10.1117/12.2534904 10.1088/0031-9155/53/17/021 10.1109/TMI.1982.4307558 10.1002/mp.13804 10.1109/TMI.2014.2336860 10.1109/TRPMS.2018.2890359 10.1088/0031-9155/58/16/5803 10.1109/TIP.2003.819861 10.1088/0031-9155/60/22/R363 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7QO 8FD F28 FR3 K9. NAPCQ P64 |
DOI | 10.1109/TRPMS.2020.2995717 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Biotechnology Research Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Nursing & Allied Health Premium Biotechnology Research Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database ANTE: Abstracts in New Technology & Engineering Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2469-7303 |
EndPage | 43 |
ExternalDocumentID | 10_1109_TRPMS_2020_2995717 9096387 |
Genre | orig-research |
GrantInformation_xml | – fundername: Guangdong Special Support Program of China grantid: 2017TQ04R395 – fundername: Shenzhen International Cooperation Research Project; Shenzhen International Cooperation Research Project of China grantid: GJHZ20180928115824168 funderid: 10.13039/501100017608 – fundername: National Natural Science Foundation of China grantid: 81871441; 91959119; 81873903 funderid: 10.13039/501100001809 – fundername: Guangdong International Science and Technology Cooperation Project of China grantid: 2018A050506064 – fundername: Natural Science Foundation of Guangdong Province in China grantid: 2020A1515010733 funderid: 10.13039/501100003453 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION RIG 7QO 8FD F28 FR3 K9. NAPCQ P64 |
ID | FETCH-LOGICAL-c361t-238125012f29d600a7b426d3e4d3d8596647585e1322f6633803a9a099cf19bb3 |
IEDL.DBID | RIE |
ISSN | 2469-7311 |
IngestDate | Mon Jun 30 18:05:34 EDT 2025 Tue Jul 01 03:04:15 EDT 2025 Thu Apr 24 23:01:26 EDT 2025 Wed Aug 27 02:28:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-238125012f29d600a7b426d3e4d3d8596647585e1322f6633803a9a099cf19bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0618-6240 0000-0001-6185-3080 0000-0001-6257-0875 0000-0003-1642-6631 0000-0003-0495-9510 0000-0002-1487-8434 0000-0001-9510-4520 0000-0001-9075-7207 0000-0002-8558-5102 |
PQID | 2474857545 |
PQPubID | 4437208 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1109_TRPMS_2020_2995717 ieee_primary_9096387 proquest_journals_2474857545 crossref_primary_10_1109_TRPMS_2020_2995717 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Jan. 2021-1-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan. |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on radiation and plasma medical sciences |
PublicationTitleAbbrev | TRPMS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref10 kuang (ref46) 2019; 60 ref17 ref16 ref19 ref18 xu (ref11) 2012; 31 goodfellow (ref40) 2014 ref45 ref47 ref44 abadi (ref48) 2016 shan (ref28) 2018 ref49 ref8 ref7 ref9 ref4 ref3 ref5 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 martin (ref41) 2017; 70 ref24 ref23 ref26 ref25 ref20 ref22 ref21 beyer (ref1) 2000; 41 ref27 fitzpatrick (ref6) 2005 ref29 simonyan (ref43) 2014 gulrajani (ref42) 2017 |
References_xml | – start-page: 2058 year: 2005 ident: ref6 article-title: Sinogram noise reduction for low-dose CT by statistics-based nonlinear filters publication-title: Proc Med Imag Image Process – volume: 60 start-page: 527 year: 2019 ident: ref46 article-title: Progress of a MRI compatible small animal PET scanner using dual-ended readout detectors publication-title: J Nucl Med – ident: ref19 doi: 10.1118/1.3638125 – ident: ref23 doi: 10.1109/ACCESS.2016.2624938 – ident: ref36 doi: 10.1109/TMI.2018.2869871 – ident: ref37 doi: 10.1038/nature25988 – year: 2016 ident: ref48 article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems – ident: ref26 doi: 10.1109/TMI.2018.2827462 – ident: ref25 doi: 10.1109/TRPMS.2018.2877644 – ident: ref45 doi: 10.1109/TMI.2012.2211378 – ident: ref20 doi: 10.1109/CVPR.2005.38 – volume: 31 start-page: 1682 year: 2012 ident: ref11 article-title: Low-dose X-ray CT reconstruction via dictionary learning publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2012.2195669 – start-page: 2672 year: 2014 ident: ref40 article-title: Generative adversarial networks publication-title: Proc Adv Neural Inform Process Syst – ident: ref21 doi: 10.1088/0031-9155/55/18/009 – ident: ref49 doi: 10.1109/TMI.2018.2832217 – ident: ref39 doi: 10.1002/mp.13415 – start-page: 5767 year: 2017 ident: ref42 article-title: Improved training of Wasserstein GANs publication-title: Proc Adv Neural Inform Process Syst (NIPS) – ident: ref24 doi: 10.1016/j.neuroimage.2018.03.045 – ident: ref30 doi: 10.1109/TMI.2017.2715284 – ident: ref38 doi: 10.1016/j.media.2019.03.013 – ident: ref47 doi: 10.1016/j.media.2019.05.001 – ident: ref16 doi: 10.1088/0031-9155/57/23/7923 – ident: ref27 doi: 10.1109/TRPMS.2018.2860788 – ident: ref29 doi: 10.1007/s00259-019-04468-4 – ident: ref7 doi: 10.2214/AJR.11.6987 – ident: ref33 doi: 10.1109/JPROC.2019.2936809 – ident: ref10 doi: 10.1016/j.cmpb.2015.10.004 – ident: ref4 doi: 10.1109/TMI.2006.882141 – ident: ref17 doi: 10.1109/TRPMS.2017.2771490 – ident: ref15 doi: 10.1088/0031-9155/56/18/011 – ident: ref8 doi: 10.1118/1.3232004 – ident: ref32 doi: 10.1109/TMI.2018.2888491 – ident: ref34 doi: 10.1117/12.2513096 – ident: ref3 doi: 10.1053/j.semnuclmed.2004.09.002 – year: 2018 ident: ref28 article-title: Can deep learning outperform modern commercial CT image reconstruction methods? – ident: ref5 doi: 10.1109/TNS.2004.834824 – year: 2014 ident: ref43 article-title: Very deep convolutional networks for large-scale image recognition – ident: ref31 doi: 10.1109/TRPMS.2018.2867611 – volume: 41 start-page: 1369 year: 2000 ident: ref1 article-title: A combined PET/CT scanner for clinical oncology publication-title: J Nucl Med – ident: ref35 doi: 10.1117/12.2534904 – ident: ref14 doi: 10.1088/0031-9155/53/17/021 – ident: ref9 doi: 10.1109/TMI.1982.4307558 – volume: 70 start-page: 214 year: 2017 ident: ref41 article-title: Wasserstein generative adversarial networks publication-title: Proc 34th Int Conf Mach Learn – ident: ref13 doi: 10.1002/mp.13804 – ident: ref12 doi: 10.1109/TMI.2014.2336860 – ident: ref22 doi: 10.1109/TRPMS.2018.2890359 – ident: ref18 doi: 10.1088/0031-9155/58/16/5803 – ident: ref44 doi: 10.1109/TIP.2003.819861 – ident: ref2 doi: 10.1088/0031-9155/60/22/R363 |
SSID | ssj0001782945 |
Score | 2.4400978 |
Snippet | Positron emission tomography (PET) is an advanced medical imaging technique widely used in various clinical applications, such as tumor detection and... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 35 |
SubjectTerms | Algorithms Biomedical imaging Comparative studies Deep learning Direct image reconstruction Feature extraction Generative adversarial networks Image enhancement Image processing Image quality Image reconstruction Imaging techniques Machine learning Medical imaging Neural networks Noise reduction Positron emission Positron emission tomography positron emission tomography (PET) Radiation Radiation effects Radioactive tracers Regularization small animal PET Smoothness Tomography Wasserstein generative adversarial network (WGAN) |
Title | DPIR-Net: Direct PET Image Reconstruction Based on the Wasserstein Generative Adversarial Network |
URI | https://ieeexplore.ieee.org/document/9096387 https://www.proquest.com/docview/2474857545 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGJCQuvBGDgXLgBh3NY2vDjccQQ2JCMAS3Km2SC7Ahbbvw67HTbpMAIW45JFIUu7Y_1_YHcBT7juekvKnIfaRSZSJtOI9ykxofW2lSSb3Dd_3OzZO6fWm_1OBk3gvjnAvFZ65Fy_Av346KKaXKTnVM6pIswRICt7JXa5FPQVenAyexQMQXJZLzWY9MrE8HCOIfEQ2KuIX2t50EfrKFHwrEKj-scXAx12twN7tcWVny2ppO8lbx-W1u439vvw6rVazJzkvl2ICaG27Ccqj5LMZbYK7uew9R303OWGn42H13wHrvaGEYodLFbFl2gb7OMlxguMieTWjRJJpMVk6tJpPJArXz2JBCs35ZXL4NT9fdweVNVDEuRIXs8ElE_htjIi680BZDIZPk6MGtdMpKm7YRGinCF44grMdYRaaxNNpglFl4rvNc7kB9OBq6XWDCCm5zTfSUqdKFNE55Y7X3TnbS2KsG8Nn7Z0U1jpxYMd6yAEtinQWZZSSzrJJZA47nZz7KYRx_7t4iIcx3Vu_fgOZMzFn1vY4zoRJFXKWqvff7qX1YEVTNEpIvTaijANwBhiOT_DDo4RcFP9mE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7x0AouPJZFlKcP3HZT4keamBtPtUArtBTBLXJi-wK0SC0Xfj0zTtpKC1px88GWLM9kZr7JzHwAh7FveU7Km4nCRypTJtKG86gwmfGxlSaT1Dvc7bXa9-rqMXmcgz_TXhjnXCg-c01ahn_5dli-UarsSMekLuk8LKLfT0TVrTXLqKCz04GVWCDmi1LJ-aRLJtZHfYTxd4gHRdxEC5ykgaFs5okCtconexyczOUqdCfXq2pLnppv46JZvv8zufG791-DlTraZCeVeqzDnBv8hB-h6rMcbYA5v-38jXpufMwq08duL_qs84I2hhEunU2XZafo7SzDBQaM7MGEJk0iymTV3GoymiyQO48MqTTrVeXlv-D-8qJ_1o5qzoWolC0-jsiDY1TEhRfaYjBk0gJ9uJVOWWmzBMGRIoThCMR6jFZkFkujDcaZpee6KOQmLAyGA7cFTFjBbaGJoDJTupTGKW-s9t7JVhZ71QA-ef-8rAeSEy_Gcx6ASazzILOcZJbXMmvA7-mZ12ocx393b5AQpjvr92_A7kTMef3FjnKhUkVspSrZ_vrUASy1-92b_KbTu96BZUG1LSEVswsLKAy3h8HJuNgPOvkBjUXczg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DPIR-Net%3A+Direct+PET+Image+Reconstruction+Based+on+the+Wasserstein+Generative+Adversarial+Network&rft.jtitle=IEEE+transactions+on+radiation+and+plasma+medical+sciences&rft.au=Hu%2C+Zhanli&rft.au=Xue%2C+Hengzhi&rft.au=Zhang%2C+Qiyang&rft.au=Gao%2C+Juan&rft.date=2021-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2469-7311&rft.eissn=2469-7303&rft.volume=5&rft.issue=1&rft.spage=35&rft_id=info:doi/10.1109%2FTRPMS.2020.2995717&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2469-7311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2469-7311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2469-7311&client=summon |