Bioequivalence Studies of Highly Variable Drugs: An Old Problem Addressed by Artificial Neural Networks

The bioequivalence (BE) of highly variable drugs is a complex issue in the pharmaceutical industry. The impact of this variability can significantly affect the required sample size and statistical power. In order to address this issue, the EMA and FDA propose the utilization of scaled limits. This s...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 12; p. 5279
Main Authors Papadopoulos, Dimitris, Karali, Georgia, Karalis, Vangelis D.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The bioequivalence (BE) of highly variable drugs is a complex issue in the pharmaceutical industry. The impact of this variability can significantly affect the required sample size and statistical power. In order to address this issue, the EMA and FDA propose the utilization of scaled limits. This study suggests the use of generative artificial intelligence (AI) algorithms, particularly variational autoencoders (VAEs), to virtually increase sample size and therefore reduce the need for actual human subjects in the BE studies of highly variable drugs. The primary aim of this study was to show the capability of using VAEs with constant acceptance limits (80–125%) and small sample sizes to achieve high statistical power. Monte Carlo simulations, incorporating two levels of stochasticity (between-subject and within-subject), were used to synthesize the virtual population. Various scenarios focusing on high variabilities were simulated. The performance of the VAE-generated datasets was compared to the official approaches imposed by the FDA and EMA, using either the constant 80–125% limits or scaled BE limits. To demonstrate the ability of AI generative algorithms to create virtual populations, no scaling was applied to the VAE-generated datasets, only to the actual data of the comparators. Across all scenarios, the VAE-generated datasets demonstrated superior performance compared to scaled or unscaled BE approaches, even with less than half of the typically required sample size. Overall, this study proposes the use of VAEs as a method to reduce the necessity of recruiting large numbers of subjects in BE studies.
AbstractList The bioequivalence (BE) of highly variable drugs is a complex issue in the pharmaceutical industry. The impact of this variability can significantly affect the required sample size and statistical power. In order to address this issue, the EMA and FDA propose the utilization of scaled limits. This study suggests the use of generative artificial intelligence (AI) algorithms, particularly variational autoencoders (VAEs), to virtually increase sample size and therefore reduce the need for actual human subjects in the BE studies of highly variable drugs. The primary aim of this study was to show the capability of using VAEs with constant acceptance limits (80–125%) and small sample sizes to achieve high statistical power. Monte Carlo simulations, incorporating two levels of stochasticity (between-subject and within-subject), were used to synthesize the virtual population. Various scenarios focusing on high variabilities were simulated. The performance of the VAE-generated datasets was compared to the official approaches imposed by the FDA and EMA, using either the constant 80–125% limits or scaled BE limits. To demonstrate the ability of AI generative algorithms to create virtual populations, no scaling was applied to the VAE-generated datasets, only to the actual data of the comparators. Across all scenarios, the VAE-generated datasets demonstrated superior performance compared to scaled or unscaled BE approaches, even with less than half of the typically required sample size. Overall, this study proposes the use of VAEs as a method to reduce the necessity of recruiting large numbers of subjects in BE studies.
Featured Application: Bioequivalence studies of highly variable drugs require the utilization of large numbers of volunteers. The EMA and FDA propose the utilization of scaled limits. In this study, we introduce the use of artificial neural networks, along with the typical 80–125% limits, as a tool for virtually increasing sample size and thus reducing the actual human exposure. The bioequivalence (BE) of highly variable drugs is a complex issue in the pharmaceutical industry. The impact of this variability can significantly affect the required sample size and statistical power. In order to address this issue, the EMA and FDA propose the utilization of scaled limits. This study suggests the use of generative artificial intelligence (AI) algorithms, particularly variational autoencoders (VAEs), to virtually increase sample size and therefore reduce the need for actual human subjects in the BE studies of highly variable drugs. The primary aim of this study was to show the capability of using VAEs with constant acceptance limits (80–125%) and small sample sizes to achieve high statistical power. Monte Carlo simulations, incorporating two levels of stochasticity (between-subject and within-subject), were used to synthesize the virtual population. Various scenarios focusing on high variabilities were simulated. The performance of the VAE-generated datasets was compared to the official approaches imposed by the FDA and EMA, using either the constant 80–125% limits or scaled BE limits. To demonstrate the ability of AI generative algorithms to create virtual populations, no scaling was applied to the VAE-generated datasets, only to the actual data of the comparators. Across all scenarios, the VAE-generated datasets demonstrated superior performance compared to scaled or unscaled BE approaches, even with less than half of the typically required sample size. Overall, this study proposes the use of VAEs as a method to reduce the necessity of recruiting large numbers of subjects in BE studies.
Featured ApplicationFeatured Application: Bioequivalence studies of highly variable drugs require the utilization of large numbers of volunteers. The EMA and FDA propose the utilization of scaled limits. In this study, we introduce the use of artificial neural networks, along with the typical 80–125% limits, as a tool for virtually increasing sample size and thus reducing the actual human exposure.AbstractThe bioequivalence (BE) of highly variable drugs is a complex issue in the pharmaceutical industry. The impact of this variability can significantly affect the required sample size and statistical power. In order to address this issue, the EMA and FDA propose the utilization of scaled limits. This study suggests the use of generative artificial intelligence (AI) algorithms, particularly variational autoencoders (VAEs), to virtually increase sample size and therefore reduce the need for actual human subjects in the BE studies of highly variable drugs. The primary aim of this study was to show the capability of using VAEs with constant acceptance limits (80–125%) and small sample sizes to achieve high statistical power. Monte Carlo simulations, incorporating two levels of stochasticity (between-subject and within-subject), were used to synthesize the virtual population. Various scenarios focusing on high variabilities were simulated. The performance of the VAE-generated datasets was compared to the official approaches imposed by the FDA and EMA, using either the constant 80–125% limits or scaled BE limits. To demonstrate the ability of AI generative algorithms to create virtual populations, no scaling was applied to the VAE-generated datasets, only to the actual data of the comparators. Across all scenarios, the VAE-generated datasets demonstrated superior performance compared to scaled or unscaled BE approaches, even with less than half of the typically required sample size. Overall, this study proposes the use of VAEs as a method to reduce the necessity of recruiting large numbers of subjects in BE studies.
Audience Academic
Author Papadopoulos, Dimitris
Karalis, Vangelis D.
Karali, Georgia
Author_xml – sequence: 1
  givenname: Dimitris
  surname: Papadopoulos
  fullname: Papadopoulos, Dimitris
– sequence: 2
  givenname: Georgia
  surname: Karali
  fullname: Karali, Georgia
– sequence: 3
  givenname: Vangelis D.
  orcidid: 0000-0003-0492-0712
  surname: Karalis
  fullname: Karalis, Vangelis D.
BookMark eNpNUctqHDEQFMYBP-JTfkDgY1hHLY2kUW5jO4kNJg7kcRUaPcZaz47W0kzC_n0UrwnuPnRTdFcXXSfocEqTR-gdkAvGFPlgtltogHIq1QE6pkSKFWtAHr7qj9BZKWtSQwFrgRyj4TIm_7TE32b0k_X4-7y46AtOAd_E4WHc4V8mR9OPHl_nZSgfcTfh-9HhbzlVcIM757IvxTvc73CX5xiijWbEX_2Sn8v8J-XH8ha9CWYs_uylnqKfnz_9uLpZ3d1_ub3q7laWCZhX4JUQlhBqrORBhZ4BJ6LxrmmlsDI4I2ljOO2VbK2jtHW2JSIAA6sENIGdots9r0tmrbc5bkze6WSifgZSHrSpIu3odQtAGO954AYaLoJybW9EL2zDemLBVq7zPdc2p6fFl1mv05KnKl8zIinljHBZpy72U0N9oY5TSHM2tqbzm2irRSFWvJNK0XqFQV14v1-wOZWSffgvE4j-56R-5ST7C1R-kMs
Cites_doi 10.1080/10543406.2022.2058529
10.1016/j.jclinepi.2003.08.009
10.1016/j.jfp.2023.100134
10.1136/svn-2017-000101
10.1561/2200000056
10.3390/applbiosci3010002
10.3390/app14072970
10.1016/j.jbi.2014.02.013
10.1007/s43441-021-00368-8
10.1002/pst.1522
10.1097/ALN.0000000000002960
10.1016/B978-0-12-804566-4.00019-X
10.1038/s41551-021-00751-8
10.1007/s10928-015-9417-1
10.1159/000322830
10.1016/j.cct.2015.12.007
10.1016/j.compbiomed.2023.107295
10.1002/pst.1716
10.1016/S0895-4356(00)00252-3
10.3390/ijerph19063449
10.1007/978-3-319-27598-7_10
10.1007/s11030-021-10217-3
10.1016/j.cca.2023.117519
10.3390/app13158793
10.1063/1.1144830
10.4274/tjo.galenos.2020.78989
10.1308/147870804290
10.4135/9781412985277
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app14125279
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_811035b5f5a1456f9d8ba6b6c43b0c1c
A799245631
10_3390_app14125279
GeographicLocations Greece
GeographicLocations_xml – name: Greece
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-1e966c002ac75f9fb315064ed4876c7fda724a52b978cd228dc806f131c9614f3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:32:29 EDT 2025
Mon Jun 30 02:40:21 EDT 2025
Tue Jun 10 21:07:53 EDT 2025
Tue Jul 01 01:31:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-1e966c002ac75f9fb315064ed4876c7fda724a52b978cd228dc806f131c9614f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0492-0712
OpenAccessLink https://doaj.org/article/811035b5f5a1456f9d8ba6b6c43b0c1c
PQID 3072253057
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_811035b5f5a1456f9d8ba6b6c43b0c1c
proquest_journals_3072253057
gale_infotracacademiconefile_A799245631
crossref_primary_10_3390_app14125279
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Jiang (ref_31) 2017; 2
ref_35
ref_34
Gupta (ref_16) 2021; 25
Manfredi (ref_8) 2000; 53
Ji (ref_11) 2022; 32
Karalis (ref_21) 2024; 3
Keskinbora (ref_20) 2020; 50
Brookes (ref_15) 2004; 57
ref_18
ref_39
Zheng (ref_7) 2012; 11
ref_37
(ref_13) 2014; 48
Bresnahan (ref_12) 2020; 6
Wang (ref_14) 2023; 86
Noordzij (ref_4) 2011; 118
Flight (ref_5) 2015; 15
Koski (ref_32) 2021; 284
Dykstra (ref_38) 2015; 42
Roumeliotis (ref_9) 2020; 33
ref_25
ref_23
Chen (ref_33) 2021; 5
Tang (ref_10) 2022; 56
ref_22
ref_40
ref_1
Shih (ref_6) 2016; 47
ref_3
Hashimoto (ref_19) 2019; 132
Polevikov (ref_30) 2023; 548
ref_2
Kingma (ref_28) 2019; 12
ref_29
Ramesh (ref_17) 2004; 86
Bishop (ref_24) 1994; 65
ref_27
ref_26
Liu (ref_36) 2022; 31
References_xml – volume: 6
  start-page: CD001903
  year: 2020
  ident: ref_12
  article-title: Ketogenic Diets for Drug-Resistant Epilepsy
  publication-title: Cochrane Database Syst. Rev.
– volume: 32
  start-page: 529
  year: 2022
  ident: ref_11
  article-title: Optimal Sample Size Determination for Single-Arm Trials in Pediatric and Rare Populations with Bayesian Borrowing
  publication-title: J. Biopharm. Stat.
  doi: 10.1080/10543406.2022.2058529
– volume: 57
  start-page: 229
  year: 2004
  ident: ref_15
  article-title: Subgroup Analyses in Randomized Trials: Risks of Subgroup-Specific Analyses
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/j.jclinepi.2003.08.009
– ident: ref_26
– volume: 86
  start-page: 100134
  year: 2023
  ident: ref_14
  article-title: Sample Size Determination for Food Sampling
  publication-title: J. Food Prot.
  doi: 10.1016/j.jfp.2023.100134
– volume: 2
  start-page: 230
  year: 2017
  ident: ref_31
  article-title: Artificial Intelligence in Healthcare: Past, Present and Future
  publication-title: Stroke Vasc. Neurol.
  doi: 10.1136/svn-2017-000101
– volume: 33
  start-page: 1209
  year: 2020
  ident: ref_9
  article-title: Sample Size Calculation of Clinical Trials in Geriatric Medicine
  publication-title: Aging Clin. Exp. Res.
– volume: 12
  start-page: 307
  year: 2019
  ident: ref_28
  article-title: An Introduction to Variational Autoencoders
  publication-title: Found. Trends® Mach. Learn.
  doi: 10.1561/2200000056
– volume: 3
  start-page: 14
  year: 2024
  ident: ref_21
  article-title: The Integration of Artificial Intelligence into Clinical Practice
  publication-title: Appl. Biosci.
  doi: 10.3390/applbiosci3010002
– volume: 284
  start-page: 295
  year: 2021
  ident: ref_32
  article-title: AI in Healthcare
  publication-title: Stud. Health Technol. Inform.
– ident: ref_39
– ident: ref_40
– ident: ref_27
  doi: 10.3390/app14072970
– volume: 48
  start-page: 193
  year: 2014
  ident: ref_13
  article-title: Sample Size Estimation in Diagnostic Test Studies of Biomedical Informatics
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2014.02.013
– ident: ref_1
– ident: ref_35
– volume: 56
  start-page: 517
  year: 2022
  ident: ref_10
  article-title: Optimal Sample Size for Use in Neonatal Pharmacokinetic Studies
  publication-title: Ther. Innov. Regul. Sci.
  doi: 10.1007/s43441-021-00368-8
– volume: 11
  start-page: 334
  year: 2012
  ident: ref_7
  article-title: Testing Bioequivalence for Multiple Formulations with Power and Sample Size Calculations
  publication-title: Pharm. Stat.
  doi: 10.1002/pst.1522
– volume: 132
  start-page: 379
  year: 2019
  ident: ref_19
  article-title: Artificial Intelligence in Anesthesiology
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000002960
– ident: ref_37
  doi: 10.1016/B978-0-12-804566-4.00019-X
– volume: 5
  start-page: 493
  year: 2021
  ident: ref_33
  article-title: Synthetic Data in Machine Learning for Medicine and Healthcare
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-021-00751-8
– volume: 42
  start-page: 301
  year: 2015
  ident: ref_38
  article-title: Reporting Guidelines for Population Pharmacokinetic Analyses
  publication-title: J. Pharmacokinet. Pharmacodyn.
  doi: 10.1007/s10928-015-9417-1
– ident: ref_25
– ident: ref_29
– volume: 118
  start-page: c319
  year: 2011
  ident: ref_4
  article-title: Sample Size Calculations
  publication-title: Nephron Clin. Pract.
  doi: 10.1159/000322830
– ident: ref_2
– volume: 47
  start-page: 40
  year: 2016
  ident: ref_6
  article-title: Methods for Flexible Sample-Size Design in Clinical Trials: Likelihood, Weighted, Dual Test, and Promising Zone Approaches
  publication-title: Contemp. Clin. Trials
  doi: 10.1016/j.cct.2015.12.007
– ident: ref_34
  doi: 10.1016/j.compbiomed.2023.107295
– volume: 15
  start-page: 80
  year: 2015
  ident: ref_5
  article-title: Practical Guide to Sample Size Calculations: Non-Inferiority and Equivalence Trials
  publication-title: Pharm. Stat.
  doi: 10.1002/pst.1716
– volume: 53
  start-page: 1268
  year: 2000
  ident: ref_8
  article-title: Sample Size Calculations for Risk Equivalence Testing in Pharmacoepidemiology
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/S0895-4356(00)00252-3
– ident: ref_18
  doi: 10.3390/ijerph19063449
– ident: ref_3
  doi: 10.1007/978-3-319-27598-7_10
– volume: 25
  start-page: 1315
  year: 2021
  ident: ref_16
  article-title: Artificial Intelligence to Deep Learning: Machine Intelligence Approach for Drug Discovery
  publication-title: Mol. Divers.
  doi: 10.1007/s11030-021-10217-3
– volume: 548
  start-page: 117519
  year: 2023
  ident: ref_30
  article-title: Advancing AI in Healthcare: A Comprehensive Review of Best Practices
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2023.117519
– ident: ref_22
  doi: 10.3390/app13158793
– volume: 65
  start-page: 1803
  year: 1994
  ident: ref_24
  article-title: Neural Networks and Their Applications
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1144830
– volume: 50
  start-page: 37
  year: 2020
  ident: ref_20
  article-title: Artificial Intelligence and Ophthalmology
  publication-title: Turk. J. Ophthalmol.
  doi: 10.4274/tjo.galenos.2020.78989
– volume: 31
  start-page: 1
  year: 2022
  ident: ref_36
  article-title: On the Reproducibility and Replicability of Deep Learning in Software Engineering
  publication-title: ACM Trans. Softw. Eng. Methodol.
– volume: 86
  start-page: 334
  year: 2004
  ident: ref_17
  article-title: Artificial Intelligence in Medicine
  publication-title: Ann. R. Coll. Surg. Engl.
  doi: 10.1308/147870804290
– ident: ref_23
  doi: 10.4135/9781412985277
SSID ssj0000913810
Score 2.299373
Snippet The bioequivalence (BE) of highly variable drugs is a complex issue in the pharmaceutical industry. The impact of this variability can significantly affect the...
Featured Application: Bioequivalence studies of highly variable drugs require the utilization of large numbers of volunteers. The EMA and FDA propose the...
Featured ApplicationFeatured Application: Bioequivalence studies of highly variable drugs require the utilization of large numbers of volunteers. The EMA and...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 5279
SubjectTerms Algorithms
Artificial intelligence
artificial neural networks
Bioequivalence
Clinical trials
Datasets
Design
Drugs
highly variable drugs
Independent regulatory commissions
Monte Carlo method
Monte Carlo simulations
Neural networks
Neurons
Pharmaceutical industry
Probability distribution
Propagation
Statistical power
stochasticity
variational autoencoders
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwELagXOCAeK22UJAPSMseoo3j2HG4oJaHENICQsuKm-VHXCGhBpr2wL9nJjHQC1wSKY6UaDxPz8w3hBw65xF1PE-sYnmSK2kSK42Ci7DMFkVqPHYj_72Wl_f51YN4iAduTSyrfNeJraL2tcMz8j_Ai8B6wJ3FyfNLglOjMLsaR2gskxVQwQqCr5XR-fXt3ccpC6JeKpZ2jXkc4nvMC7McrHqGxVsLpqhF7P9KL7fG5mKDrEcvkQ67bd0kS9Vki6wtYAdukc0olQ09itDRv7fJePRYVy_zR2AfXKOxSpDWgWJBx9Mr_Q-xMXZL0bPpfNwc0-GE3jx5etvNlaFD71s0cU_ta_v5DmCCIoZHe2uLxpsdcn9x_u_0MomjFBLHJZslrIKwxoH2M64QoQyWI7JgXnmIV6QrgjdFlhuRWQgqnc8y5Z1KZWCcuRIMeOA_SG9ST6qfhNqQBsmk55iyzCyoBFvwyhsRDMi6yPrAAJGq-rlDzNAQaSDx9QLx-2SEFP94BWGu2wf1dKyj1GgFzgkXVgRhGHh6ofTKGmmly7lNHXN98gv3S6MwzqbGmdhTAH-KsFZ6WJQlZnY565PB-5bqKKWN_uSp3e-X98hqBs5MVyI2IL3ZdF7tgzMysweR494A92HeRQ
  priority: 102
  providerName: ProQuest
Title Bioequivalence Studies of Highly Variable Drugs: An Old Problem Addressed by Artificial Neural Networks
URI https://www.proquest.com/docview/3072253057
https://doaj.org/article/811035b5f5a1456f9d8ba6b6c43b0c1c
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VeoEDKi-xBVY-VIIeItZx7CS97QJbVKmAKkDcLD_iFRLapfs48O8747gol6oXLomURIo14_k-jzzzGeCLc55Ux4vMVrzIikqZzCpT4UVabstyYDx1I_-8Vlf3xY9H-dg56otqwlp54NZwZxXyk5BWBmk4kn2ofWWNssoVwg4cd4S-yHmdZCpicM1JuqptyBOY19N-MC-QzXMq2upQUFTq_xceR5IZf4KttDpkw3ZU2_Chme7AZkczcAe2UzQu2GmSjP66C5PR06z5vXrCaUPvWKoOZLPAqJDj-ZU9YE5MXVLsYr6aLL6x4ZTdPHt2254nw4beRxVxz-xr_H0rLMFIuyPeYrH4Yg_ux5d351dZOkIhc0LxZcYbTGccop5xpQx1sIIUBYvGY56iXBm8KfPCyNxiMul8nlfeVQMVuOCuRuIOYh_Wp7NpcwDMhkFQXHlBW5W5RSiwpWi8kcFgjMu8h45PVtUvrVKGxgyDjK87xu_BiCz-9gnJW8cH6HSdnK7_5_QenJC_NAXhcm6cSb0EOFKSs9LDsq5pR1fwHhz9dalO0bnQiGsIY4h05ef3GM0hbOS41GkLyI5gfTlfNce4VFnaPqxV4-99-Di6vL791Y9z9A-QoOfs
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOVVtALLTFBxBwiIjtxEmQULWlLFv6gEOLenP9iFeVqk272VW1f4rfyEySLXuBWy-JFEdJNP48nsnMfAPwxjlPrONJZHOeREmuTGSVyfGQWm6zLDaeqpGPT9TwLPl-np6vwO9FLQylVS50YqOofeXoH_lHxCJCD9GZ7V7fRNQ1iqKrixYaLSwOy_ktumz154N9nN-3Qgy-nn4ZRl1XgchJxacRL9HCd6gIjMvSUAQriWQvKT2a7splwZtMJCYVFv0r54XIvctjFbjkrsC9LEh87gN4mEhZ0IrKB9_u_ukQx2bO47YMEMdjikLzBG0IQaliSxtf0x_gX7tAs7UN1mGts0lZvwXRBqyU4014ssRUuAkbnQ6o2fuOqPrDUxjtXVblzewSwUpjrMtJZFVglD5yNWe_0BOn2iy2P5mN6k-sP2Y_rjz72XaxYX3vG-5yz-y8eX1LZ8GIMaQ5NSnq9TM4uxcRP4fVcTUuXwCzIQ6KKy8pQCosKiCbydKbNBjULKnoIdw6qerrlp9Do19DwtdLwu_BHkn87hYi1W4uVJOR7taoztEUkqlNQ2o42pWh8Lk1yiqXSBs77nrwjuZL09KfTowzXQUDfimRaOl-VhQUR5a8B1uLKdWdTqj1XwS__P_wa3g0PD0-0kcHJ4ev4LFAM6pNTtuC1elkVm6jGTS1Ow32GFzcN9j_AJjdGOw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwqGgBEVpgDyDgYNW76ycSQglp1FIIEaKot2Uf3qhSlbRxIpS_xq9jxt6UXODWiy15Ldua_Tw7szPzDcBLax2xjieRKXgSJUWmI5PpAg-p4SbPY-2oGvnLKDs-Sz6dp-db8HtdC0NplWud2ChqN7O0R36IWEToITrzQx_SIsaD4Yer64g6SFGkdd1Oo4XIabX6he5b_f5kgHP9Sojh0fePx1HoMBBZmfFFxCu09i0qBW3z1JfeSCLcSyqHZnxmc-90LhKdCoO-lnVCFM4Wcea55LbEdc1LfO4d2M7RK4o7sN0_Go2_3ezwEONmweO2KFDKMqaYNE_QohCUOLaxDDbdAv61JjQL3fAB7AQLlfVaSO3CVjXdg_sbvIV7sBs0Qs3eBNrqtw9h0r-YVdfLC4QujbGQochmnlEyyeWK_UC_nCq12GC-nNTvWG_Kvl46Nm572rCecw2TuWNm1by-JbdgxB_SnJqE9foRnN2KkB9DZzqbVk-AGR_7jGdOUrhUGFRHJpeV06nXqGdS0UXwBamqq5atQ6GXQ8JXG8LvQp8kfnMLUWw3F2bziQp_rCrQMJKpSX2qOVqZvnSF0ZnJbCJNbLntwmuaL0WKYDHXVod6BvxSotRSvbwsKaoseRcO1lOqgoao1V88P_3_8Au4i0BXn09Gp_twT6BN1WaqHUBnMV9Wz9AmWpjnAXwMft423v8AU-kefg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioequivalence+Studies+of+Highly+Variable+Drugs%3A+An+Old+Problem+Addressed+by+Artificial+Neural+Networks&rft.jtitle=Applied+sciences&rft.au=Papadopoulos%2C+Dimitris&rft.au=Karali%2C+Georgia&rft.au=Karalis%2C+Vangelis+D.&rft.date=2024-06-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=12&rft.spage=5279&rft_id=info:doi/10.3390%2Fapp14125279&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app14125279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon