A MAP-Based Approach for Hyperspectral Imagery Super-Resolution

In this paper, we propose a novel single image Bayesian super-resolution (SR) algorithm where the hyperspectral image (HSI) is the only source of information. The main contribution of the proposed approach is to convert the ill-posed SR reconstruction problem in the spectral domain to a quadratic op...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 27; no. 6; pp. 2942 - 2951
Main Authors Irmak, Hasan, Akar, Gozde Bozdagi, Yuksel, Seniha Esen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2018
Subjects
Online AccessGet full text
ISSN1057-7149
1941-0042
1941-0042
DOI10.1109/TIP.2018.2814210

Cover

Loading…
Abstract In this paper, we propose a novel single image Bayesian super-resolution (SR) algorithm where the hyperspectral image (HSI) is the only source of information. The main contribution of the proposed approach is to convert the ill-posed SR reconstruction problem in the spectral domain to a quadratic optimization problem in the abundance map domain. In order to do so, Markov random field based energy minimization approach is proposed and proved that the solution is quadratic. The proposed approach consists of five main steps. First, the number of endmembers in the scene is determined using virtual dimensionality. Second, the endmembers and their low resolution abundance maps are computed using simplex identification via the splitted augmented Lagrangian and fully constrained least squares algorithms. Third, high resolution (HR) abundance maps are obtained using our proposed maximum a posteriori based energy function. This energy function is minimized subject to smoothness, unity, and boundary constraints. Fourth, the HR abundance maps are further enhanced with texture preserving methods. Finally, HR HSI is reconstructed using the extracted endmembers and the enhanced abundance maps. The proposed method is tested on three real HSI data sets; namely the Cave, Harvard, and Hyperspectral Remote Sensing Scenes and compared with state-of-the-art alternative methods using peak signal to noise ratio, structural similarity, spectral angle mapper, and relative dimensionless global error in synthesis metrics. It is shown that the proposed method outperforms the state of the art methods in terms of quality while preserving the spectral consistency.
AbstractList In this study, we propose a novel single image Bayesian super-resolution (SR) algorithm where the hyperspectral image (HSI) is the only source of information. The main contribution of the proposed approach is to convert the ill-posed SR reconstruction (SRR) problem in the spectral domain to a quadratic optimization problem in the abundance map domain. In order to do so, Markov Random Field (MRF) based energy minimization approach is proposed and proved that the solution is quadratic. The proposed approach consists of five main steps. First, the number of endmembers in the scene is determined using virtual dimensionality. Second, the endmembers and their low resolution abundance maps are computed using simplex identification via the splitted augmented Lagrangian (SISAL) and fully constrained least squares (FCLS) algorithms. Third, high resolution (HR) abundance maps are obtained using our proposed maximum a posteriori (MAP) based energy function. This energy function is minimized subject to smoothness, unity and boundary constraints. Fourth, the HR abundance maps are further enhanced with texture preserving methods. Finally, HR HSI is reconstructed using the extracted endmembers and the enhanced abundance maps. The proposed method is tested on three real HSI datasets; namely the Cave, Harvard and Hyperspectral Remote Sensing Scenes (HRSS) and compared to state-of-the-art alternative methods using peak signal to noise ratio, structural similarity, spectral angle mapper and relative dimensionless global error in synthesis metrics. It is shown that the proposed method outperforms the state of the art methods in terms of quality while preserving the spectral consistency.In this study, we propose a novel single image Bayesian super-resolution (SR) algorithm where the hyperspectral image (HSI) is the only source of information. The main contribution of the proposed approach is to convert the ill-posed SR reconstruction (SRR) problem in the spectral domain to a quadratic optimization problem in the abundance map domain. In order to do so, Markov Random Field (MRF) based energy minimization approach is proposed and proved that the solution is quadratic. The proposed approach consists of five main steps. First, the number of endmembers in the scene is determined using virtual dimensionality. Second, the endmembers and their low resolution abundance maps are computed using simplex identification via the splitted augmented Lagrangian (SISAL) and fully constrained least squares (FCLS) algorithms. Third, high resolution (HR) abundance maps are obtained using our proposed maximum a posteriori (MAP) based energy function. This energy function is minimized subject to smoothness, unity and boundary constraints. Fourth, the HR abundance maps are further enhanced with texture preserving methods. Finally, HR HSI is reconstructed using the extracted endmembers and the enhanced abundance maps. The proposed method is tested on three real HSI datasets; namely the Cave, Harvard and Hyperspectral Remote Sensing Scenes (HRSS) and compared to state-of-the-art alternative methods using peak signal to noise ratio, structural similarity, spectral angle mapper and relative dimensionless global error in synthesis metrics. It is shown that the proposed method outperforms the state of the art methods in terms of quality while preserving the spectral consistency.
In this study, we propose a novel single image Bayesian super-resolution (SR) algorithm where the hyperspectral image (HSI) is the only source of information. The main contribution of the proposed approach is to convert the ill-posed SR reconstruction (SRR) problem in the spectral domain to a quadratic optimization problem in the abundance map domain. In order to do so, Markov Random Field (MRF) based energy minimization approach is proposed and proved that the solution is quadratic. The proposed approach consists of five main steps. First, the number of endmembers in the scene is determined using virtual dimensionality. Second, the endmembers and their low resolution abundance maps are computed using simplex identification via the splitted augmented Lagrangian (SISAL) and fully constrained least squares (FCLS) algorithms. Third, high resolution (HR) abundance maps are obtained using our proposed maximum a posteriori (MAP) based energy function. This energy function is minimized subject to smoothness, unity and boundary constraints. Fourth, the HR abundance maps are further enhanced with texture preserving methods. Finally, HR HSI is reconstructed using the extracted endmembers and the enhanced abundance maps. The proposed method is tested on three real HSI datasets; namely the Cave, Harvard and Hyperspectral Remote Sensing Scenes (HRSS) and compared to state-of-the-art alternative methods using peak signal to noise ratio, structural similarity, spectral angle mapper and relative dimensionless global error in synthesis metrics. It is shown that the proposed method outperforms the state of the art methods in terms of quality while preserving the spectral consistency.
In this paper, we propose a novel single image Bayesian super-resolution (SR) algorithm where the hyperspectral image (HSI) is the only source of information. The main contribution of the proposed approach is to convert the ill-posed SR reconstruction problem in the spectral domain to a quadratic optimization problem in the abundance map domain. In order to do so, Markov random field based energy minimization approach is proposed and proved that the solution is quadratic. The proposed approach consists of five main steps. First, the number of endmembers in the scene is determined using virtual dimensionality. Second, the endmembers and their low resolution abundance maps are computed using simplex identification via the splitted augmented Lagrangian and fully constrained least squares algorithms. Third, high resolution (HR) abundance maps are obtained using our proposed maximum a posteriori based energy function. This energy function is minimized subject to smoothness, unity, and boundary constraints. Fourth, the HR abundance maps are further enhanced with texture preserving methods. Finally, HR HSI is reconstructed using the extracted endmembers and the enhanced abundance maps. The proposed method is tested on three real HSI data sets; namely the Cave, Harvard, and Hyperspectral Remote Sensing Scenes and compared with state-of-the-art alternative methods using peak signal to noise ratio, structural similarity, spectral angle mapper, and relative dimensionless global error in synthesis metrics. It is shown that the proposed method outperforms the state of the art methods in terms of quality while preserving the spectral consistency.
Author Akar, Gozde Bozdagi
Yuksel, Seniha Esen
Irmak, Hasan
Author_xml – sequence: 1
  givenname: Hasan
  surname: Irmak
  fullname: Irmak, Hasan
  email: hirmak@aselsan.com.tr
  organization: Radar & Electron. Warfare Syst. Bus. Sector, ASELSAN Inc., Ankara, Turkey
– sequence: 2
  givenname: Gozde Bozdagi
  surname: Akar
  fullname: Akar, Gozde Bozdagi
  email: bozdagi@metu.edu.tr
  organization: Dept. of Electr. & Electron. Eng., Middle East Techical Univ., Ankara, Turkey
– sequence: 3
  givenname: Seniha Esen
  surname: Yuksel
  fullname: Yuksel, Seniha Esen
  email: eyuksel@ee.hacettepe.edu.tr
  organization: Dept. of Electr. & Electron. Eng., Hacettepe Univ., Ankara, Turkey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29994066$$D View this record in MEDLINE/PubMed
BookMark eNp9kL1PwzAQxS1URCmwIyGhjCwpd47jxBMqFdBKRVRQZstJrhCUNsFOhv73uGrLwMB0H_q90703YL11vSbGLhGGiKBuF9P5kAOmQ56i4AhH7BSVwBBA8J7vIU7CBIXqs4FzXwAoYpQnrM-VUgKkPGV3o-B5NA_vjaMiGDWNrU3-GSxrG0w2DVnXUN5aUwXTlfkguwneOr8NX8nVVdeW9fqcHS9N5ehiX8_Y--PDYjwJZy9P0_FoFuaRxDbEQsVJQTyWHBOK4wyziNIYcgVYmIwTRZBTDGkmIfGzSQtQSyELKraziM7Yze6u__C7I9fqVelyqiqzprpzmoNMIwGglEev92iXrajQjS1Xxm70wbQH5A7Ibe2cpaXOy9Zs3XirZaUR9DZd7dPV23T1Pl0vhD_Cw-1_JFc7SUlEv3gaIchIRj9raYLr
CODEN IIPRE4
CitedBy_id crossref_primary_10_1080_01431161_2022_2055986
crossref_primary_10_1109_TGRS_2020_3039534
crossref_primary_10_1007_s11432_022_3609_4
crossref_primary_10_1109_TGRS_2023_3335975
crossref_primary_10_3390_rs13071260
crossref_primary_10_1109_JSTARS_2023_3242048
crossref_primary_10_1109_TGRS_2022_3173532
crossref_primary_10_3390_rs13173455
crossref_primary_10_1109_TCI_2024_3408095
crossref_primary_10_1109_ACCESS_2024_3396990
crossref_primary_10_1109_TGRS_2022_3232705
crossref_primary_10_1109_TGRS_2024_3414438
crossref_primary_10_3390_rs14081944
crossref_primary_10_1016_j_neunet_2021_11_014
crossref_primary_10_1049_iet_ipr_2018_5108
crossref_primary_10_1109_TGRS_2023_3243927
crossref_primary_10_1080_01431161_2022_2121188
crossref_primary_10_1109_TGRS_2023_3320404
crossref_primary_10_1109_TGRS_2022_3217406
crossref_primary_10_1109_JSTARS_2022_3214653
crossref_primary_10_1109_TIP_2021_3098246
crossref_primary_10_1109_TGRS_2021_3112181
crossref_primary_10_3390_rs14030749
crossref_primary_10_1109_ACCESS_2021_3120058
crossref_primary_10_3390_rs13204180
crossref_primary_10_1016_j_knosys_2024_112415
crossref_primary_10_1109_TCI_2020_2996075
crossref_primary_10_1109_TIP_2023_3299197
crossref_primary_10_1016_j_patcog_2024_110916
crossref_primary_10_1515_jiip_2019_0054
crossref_primary_10_1109_TGRS_2019_2962713
crossref_primary_10_23919_cje_2021_00_081
crossref_primary_10_1080_01431161_2022_2128701
crossref_primary_10_1016_j_patcog_2018_11_033
crossref_primary_10_1109_TIP_2023_3293768
crossref_primary_10_1109_TNNLS_2020_2980398
crossref_primary_10_1109_TGRS_2023_3312280
crossref_primary_10_1109_TGRS_2022_3168511
crossref_primary_10_3390_rs11101229
crossref_primary_10_1109_TCI_2020_3014451
crossref_primary_10_3390_rs13204074
crossref_primary_10_1016_j_neucom_2021_10_041
crossref_primary_10_1109_TGRS_2021_3064450
crossref_primary_10_1109_TIP_2019_2944722
crossref_primary_10_1364_AO_432704
crossref_primary_10_1109_TGRS_2022_3204049
crossref_primary_10_1007_s42979_023_01868_0
crossref_primary_10_1109_TGRS_2023_3260030
crossref_primary_10_1109_JSTARS_2021_3099242
crossref_primary_10_1080_15481603_2023_2233725
crossref_primary_10_1002_cpe_4968
Cites_doi 10.1117/1.JRS.9.095093
10.1109/ICCV.2015.409
10.1109/ICCV.2015.43
10.1109/TGRS.2003.819189
10.1109/TGRS.2008.917270
10.1109/WHISPERS.2015.8075492
10.1109/TGRS.2008.918089
10.1109/LGRS.2016.2579661
10.1117/2.1200909.1749
10.1109/IGARSS.2016.7730816
10.1109/TPAMI.2015.2439281
10.1109/JSTARS.2012.2194696
10.1109/LGRS.2017.2737637
10.1016/B978-0-444-63638-6.00006-1
10.1109/LGRS.2010.2102334
10.1109/TIP.2010.2046811
10.1109/TIP.2015.2496263
10.1109/36.911111
10.1109/IGARSS.2016.7730889
10.1007/s10851-011-0276-0
10.1109/IGARSS.2010.5654208
10.1109/LGRS.2013.2279138
10.1109/TIP.2003.819861
10.1109/ICASSP.2017.7953344
10.1109/JSTARS.2017.2655112
10.1109/TGRS.2014.2375320
10.1109/CVPR.2016.206
10.1117/12.818245
10.1109/SIU.2016.7495925
10.1117/12.800256
10.1109/MGRS.2015.2440094
10.1109/WHISPERS.2009.5289072
10.1109/IGARSS.2012.6351986
10.14569/IJACSA.2013.040119
10.1109/TGRS.2012.2191590
10.1109/CCDC.2014.6852498
10.1109/CVPR.2015.7298986
10.1109/CVPR.2011.5995660
10.1109/TIP.2010.2050625
10.1049/iet-ipr.2013.0342
10.1109/IGARSS.2010.5649755
10.1109/TGRS.2011.2161320
10.1109/ICASSP.2014.6854256
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TIP.2018.2814210
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 2951
ExternalDocumentID 29994066
10_1109_TIP_2018_2814210
8310636
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
Z5M
7X8
ID FETCH-LOGICAL-c361t-1d957de256217e55b1b3e850c901dab2ee30ce508b607ab2a8d09f46ded07ab43
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 05:25:07 EDT 2025
Wed Feb 19 02:09:29 EST 2025
Thu Apr 24 23:02:24 EDT 2025
Tue Jul 01 02:03:17 EDT 2025
Wed Aug 27 02:50:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-1d957de256217e55b1b3e850c901dab2ee30ce508b607ab2a8d09f46ded07ab43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://hdl.handle.net/11511/35627
PMID 29994066
PQID 2068340099
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2068340099
crossref_citationtrail_10_1109_TIP_2018_2814210
crossref_primary_10_1109_TIP_2018_2814210
ieee_primary_8310636
pubmed_primary_29994066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref15
jensen (ref47) 2003; 1
ref55
ref11
ref54
ref10
asl (ref39) 2016; 3
ref17
timofte (ref53) 2014
ref16
ref19
ref18
akhtar (ref14) 2016
ref51
ref50
ref45
chan (ref4) 2008; 7109
harsanyi (ref40) 1993; 1
ref41
ref44
ref43
ref49
ref8
ref7
guo (ref21) 2009; 7334
ref9
gu (ref1) 2008; 46
ref3
ref6
ref5
krüth (ref48) 2008
rashmi (ref56) 2014; 50
ref35
ref37
ref36
ref31
ref30
ref33
ref2
ref38
stathaki (ref57) 2011
keshava (ref32) 2003; 14
li (ref46) 1994
xu (ref22) 2016
martínez (ref42) 2006; 49
dobigeon (ref34) 2016; 30
ref24
ref23
ref26
ref25
ref20
ref28
ref27
ref29
akhtar (ref12) 2014
(ref52) 2016
References_xml – ident: ref3
  doi: 10.1117/1.JRS.9.095093
– ident: ref9
  doi: 10.1109/ICCV.2015.409
– ident: ref6
  doi: 10.1109/ICCV.2015.43
– ident: ref41
  doi: 10.1109/TGRS.2003.819189
– volume: 46
  start-page: 1347
  year: 2008
  ident: ref1
  article-title: Integration of spatial-spectral information for resolution enhancement in hyperspectral images
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2008.917270
– ident: ref24
  doi: 10.1109/WHISPERS.2015.8075492
– ident: ref38
  doi: 10.1109/TGRS.2008.918089
– ident: ref19
  doi: 10.1109/LGRS.2016.2579661
– ident: ref36
  doi: 10.1117/2.1200909.1749
– ident: ref23
  doi: 10.1109/IGARSS.2016.7730816
– ident: ref30
  doi: 10.1109/TPAMI.2015.2439281
– volume: 50
  start-page: 201
  year: 2014
  ident: ref56
  article-title: Spectral angle mapper algorithm for remote sensing image classification
  publication-title: International Journal of Engineering and Innovative Technology
– ident: ref33
  doi: 10.1109/JSTARS.2012.2194696
– ident: ref17
  doi: 10.1109/LGRS.2017.2737637
– volume: 30
  start-page: 185
  year: 2016
  ident: ref34
  article-title: Linear and nonlinear unmixing in hyperspectral imaging
  publication-title: Data Handling in Science and Technology
  doi: 10.1016/B978-0-444-63638-6.00006-1
– start-page: 103
  year: 2016
  ident: ref14
  article-title: Hierarchical beta process with Gaussian process prior for hyperspectral image super resolution
  publication-title: Proc Eur Conf Comput Vis
– ident: ref18
  doi: 10.1109/LGRS.2010.2102334
– start-page: 6129
  year: 2016
  ident: ref22
  article-title: Hyperspectral image super resolution reconstruction with a joint spectral-spatial sub-pixel mapping model
  publication-title: Proc IEEE Int Geosci Remote Sens Symp (IGARSS)
– ident: ref50
  doi: 10.1109/TIP.2010.2046811
– ident: ref35
  doi: 10.1109/TIP.2015.2496263
– ident: ref45
  doi: 10.1109/36.911111
– ident: ref25
  doi: 10.1109/IGARSS.2016.7730889
– ident: ref43
  doi: 10.1007/s10851-011-0276-0
– start-page: 361
  year: 1994
  ident: ref46
  article-title: Markov random field models in computer vision
  publication-title: Proc Eur Conf Comput Vis
– ident: ref20
  doi: 10.1109/IGARSS.2010.5654208
– volume: 3
  start-page: 17
  year: 2016
  ident: ref39
  article-title: Virtual dimensionality estimation in hyperspectral imagery based on unsupervised feature selection
  publication-title: ISPRS Ann Photogramm Remote Sens Spatial Inf Sci
– ident: ref2
  doi: 10.1109/LGRS.2013.2279138
– ident: ref55
  doi: 10.1109/TIP.2003.819861
– ident: ref7
  doi: 10.1109/ICASSP.2017.7953344
– ident: ref15
  doi: 10.1109/JSTARS.2017.2655112
– ident: ref11
  doi: 10.1109/TGRS.2014.2375320
– ident: ref29
  doi: 10.1109/CVPR.2016.206
– year: 2011
  ident: ref57
  publication-title: Image Fusion Algorithms and Applications
– volume: 7334
  start-page: 73341m
  year: 2009
  ident: ref21
  article-title: L1 unmixing and its application to hyperspectral image enhancement
  publication-title: Proc SPIE
  doi: 10.1117/12.818245
– volume: 1
  year: 2003
  ident: ref47
  article-title: Nonlinear programming methods. S2 quadratic programming
  publication-title: Operations Research Models and Methods
– ident: ref26
  doi: 10.1109/SIU.2016.7495925
– year: 2008
  ident: ref48
  article-title: Interior-point algorithms for quadratic programming
– volume: 1
  start-page: 395
  year: 1993
  ident: ref40
  article-title: Determining the number and identity of spectral endmembers: An integrated approach using Neyman-Pearson eigen-thresholding and iterative constrained RMS error minimization
  publication-title: Proc Thematic Conf Geologic Remote Sens
– start-page: 63
  year: 2014
  ident: ref12
  article-title: Sparse spatio-spectral representation for hyperspectral image super-resolution
  publication-title: Proc Eur Conf Comput Vis
– volume: 7109
  start-page: 710904
  year: 2008
  ident: ref4
  article-title: A comparison of superresolution reconstruction methods for multi-angle chris/proba images
  publication-title: Proc SPIE
  doi: 10.1117/12.800256
– ident: ref8
  doi: 10.1109/MGRS.2015.2440094
– ident: ref44
  doi: 10.1109/WHISPERS.2009.5289072
– ident: ref5
  doi: 10.1109/IGARSS.2012.6351986
– ident: ref54
  doi: 10.14569/IJACSA.2013.040119
– ident: ref31
  doi: 10.1109/TGRS.2012.2191590
– start-page: 111
  year: 2014
  ident: ref53
  article-title: A+: Adjusted anchored neighborhood regression for fast super-resolution
  publication-title: Proc Asian Conf Comput Vis
– volume: 14
  start-page: 55
  year: 2003
  ident: ref32
  article-title: A survey of spectral unmixing algorithms
  publication-title: Lincoln Lab J
– ident: ref28
  doi: 10.1109/CCDC.2014.6852498
– ident: ref13
  doi: 10.1109/CVPR.2015.7298986
– ident: ref51
  doi: 10.1109/CVPR.2011.5995660
– year: 2016
  ident: ref52
  publication-title: Hyperspectral Remote Sensing Scenes
– ident: ref27
  doi: 10.1109/TIP.2010.2050625
– volume: 49
  start-page: 93
  year: 2006
  ident: ref42
  article-title: Endmember extraction algorithms from hyperspectral images
  publication-title: Ann Geophysics
– ident: ref49
  doi: 10.1049/iet-ipr.2013.0342
– ident: ref37
  doi: 10.1109/IGARSS.2010.5649755
– ident: ref10
  doi: 10.1109/TGRS.2011.2161320
– ident: ref16
  doi: 10.1109/ICASSP.2014.6854256
SSID ssj0014516
Score 2.5163531
Snippet In this paper, we propose a novel single image Bayesian super-resolution (SR) algorithm where the hyperspectral image (HSI) is the only source of information....
In this study, we propose a novel single image Bayesian super-resolution (SR) algorithm where the hyperspectral image (HSI) is the only source of information....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2942
SubjectTerms Bayes methods
Dictionaries
Hyperspectral image
Hyperspectral imaging
Image reconstruction
MAP Framework
Minimization
quadratic programming
Spatial resolution
super-resolution reconstruction
Title A MAP-Based Approach for Hyperspectral Imagery Super-Resolution
URI https://ieeexplore.ieee.org/document/8310636
https://www.ncbi.nlm.nih.gov/pubmed/29994066
https://www.proquest.com/docview/2068340099
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sT3qw2vqoLyJ4EUyadJPN5iRVLK1QKdhCbyH7uqiptM1Bf72zSRqKqHjLht1NsrPLfJOZ-QbgiiUsEtywfAaeQANF-XYi8Txywph2fU2FzqN8n-hg6j_OgtkW3FS5MEqpPPhMOeYy9-XLucjMr7KOKYpFCa1BDQ23Iler8hiYgrO5ZzMI7RBh_9ol6UadyXBsYriY02We3zW5shsqKK-p8ju8zNVMvwGj9QsW0SUvTrbijvj8xt343y_Yg90Sb1q9YoPsw5ZKm9AosadVnuxlE3Y2iAlbcNuzRr2xfYcqTlq9knbcQnxrDdBuLdIzFzjt8M1QYHxYzxnetY0roNjIBzDtP0zuB3ZZasEWhHor25NREEqF-AdNFBUE3ONEscAVCBdkwrtKEVcoBHOcuiG2EybdSPtUKmnaPjmEejpP1TFYVHg4iWaBCLUvJI2ICBPqcUFDTXRI29BZr34sSh5yUw7jNc7tETeKUV6xkVdcyqsN19WI94KD44--LbPqVb9ywdtwuRZwjOfHOEWSVM2zJQ6mjPgGKLfhqJB8NRhVdYSAh578POkpbJtHF4FjZ1BfLTJ1jhBlxS_yvfkF6gngGQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HIADg_EazyJxQaJduzRpekIDMXWwISSGxK1qHr0AGxrrAX49Tl9CCBC3pkqiNE7kz7X9GeCEJzyUwrB8Uk-igaJ9O1F4HwXhPHX9lMk0j_K9ZdGDf_1IH-fgrM6F0VrnwWfaMY-5L19NZGZ-lbVNUSxG2Dwsot6nXpGtVfsMTMnZ3LdJAztA4F85Jd2wPerfmSgu7nS453dMtuwXJZRXVfkdYOaKpteAYbXEIr7kyclmwpEf39gb__sNa7BaIk6rWxyRdZjT4yY0SvRplXf7rQkrX6gJN-C8aw27d_YFKjlldUvicQsRrhWh5VokaE5x2v6LIcF4t-4zfGsbZ0BxlDfhoXc1uozsstiCLQnzZranQhoojQgIjRRNqfAE0Zy6EgGDSkRHa-JKjXBOMDfAdsKVG6Y-U1qZtk-2YGE8GesdsJj0cJKUUxmkvlQsJDJImCckC1KSBqwF7Wr3Y1kykZuCGM9xbpG4YYzyio284lJeLTitR7wWLBx_9N0wu173Kze8BceVgGO8QcYtkoz1JHvDwYwT30DlFmwXkq8Ho7IOEfKw3Z8nPYKlaDQcxIP-7c0eLJtlFGFk-7Awm2b6AAHLTBzm5_QTxQvjYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+MAP-Based+Approach+for+Hyperspectral+Imagery+Super-Resolution&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Irmak%2C+Hasan&rft.au=Akar%2C+Gozde+Bozdagi&rft.au=Yuksel%2C+Seniha+Esen&rft.date=2018-06-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=27&rft.issue=6&rft.spage=2942&rft.epage=2951&rft_id=info:doi/10.1109%2FTIP.2018.2814210&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2018_2814210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon