A MAP-Based Approach for Hyperspectral Imagery Super-Resolution
In this paper, we propose a novel single image Bayesian super-resolution (SR) algorithm where the hyperspectral image (HSI) is the only source of information. The main contribution of the proposed approach is to convert the ill-posed SR reconstruction problem in the spectral domain to a quadratic op...
Saved in:
Published in | IEEE transactions on image processing Vol. 27; no. 6; pp. 2942 - 2951 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1057-7149 1941-0042 1941-0042 |
DOI | 10.1109/TIP.2018.2814210 |
Cover
Loading…
Abstract | In this paper, we propose a novel single image Bayesian super-resolution (SR) algorithm where the hyperspectral image (HSI) is the only source of information. The main contribution of the proposed approach is to convert the ill-posed SR reconstruction problem in the spectral domain to a quadratic optimization problem in the abundance map domain. In order to do so, Markov random field based energy minimization approach is proposed and proved that the solution is quadratic. The proposed approach consists of five main steps. First, the number of endmembers in the scene is determined using virtual dimensionality. Second, the endmembers and their low resolution abundance maps are computed using simplex identification via the splitted augmented Lagrangian and fully constrained least squares algorithms. Third, high resolution (HR) abundance maps are obtained using our proposed maximum a posteriori based energy function. This energy function is minimized subject to smoothness, unity, and boundary constraints. Fourth, the HR abundance maps are further enhanced with texture preserving methods. Finally, HR HSI is reconstructed using the extracted endmembers and the enhanced abundance maps. The proposed method is tested on three real HSI data sets; namely the Cave, Harvard, and Hyperspectral Remote Sensing Scenes and compared with state-of-the-art alternative methods using peak signal to noise ratio, structural similarity, spectral angle mapper, and relative dimensionless global error in synthesis metrics. It is shown that the proposed method outperforms the state of the art methods in terms of quality while preserving the spectral consistency. |
---|---|
AbstractList | In this study, we propose a novel single image Bayesian super-resolution (SR) algorithm where the hyperspectral image (HSI) is the only source of information. The main contribution of the proposed approach is to convert the ill-posed SR reconstruction (SRR) problem in the spectral domain to a quadratic optimization problem in the abundance map domain. In order to do so, Markov Random Field (MRF) based energy minimization approach is proposed and proved that the solution is quadratic. The proposed approach consists of five main steps. First, the number of endmembers in the scene is determined using virtual dimensionality. Second, the endmembers and their low resolution abundance maps are computed using simplex identification via the splitted augmented Lagrangian (SISAL) and fully constrained least squares (FCLS) algorithms. Third, high resolution (HR) abundance maps are obtained using our proposed maximum a posteriori (MAP) based energy function. This energy function is minimized subject to smoothness, unity and boundary constraints. Fourth, the HR abundance maps are further enhanced with texture preserving methods. Finally, HR HSI is reconstructed using the extracted endmembers and the enhanced abundance maps. The proposed method is tested on three real HSI datasets; namely the Cave, Harvard and Hyperspectral Remote Sensing Scenes (HRSS) and compared to state-of-the-art alternative methods using peak signal to noise ratio, structural similarity, spectral angle mapper and relative dimensionless global error in synthesis metrics. It is shown that the proposed method outperforms the state of the art methods in terms of quality while preserving the spectral consistency.In this study, we propose a novel single image Bayesian super-resolution (SR) algorithm where the hyperspectral image (HSI) is the only source of information. The main contribution of the proposed approach is to convert the ill-posed SR reconstruction (SRR) problem in the spectral domain to a quadratic optimization problem in the abundance map domain. In order to do so, Markov Random Field (MRF) based energy minimization approach is proposed and proved that the solution is quadratic. The proposed approach consists of five main steps. First, the number of endmembers in the scene is determined using virtual dimensionality. Second, the endmembers and their low resolution abundance maps are computed using simplex identification via the splitted augmented Lagrangian (SISAL) and fully constrained least squares (FCLS) algorithms. Third, high resolution (HR) abundance maps are obtained using our proposed maximum a posteriori (MAP) based energy function. This energy function is minimized subject to smoothness, unity and boundary constraints. Fourth, the HR abundance maps are further enhanced with texture preserving methods. Finally, HR HSI is reconstructed using the extracted endmembers and the enhanced abundance maps. The proposed method is tested on three real HSI datasets; namely the Cave, Harvard and Hyperspectral Remote Sensing Scenes (HRSS) and compared to state-of-the-art alternative methods using peak signal to noise ratio, structural similarity, spectral angle mapper and relative dimensionless global error in synthesis metrics. It is shown that the proposed method outperforms the state of the art methods in terms of quality while preserving the spectral consistency. In this study, we propose a novel single image Bayesian super-resolution (SR) algorithm where the hyperspectral image (HSI) is the only source of information. The main contribution of the proposed approach is to convert the ill-posed SR reconstruction (SRR) problem in the spectral domain to a quadratic optimization problem in the abundance map domain. In order to do so, Markov Random Field (MRF) based energy minimization approach is proposed and proved that the solution is quadratic. The proposed approach consists of five main steps. First, the number of endmembers in the scene is determined using virtual dimensionality. Second, the endmembers and their low resolution abundance maps are computed using simplex identification via the splitted augmented Lagrangian (SISAL) and fully constrained least squares (FCLS) algorithms. Third, high resolution (HR) abundance maps are obtained using our proposed maximum a posteriori (MAP) based energy function. This energy function is minimized subject to smoothness, unity and boundary constraints. Fourth, the HR abundance maps are further enhanced with texture preserving methods. Finally, HR HSI is reconstructed using the extracted endmembers and the enhanced abundance maps. The proposed method is tested on three real HSI datasets; namely the Cave, Harvard and Hyperspectral Remote Sensing Scenes (HRSS) and compared to state-of-the-art alternative methods using peak signal to noise ratio, structural similarity, spectral angle mapper and relative dimensionless global error in synthesis metrics. It is shown that the proposed method outperforms the state of the art methods in terms of quality while preserving the spectral consistency. In this paper, we propose a novel single image Bayesian super-resolution (SR) algorithm where the hyperspectral image (HSI) is the only source of information. The main contribution of the proposed approach is to convert the ill-posed SR reconstruction problem in the spectral domain to a quadratic optimization problem in the abundance map domain. In order to do so, Markov random field based energy minimization approach is proposed and proved that the solution is quadratic. The proposed approach consists of five main steps. First, the number of endmembers in the scene is determined using virtual dimensionality. Second, the endmembers and their low resolution abundance maps are computed using simplex identification via the splitted augmented Lagrangian and fully constrained least squares algorithms. Third, high resolution (HR) abundance maps are obtained using our proposed maximum a posteriori based energy function. This energy function is minimized subject to smoothness, unity, and boundary constraints. Fourth, the HR abundance maps are further enhanced with texture preserving methods. Finally, HR HSI is reconstructed using the extracted endmembers and the enhanced abundance maps. The proposed method is tested on three real HSI data sets; namely the Cave, Harvard, and Hyperspectral Remote Sensing Scenes and compared with state-of-the-art alternative methods using peak signal to noise ratio, structural similarity, spectral angle mapper, and relative dimensionless global error in synthesis metrics. It is shown that the proposed method outperforms the state of the art methods in terms of quality while preserving the spectral consistency. |
Author | Akar, Gozde Bozdagi Yuksel, Seniha Esen Irmak, Hasan |
Author_xml | – sequence: 1 givenname: Hasan surname: Irmak fullname: Irmak, Hasan email: hirmak@aselsan.com.tr organization: Radar & Electron. Warfare Syst. Bus. Sector, ASELSAN Inc., Ankara, Turkey – sequence: 2 givenname: Gozde Bozdagi surname: Akar fullname: Akar, Gozde Bozdagi email: bozdagi@metu.edu.tr organization: Dept. of Electr. & Electron. Eng., Middle East Techical Univ., Ankara, Turkey – sequence: 3 givenname: Seniha Esen surname: Yuksel fullname: Yuksel, Seniha Esen email: eyuksel@ee.hacettepe.edu.tr organization: Dept. of Electr. & Electron. Eng., Hacettepe Univ., Ankara, Turkey |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29994066$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kL1PwzAQxS1URCmwIyGhjCwpd47jxBMqFdBKRVRQZstJrhCUNsFOhv73uGrLwMB0H_q90703YL11vSbGLhGGiKBuF9P5kAOmQ56i4AhH7BSVwBBA8J7vIU7CBIXqs4FzXwAoYpQnrM-VUgKkPGV3o-B5NA_vjaMiGDWNrU3-GSxrG0w2DVnXUN5aUwXTlfkguwneOr8NX8nVVdeW9fqcHS9N5ehiX8_Y--PDYjwJZy9P0_FoFuaRxDbEQsVJQTyWHBOK4wyziNIYcgVYmIwTRZBTDGkmIfGzSQtQSyELKraziM7Yze6u__C7I9fqVelyqiqzprpzmoNMIwGglEev92iXrajQjS1Xxm70wbQH5A7Ibe2cpaXOy9Zs3XirZaUR9DZd7dPV23T1Pl0vhD_Cw-1_JFc7SUlEv3gaIchIRj9raYLr |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1080_01431161_2022_2055986 crossref_primary_10_1109_TGRS_2020_3039534 crossref_primary_10_1007_s11432_022_3609_4 crossref_primary_10_1109_TGRS_2023_3335975 crossref_primary_10_3390_rs13071260 crossref_primary_10_1109_JSTARS_2023_3242048 crossref_primary_10_1109_TGRS_2022_3173532 crossref_primary_10_3390_rs13173455 crossref_primary_10_1109_TCI_2024_3408095 crossref_primary_10_1109_ACCESS_2024_3396990 crossref_primary_10_1109_TGRS_2022_3232705 crossref_primary_10_1109_TGRS_2024_3414438 crossref_primary_10_3390_rs14081944 crossref_primary_10_1016_j_neunet_2021_11_014 crossref_primary_10_1049_iet_ipr_2018_5108 crossref_primary_10_1109_TGRS_2023_3243927 crossref_primary_10_1080_01431161_2022_2121188 crossref_primary_10_1109_TGRS_2023_3320404 crossref_primary_10_1109_TGRS_2022_3217406 crossref_primary_10_1109_JSTARS_2022_3214653 crossref_primary_10_1109_TIP_2021_3098246 crossref_primary_10_1109_TGRS_2021_3112181 crossref_primary_10_3390_rs14030749 crossref_primary_10_1109_ACCESS_2021_3120058 crossref_primary_10_3390_rs13204180 crossref_primary_10_1016_j_knosys_2024_112415 crossref_primary_10_1109_TCI_2020_2996075 crossref_primary_10_1109_TIP_2023_3299197 crossref_primary_10_1016_j_patcog_2024_110916 crossref_primary_10_1515_jiip_2019_0054 crossref_primary_10_1109_TGRS_2019_2962713 crossref_primary_10_23919_cje_2021_00_081 crossref_primary_10_1080_01431161_2022_2128701 crossref_primary_10_1016_j_patcog_2018_11_033 crossref_primary_10_1109_TIP_2023_3293768 crossref_primary_10_1109_TNNLS_2020_2980398 crossref_primary_10_1109_TGRS_2023_3312280 crossref_primary_10_1109_TGRS_2022_3168511 crossref_primary_10_3390_rs11101229 crossref_primary_10_1109_TCI_2020_3014451 crossref_primary_10_3390_rs13204074 crossref_primary_10_1016_j_neucom_2021_10_041 crossref_primary_10_1109_TGRS_2021_3064450 crossref_primary_10_1109_TIP_2019_2944722 crossref_primary_10_1364_AO_432704 crossref_primary_10_1109_TGRS_2022_3204049 crossref_primary_10_1007_s42979_023_01868_0 crossref_primary_10_1109_TGRS_2023_3260030 crossref_primary_10_1109_JSTARS_2021_3099242 crossref_primary_10_1080_15481603_2023_2233725 crossref_primary_10_1002_cpe_4968 |
Cites_doi | 10.1117/1.JRS.9.095093 10.1109/ICCV.2015.409 10.1109/ICCV.2015.43 10.1109/TGRS.2003.819189 10.1109/TGRS.2008.917270 10.1109/WHISPERS.2015.8075492 10.1109/TGRS.2008.918089 10.1109/LGRS.2016.2579661 10.1117/2.1200909.1749 10.1109/IGARSS.2016.7730816 10.1109/TPAMI.2015.2439281 10.1109/JSTARS.2012.2194696 10.1109/LGRS.2017.2737637 10.1016/B978-0-444-63638-6.00006-1 10.1109/LGRS.2010.2102334 10.1109/TIP.2010.2046811 10.1109/TIP.2015.2496263 10.1109/36.911111 10.1109/IGARSS.2016.7730889 10.1007/s10851-011-0276-0 10.1109/IGARSS.2010.5654208 10.1109/LGRS.2013.2279138 10.1109/TIP.2003.819861 10.1109/ICASSP.2017.7953344 10.1109/JSTARS.2017.2655112 10.1109/TGRS.2014.2375320 10.1109/CVPR.2016.206 10.1117/12.818245 10.1109/SIU.2016.7495925 10.1117/12.800256 10.1109/MGRS.2015.2440094 10.1109/WHISPERS.2009.5289072 10.1109/IGARSS.2012.6351986 10.14569/IJACSA.2013.040119 10.1109/TGRS.2012.2191590 10.1109/CCDC.2014.6852498 10.1109/CVPR.2015.7298986 10.1109/CVPR.2011.5995660 10.1109/TIP.2010.2050625 10.1049/iet-ipr.2013.0342 10.1109/IGARSS.2010.5649755 10.1109/TGRS.2011.2161320 10.1109/ICASSP.2014.6854256 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TIP.2018.2814210 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 2951 |
ExternalDocumentID | 29994066 10_1109_TIP_2018_2814210 8310636 |
Genre | orig-research Journal Article |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG NPM Z5M 7X8 |
ID | FETCH-LOGICAL-c361t-1d957de256217e55b1b3e850c901dab2ee30ce508b607ab2a8d09f46ded07ab43 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Fri Jul 11 05:25:07 EDT 2025 Wed Feb 19 02:09:29 EST 2025 Thu Apr 24 23:02:24 EDT 2025 Tue Jul 01 02:03:17 EDT 2025 Wed Aug 27 02:50:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-1d957de256217e55b1b3e850c901dab2ee30ce508b607ab2a8d09f46ded07ab43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://hdl.handle.net/11511/35627 |
PMID | 29994066 |
PQID | 2068340099 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2068340099 crossref_citationtrail_10_1109_TIP_2018_2814210 crossref_primary_10_1109_TIP_2018_2814210 ieee_primary_8310636 pubmed_primary_29994066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref15 jensen (ref47) 2003; 1 ref55 ref11 ref54 ref10 asl (ref39) 2016; 3 ref17 timofte (ref53) 2014 ref16 ref19 ref18 akhtar (ref14) 2016 ref51 ref50 ref45 chan (ref4) 2008; 7109 harsanyi (ref40) 1993; 1 ref41 ref44 ref43 ref49 ref8 ref7 guo (ref21) 2009; 7334 ref9 gu (ref1) 2008; 46 ref3 ref6 ref5 krüth (ref48) 2008 rashmi (ref56) 2014; 50 ref35 ref37 ref36 ref31 ref30 ref33 ref2 ref38 stathaki (ref57) 2011 keshava (ref32) 2003; 14 li (ref46) 1994 xu (ref22) 2016 martínez (ref42) 2006; 49 dobigeon (ref34) 2016; 30 ref24 ref23 ref26 ref25 ref20 ref28 ref27 ref29 akhtar (ref12) 2014 (ref52) 2016 |
References_xml | – ident: ref3 doi: 10.1117/1.JRS.9.095093 – ident: ref9 doi: 10.1109/ICCV.2015.409 – ident: ref6 doi: 10.1109/ICCV.2015.43 – ident: ref41 doi: 10.1109/TGRS.2003.819189 – volume: 46 start-page: 1347 year: 2008 ident: ref1 article-title: Integration of spatial-spectral information for resolution enhancement in hyperspectral images publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2008.917270 – ident: ref24 doi: 10.1109/WHISPERS.2015.8075492 – ident: ref38 doi: 10.1109/TGRS.2008.918089 – ident: ref19 doi: 10.1109/LGRS.2016.2579661 – ident: ref36 doi: 10.1117/2.1200909.1749 – ident: ref23 doi: 10.1109/IGARSS.2016.7730816 – ident: ref30 doi: 10.1109/TPAMI.2015.2439281 – volume: 50 start-page: 201 year: 2014 ident: ref56 article-title: Spectral angle mapper algorithm for remote sensing image classification publication-title: International Journal of Engineering and Innovative Technology – ident: ref33 doi: 10.1109/JSTARS.2012.2194696 – ident: ref17 doi: 10.1109/LGRS.2017.2737637 – volume: 30 start-page: 185 year: 2016 ident: ref34 article-title: Linear and nonlinear unmixing in hyperspectral imaging publication-title: Data Handling in Science and Technology doi: 10.1016/B978-0-444-63638-6.00006-1 – start-page: 103 year: 2016 ident: ref14 article-title: Hierarchical beta process with Gaussian process prior for hyperspectral image super resolution publication-title: Proc Eur Conf Comput Vis – ident: ref18 doi: 10.1109/LGRS.2010.2102334 – start-page: 6129 year: 2016 ident: ref22 article-title: Hyperspectral image super resolution reconstruction with a joint spectral-spatial sub-pixel mapping model publication-title: Proc IEEE Int Geosci Remote Sens Symp (IGARSS) – ident: ref50 doi: 10.1109/TIP.2010.2046811 – ident: ref35 doi: 10.1109/TIP.2015.2496263 – ident: ref45 doi: 10.1109/36.911111 – ident: ref25 doi: 10.1109/IGARSS.2016.7730889 – ident: ref43 doi: 10.1007/s10851-011-0276-0 – start-page: 361 year: 1994 ident: ref46 article-title: Markov random field models in computer vision publication-title: Proc Eur Conf Comput Vis – ident: ref20 doi: 10.1109/IGARSS.2010.5654208 – volume: 3 start-page: 17 year: 2016 ident: ref39 article-title: Virtual dimensionality estimation in hyperspectral imagery based on unsupervised feature selection publication-title: ISPRS Ann Photogramm Remote Sens Spatial Inf Sci – ident: ref2 doi: 10.1109/LGRS.2013.2279138 – ident: ref55 doi: 10.1109/TIP.2003.819861 – ident: ref7 doi: 10.1109/ICASSP.2017.7953344 – ident: ref15 doi: 10.1109/JSTARS.2017.2655112 – ident: ref11 doi: 10.1109/TGRS.2014.2375320 – ident: ref29 doi: 10.1109/CVPR.2016.206 – year: 2011 ident: ref57 publication-title: Image Fusion Algorithms and Applications – volume: 7334 start-page: 73341m year: 2009 ident: ref21 article-title: L1 unmixing and its application to hyperspectral image enhancement publication-title: Proc SPIE doi: 10.1117/12.818245 – volume: 1 year: 2003 ident: ref47 article-title: Nonlinear programming methods. S2 quadratic programming publication-title: Operations Research Models and Methods – ident: ref26 doi: 10.1109/SIU.2016.7495925 – year: 2008 ident: ref48 article-title: Interior-point algorithms for quadratic programming – volume: 1 start-page: 395 year: 1993 ident: ref40 article-title: Determining the number and identity of spectral endmembers: An integrated approach using Neyman-Pearson eigen-thresholding and iterative constrained RMS error minimization publication-title: Proc Thematic Conf Geologic Remote Sens – start-page: 63 year: 2014 ident: ref12 article-title: Sparse spatio-spectral representation for hyperspectral image super-resolution publication-title: Proc Eur Conf Comput Vis – volume: 7109 start-page: 710904 year: 2008 ident: ref4 article-title: A comparison of superresolution reconstruction methods for multi-angle chris/proba images publication-title: Proc SPIE doi: 10.1117/12.800256 – ident: ref8 doi: 10.1109/MGRS.2015.2440094 – ident: ref44 doi: 10.1109/WHISPERS.2009.5289072 – ident: ref5 doi: 10.1109/IGARSS.2012.6351986 – ident: ref54 doi: 10.14569/IJACSA.2013.040119 – ident: ref31 doi: 10.1109/TGRS.2012.2191590 – start-page: 111 year: 2014 ident: ref53 article-title: A+: Adjusted anchored neighborhood regression for fast super-resolution publication-title: Proc Asian Conf Comput Vis – volume: 14 start-page: 55 year: 2003 ident: ref32 article-title: A survey of spectral unmixing algorithms publication-title: Lincoln Lab J – ident: ref28 doi: 10.1109/CCDC.2014.6852498 – ident: ref13 doi: 10.1109/CVPR.2015.7298986 – ident: ref51 doi: 10.1109/CVPR.2011.5995660 – year: 2016 ident: ref52 publication-title: Hyperspectral Remote Sensing Scenes – ident: ref27 doi: 10.1109/TIP.2010.2050625 – volume: 49 start-page: 93 year: 2006 ident: ref42 article-title: Endmember extraction algorithms from hyperspectral images publication-title: Ann Geophysics – ident: ref49 doi: 10.1049/iet-ipr.2013.0342 – ident: ref37 doi: 10.1109/IGARSS.2010.5649755 – ident: ref10 doi: 10.1109/TGRS.2011.2161320 – ident: ref16 doi: 10.1109/ICASSP.2014.6854256 |
SSID | ssj0014516 |
Score | 2.5163531 |
Snippet | In this paper, we propose a novel single image Bayesian super-resolution (SR) algorithm where the hyperspectral image (HSI) is the only source of information.... In this study, we propose a novel single image Bayesian super-resolution (SR) algorithm where the hyperspectral image (HSI) is the only source of information.... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2942 |
SubjectTerms | Bayes methods Dictionaries Hyperspectral image Hyperspectral imaging Image reconstruction MAP Framework Minimization quadratic programming Spatial resolution super-resolution reconstruction |
Title | A MAP-Based Approach for Hyperspectral Imagery Super-Resolution |
URI | https://ieeexplore.ieee.org/document/8310636 https://www.ncbi.nlm.nih.gov/pubmed/29994066 https://www.proquest.com/docview/2068340099 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sT3qw2vqoLyJ4EUyadJPN5iRVLK1QKdhCbyH7uqiptM1Bf72zSRqKqHjLht1NsrPLfJOZ-QbgiiUsEtywfAaeQANF-XYi8Txywph2fU2FzqN8n-hg6j_OgtkW3FS5MEqpPPhMOeYy9-XLucjMr7KOKYpFCa1BDQ23Iler8hiYgrO5ZzMI7RBh_9ol6UadyXBsYriY02We3zW5shsqKK-p8ju8zNVMvwGj9QsW0SUvTrbijvj8xt343y_Yg90Sb1q9YoPsw5ZKm9AosadVnuxlE3Y2iAlbcNuzRr2xfYcqTlq9knbcQnxrDdBuLdIzFzjt8M1QYHxYzxnetY0roNjIBzDtP0zuB3ZZasEWhHor25NREEqF-AdNFBUE3ONEscAVCBdkwrtKEVcoBHOcuiG2EybdSPtUKmnaPjmEejpP1TFYVHg4iWaBCLUvJI2ICBPqcUFDTXRI29BZr34sSh5yUw7jNc7tETeKUV6xkVdcyqsN19WI94KD44--LbPqVb9ywdtwuRZwjOfHOEWSVM2zJQ6mjPgGKLfhqJB8NRhVdYSAh578POkpbJtHF4FjZ1BfLTJ1jhBlxS_yvfkF6gngGQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HIADg_EazyJxQaJduzRpekIDMXWwISSGxK1qHr0AGxrrAX49Tl9CCBC3pkqiNE7kz7X9GeCEJzyUwrB8Uk-igaJ9O1F4HwXhPHX9lMk0j_K9ZdGDf_1IH-fgrM6F0VrnwWfaMY-5L19NZGZ-lbVNUSxG2Dwsot6nXpGtVfsMTMnZ3LdJAztA4F85Jd2wPerfmSgu7nS453dMtuwXJZRXVfkdYOaKpteAYbXEIr7kyclmwpEf39gb__sNa7BaIk6rWxyRdZjT4yY0SvRplXf7rQkrX6gJN-C8aw27d_YFKjlldUvicQsRrhWh5VokaE5x2v6LIcF4t-4zfGsbZ0BxlDfhoXc1uozsstiCLQnzZranQhoojQgIjRRNqfAE0Zy6EgGDSkRHa-JKjXBOMDfAdsKVG6Y-U1qZtk-2YGE8GesdsJj0cJKUUxmkvlQsJDJImCckC1KSBqwF7Wr3Y1kykZuCGM9xbpG4YYzyio284lJeLTitR7wWLBx_9N0wu173Kze8BceVgGO8QcYtkoz1JHvDwYwT30DlFmwXkq8Ho7IOEfKw3Z8nPYKlaDQcxIP-7c0eLJtlFGFk-7Awm2b6AAHLTBzm5_QTxQvjYg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+MAP-Based+Approach+for+Hyperspectral+Imagery+Super-Resolution&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Irmak%2C+Hasan&rft.au=Akar%2C+Gozde+Bozdagi&rft.au=Yuksel%2C+Seniha+Esen&rft.date=2018-06-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=27&rft.issue=6&rft.spage=2942&rft.epage=2951&rft_id=info:doi/10.1109%2FTIP.2018.2814210&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2018_2814210 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |