Multi-Pathway 3D CNN With Conditional Random Field for Automated Segmentation of Multiple Sclerosis Lesions in MRI
Multiple Sclerosis (MS) is a chronic and autoimmune disease that causes lesions in the central nervous system. It is diagnosed based on accurate identification and segmentation of lesions in magnetic resonance imaging (MRI). The structure and dimension of the lesions provide useful information about...
Saved in:
Published in | IEEE access Vol. 13; pp. 62154 - 62164 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multiple Sclerosis (MS) is a chronic and autoimmune disease that causes lesions in the central nervous system. It is diagnosed based on accurate identification and segmentation of lesions in magnetic resonance imaging (MRI). The structure and dimension of the lesions provide useful information about the course and status of the disease. Manual detection of lesions is labor intensive, highly time-consuming, and prone to error. One of the challenges in automatic MS lesion segmentation is the high variability of the lesion's size and shape. In this work, a novel hybridization of the multi-scale features extraction, multi-pathway 3D convolutional neural network (CNN), and Conditional Random Field (CRF) is employed for an automated MS lesion detection and segmentation. To capture regions of interest of various shapes and sizes, we extracted multi-scale features using multi-resolution 3D input images for accurate MS lesion segmentation. To reduce over-segmentation, we employed the CRF as a post-processing step to refine the MS lesion segmentation by minimizing false positives. The CNN model is trained with 5 subjects with a mean of 4.4 time points taken from the ISBI 2015 MS lesion segmentation challenge. The model is tested on 14 subjects with a mean of 4.4 time points in the ISBI 2015 dataset. The results showed that the devised model obtained a Total Weighted Score of 91.1%, which is higher than the human rater Score of 89.4%. |
---|---|
AbstractList | Multiple Sclerosis (MS) is a chronic and autoimmune disease that causes lesions in the central nervous system. It is diagnosed based on accurate identification and segmentation of lesions in magnetic resonance imaging (MRI). The structure and dimension of the lesions provide useful information about the course and status of the disease. Manual detection of lesions is labor intensive, highly time-consuming, and prone to error. One of the challenges in automatic MS lesion segmentation is the high variability of the lesion's size and shape. In this work, a novel hybridization of the multi-scale features extraction, multi-pathway 3D convolutional neural network (CNN), and Conditional Random Field (CRF) is employed for an automated MS lesion detection and segmentation. To capture regions of interest of various shapes and sizes, we extracted multi-scale features using multi-resolution 3D input images for accurate MS lesion segmentation. To reduce over-segmentation, we employed the CRF as a post-processing step to refine the MS lesion segmentation by minimizing false positives. The CNN model is trained with 5 subjects with a mean of 4.4 time points taken from the ISBI 2015 MS lesion segmentation challenge. The model is tested on 14 subjects with a mean of 4.4 time points in the ISBI 2015 dataset. The results showed that the devised model obtained a Total Weighted Score of 91.1%, which is higher than the human rater Score of 89.4%. |
Author | Hanif, Muhammad Maab, Iffat Mian Qaisar, Saeed Javed, Kamran Ansari, Shahab U. Saeed, Reeda Haider, Usman Plawiak, Pawel |
Author_xml | – sequence: 1 givenname: Reeda orcidid: 0009-0006-8175-6919 surname: Saeed fullname: Saeed, Reeda organization: Artificial Intelligence in Medicine (AIM) Laboratory, Faculty of Computer Science and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan – sequence: 2 givenname: Shahab U. orcidid: 0000-0002-3257-9462 surname: Ansari fullname: Ansari, Shahab U. organization: Artificial Intelligence in Medicine (AIM) Laboratory, Faculty of Computer Science and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan – sequence: 3 givenname: Muhammad orcidid: 0000-0002-9236-5263 surname: Hanif fullname: Hanif, Muhammad organization: Artificial Intelligence in Medicine (AIM) Laboratory, Faculty of Computer Science and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan – sequence: 4 givenname: Kamran surname: Javed fullname: Javed, Kamran organization: National Centre of Artificial Intelligence (NCAI), Saudi Data and Artificial Intelligence Authority (SDAIA), Riyadh, Saudi Arabia – sequence: 5 givenname: Usman surname: Haider fullname: Haider, Usman organization: Department of Computer Science, National University of Computer and Emerging Sciences (FAST-NUCES), Islamabad, Pakistan – sequence: 6 givenname: Iffat surname: Maab fullname: Maab, Iffat organization: Department of Technology Management for Innovation, The University of Tokyo, Tokyo, Japan – sequence: 7 givenname: Saeed orcidid: 0000-0002-4268-3482 surname: Mian Qaisar fullname: Mian Qaisar, Saeed email: saeed.qaisar@aum.edu.kw organization: College of Engineering and Technology, American University of the Middle East, Eqaila, Kuwait – sequence: 8 givenname: Pawel orcidid: 0000-0002-4317-2801 surname: Plawiak fullname: Plawiak, Pawel email: plawiak@pk.edu.pl organization: Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Krakow, Poland |
BookMark | eNpNUU1vEzEUtFCRKKW_AA6WOG-w1-uvY7S0ECktqAFxtF5sb-tosw62o6r_Hqdbob6Ln8Yz8_w879HZFCeP0EdKFpQS_WXZ91ebzaIlLV8wzoVS_A06b6nQDeNMnL3q36HLnHeklqoQl-co3RzHEpqfUB4e4Qmzr7i_vcV_QnnAfZxcKCFOMOI7mFzc4-vgR4eHmPDyWOIeind44-_3fipwYuI44GfDw-jxxo4-xRwyXvtcLzMOE765W31AbwcYs798OS_Q7-urX_33Zv3j26pfrhvLBC0N3XKhmePWOi2kVYOTjGi5bUF3AoB3WnGx5YQxQiTQjhGrLLQguXSD05JdoNXs6yLszCGFPaQnEyGYZyCmewOphPpKoztnldBbYYnrrCXac8oHZxlYZ3nHq9fn2euQ4t-jz8Xs4jHVn8mGUU10KzulKovNLFv3zskP_6dSYk5ZmTkrc8rKvGRVVZ9mVfDev1LUNbVW7B-qe5E4 |
CODEN | IAECCG |
Cites_doi | 10.1007/978-3-319-46723-8_54 10.1155/2021/4138137 10.1016/j.neuroimage.2019.03.068 10.1186/s13244-023-01460-3 10.1016/S0140-6736(08)61620-7 10.1016/j.compmedimag.2020.101772 10.1016/j.bspc.2023.105856 10.1016/j.media.2016.10.004 10.1007/978-3-319-24574-4_28 10.1177/1756285613488434 10.1016/j.nicl.2024.103611 10.1016/j.procs.2020.02.267 10.1109/ACCESS.2018.2886371 10.1016/j.compeleceng.2019.106462 10.1038/s41598-024-72649-9 10.1016/j.bbe.2022.05.006 10.1109/ICCV.2015.123 10.1016/j.neuroimage.2016.12.064 10.1159/000110935 10.1016/j.neuroimage.2017.04.034 10.1111/j.1445-5994.1972.tb03071.x 10.1016/B978-0-12-816176-0.00023-5 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2025.3556885 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 62164 |
ExternalDocumentID | oai_doaj_org_article_94dc869b6c0d4cc09e515fdc3acdc545 10_1109_ACCESS_2025_3556885 10946998 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c361t-1b5693d5ccd967c8fd73097b2a946aa549856b5033007a1430c8ca2a757dfd973 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:00:35 EDT 2025 Mon Jun 30 11:38:15 EDT 2025 Tue Jul 01 05:11:30 EDT 2025 Wed Aug 27 02:04:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-1b5693d5ccd967c8fd73097b2a946aa549856b5033007a1430c8ca2a757dfd973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9236-5263 0000-0002-4317-2801 0000-0002-3257-9462 0000-0002-4268-3482 0009-0006-8175-6919 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10946998 |
PQID | 3190927488 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3190927488 crossref_primary_10_1109_ACCESS_2025_3556885 doaj_primary_oai_doaj_org_article_94dc869b6c0d4cc09e515fdc3acdc545 ieee_primary_10946998 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref34 ref15 Dhawan (ref21) ref31 ref30 ref33 ref10 ref32 Brodal (ref1) 2004 ref2 Sutskever (ref26) ref17 ref18 Krahenbuhl (ref22) Simon (ref7) 2006; 27 Kaiming (ref25) ref23 ref20 Ghafoorian (ref11) ref28 ref27 ref29 ref8 Srivastava (ref24) 2014; 15 ref9 ref4 Commowick (ref19) ref3 (ref6) 2021 ref5 Roy (ref14) 2018 (ref16) 2008 |
References_xml | – volume-title: The Central Nervous System: Structure and Function year: 2004 ident: ref1 – ident: ref10 doi: 10.1007/978-3-319-46723-8_54 – ident: ref20 doi: 10.1155/2021/4138137 – start-page: 770 volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) ident: ref25 article-title: Deep residual learning for image recognition – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref22 article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials – volume: 27 start-page: 455 issue: 2 year: 2006 ident: ref7 article-title: Standardized MR imaging protocol for multiple sclerosis: Consortium of MS centers consensus guidelines publication-title: Amer. J. Neuroradiol. – ident: ref13 doi: 10.1016/j.neuroimage.2019.03.068 – ident: ref27 doi: 10.1186/s13244-023-01460-3 – ident: ref2 doi: 10.1016/S0140-6736(08)61620-7 – ident: ref34 doi: 10.1016/j.compmedimag.2020.101772 – ident: ref32 doi: 10.1016/j.bspc.2023.105856 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: ref24 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref9 doi: 10.1016/j.media.2016.10.004 – ident: ref18 doi: 10.1007/978-3-319-24574-4_28 – volume-title: Healthline year: 2021 ident: ref6 – volume-title: MS Lesion Segmentation Challenge 2008 year: 2008 ident: ref16 – ident: ref5 doi: 10.1177/1756285613488434 – ident: ref28 doi: 10.1016/j.nicl.2024.103611 – ident: ref30 doi: 10.1016/j.procs.2020.02.267 – ident: ref17 doi: 10.1109/ACCESS.2018.2886371 – ident: ref29 doi: 10.1016/j.compeleceng.2019.106462 – start-page: 1 volume-title: Proc. 30th Int. Conf. Mach. Learn. ident: ref26 article-title: On the importance of initialization and momentum in deep learning – start-page: 1 volume-title: Proc. MICCAI ident: ref19 article-title: MSSEG challenge proceedings: Multiple sclerosis lesions segmentation challenge using a data management and processing infrastructure – ident: ref33 doi: 10.1038/s41598-024-72649-9 – ident: ref31 doi: 10.1016/j.bbe.2022.05.006 – start-page: 1 volume-title: Proc. Longitudinal Multiple Sclerosis Lesion Segmentation Challenge ident: ref11 article-title: Convolutional neural networks for ms lesion segmentation, method description of diag team – ident: ref23 doi: 10.1109/ICCV.2015.123 – ident: ref12 doi: 10.1016/j.neuroimage.2016.12.064 – ident: ref4 doi: 10.1159/000110935 – year: 2018 ident: ref14 article-title: Multiple sclerosis lesion segmentation from brain MRI via fully convolutional neural networks publication-title: arXiv:1803.09172 – ident: ref15 doi: 10.1016/j.neuroimage.2017.04.034 – start-page: 729 volume-title: Proc. 6th Int. Conf. Comput. Sustain. Global Develop. (INDIACom) ident: ref21 article-title: Post processing of image segmentation using conditional random fields – ident: ref3 doi: 10.1111/j.1445-5994.1972.tb03071.x – ident: ref8 doi: 10.1016/B978-0-12-816176-0.00023-5 |
SSID | ssj0000816957 |
Score | 2.3405745 |
Snippet | Multiple Sclerosis (MS) is a chronic and autoimmune disease that causes lesions in the central nervous system. It is diagnosed based on accurate identification... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 62154 |
SubjectTerms | Artificial neural networks Autoimmune diseases Automation Central nervous system conditional random field Conditional random fields Convolutional neural networks Feature extraction Filters Image segmentation Lesions Magnetic resonance imaging MS lesion segmentation Multiple sclerosis Solid modeling Three-dimensional displays Training |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPIpYaNEcOBLqPOzYx23oqiB2hVoqerPssQN7aIK6qVD_fceJW0XiwIVbFCVyPBPPfJ8f3zD2nqPXunVVhhQIssqFNnNVXWdBlFxziXQdzw6vN_L0ovpyKS5npb7inrBJHngy3JGuPCqpnUTuK0SuA2Xg1mNp0SOl_xh9KefNyNQYg1UutaiTzFDO9dGyaahHRAgL8bGMsluxevIsFY2K_anEyl9xeUw2q2fsaUKJsJy-7jl7FLoX7MlMO_Alux6PzmbfCMH9sbdQfoJms4Ef2-EXNH1chx7n-ODMdr6_glXcqAYEUGF5M_SEUoOH8_DzKp086qBvYZ32FsI5tUlfvN3B1xAn03aw7WB99nmfXaxOvjenWSqgkGEp8yHLnZC69ALJIbJG1Xoaz7p2hdWVtJaooRLSxYVMQgqWkBNHhbawtah963VdvmJ7Xd-F1wyw0MLlQdGrxHEsKh8KGQgNIOV4bcsF-3BvS_N70skwI7_g2kymN9H0Jpl-wY6jvR8ejSLX4w1yvUmuN_9y_YLtR2_N2qNuEX1csIN795k0IneGQg3XRMGVevM_2n7LHsf-TJMxB2xvuL4JhwRPBvdu_BPvAG-p4Mk priority: 102 providerName: Directory of Open Access Journals |
Title | Multi-Pathway 3D CNN With Conditional Random Field for Automated Segmentation of Multiple Sclerosis Lesions in MRI |
URI | https://ieeexplore.ieee.org/document/10946998 https://www.proquest.com/docview/3190927488 https://doaj.org/article/94dc869b6c0d4cc09e515fdc3acdc545 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT3DgWcRCqebAkSzZJHbs4xJYFcSuUEtFb5Y9dmCFmqBuVgh-PWPHW61ASNysKJYfY4-_bzwzZuxFjk6p1lYZkiLIKuvbzFZ1nXle5ioXSOUQO7xcidOL6v0lv0zB6jEWxnsfnc_8NBTjXb7rcRtMZbTDFbE5JQ_YATG3MVjrxqASXpBQvE6ZhejXV_OmoUEQByz4tAyZtsKDyXunT0zSn15V-UsVx_NlcY-tdj0b3Uq-TbeDneKvP5I2_nfX77O7CWnCfFwaD9gt3z1kd_byDz5i1zH8NvtIKPCH-QnlG2hWK_i8Hr5C04e77GgnhDPTuf4KFsHZDQjkwnw79IR0vYNz_-UqRS910LewTP6JcE5t0hSsN_DBB4PcBtYdLM_eHbGLxdtPzWmWHmHIsBSzIZtZLlTpOJJQRY2ydaQTVG0LQwMyhuil5MKGy1BCG4bQV44STWFqXrvWqbp8zA67vvNPGGChuJ15SVWJJxmUzhfCE6JAwgnKlBP2cicc_X3MtaEjR8mVHmWpgyx1kuWEvQ4CvPk1JMqOH2jiddp3WlUOpVBWYO4qxFx5AnCtw9KgQ0KPE3YUhLXX3iinCTverQeddvVGk7rKFdF4KZ_-o9ozdjt0cbTRHLPD4XrrnxNqGexJZPsncc3-BhdL6ro |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgOQCH5bUruizgA0dS0iR27GMJVF1oI7QPsTfLHjtQoU3QNhWCX8_YcVcVCImbFcXyY8bjb8bzIORVClbKxhQJoCBICuOaxBRlmTiWpzLlgG0fO7ys-fyi-HDJLmOweoiFcc4F5zM39s3wlm872HhTGZ5widqcFLfJHbz42WQI17oxqfgaEpKVMbcQ_vxmWlW4DNQCMzbOfa4tXzJ55_4JafpjXZW_hHG4YWYPSL2d2-BY8m286c0Yfv2RtvG_J_-Q7EesSacDczwit1z7mNzfyUD4hFyHANzkE-LAH_onzd_Rqq7p51X_lVadf80OlkJ6qlvbXdGZd3ejCHPpdNN3iHWdpWfuy1WMX2pp19Bl9FCkZzgmbsFqTRfOm-TWdNXS5enJAbmYvT-v5kksw5BAzid9MjGMy9wyQLLyEkRjUSrI0mQaF6Q1KpiCceOfQxFvaMRfKQjQmS5ZaRsry_yQ7LVd654SCplkZuIEdkVNSYOwLuMOMQUgUpA6H5HXW-Ko70O2DRW0lFSqgZbK01JFWo7IW0_Am199quzwATdexZOnZGFBcGk4pLYASKVDCNdYyDVYQDYakQNPrJ3xBjqNyPGWH1Q812uFAiuVqMgLcfSPbi_J3fn5cqEWJ_XHZ-Sen-5gsTkme_31xj1HDNObF4FzfwPxeu0O |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Pathway+3D+CNN+With+Conditional+Random+Field+for+Automated+Segmentation+of+Multiple+Sclerosis+Lesions+in+MRI&rft.jtitle=IEEE+access&rft.au=Saeed%2C+Reeda&rft.au=Ansari%2C+Shahab+U.&rft.au=Hanif%2C+Muhammad&rft.au=Javed%2C+Kamran&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=62154&rft.epage=62164&rft_id=info:doi/10.1109%2FACCESS.2025.3556885&rft.externalDocID=10946998 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |