Multi-Pathway 3D CNN With Conditional Random Field for Automated Segmentation of Multiple Sclerosis Lesions in MRI

Multiple Sclerosis (MS) is a chronic and autoimmune disease that causes lesions in the central nervous system. It is diagnosed based on accurate identification and segmentation of lesions in magnetic resonance imaging (MRI). The structure and dimension of the lesions provide useful information about...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 62154 - 62164
Main Authors Saeed, Reeda, Ansari, Shahab U., Hanif, Muhammad, Javed, Kamran, Haider, Usman, Maab, Iffat, Mian Qaisar, Saeed, Plawiak, Pawel
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multiple Sclerosis (MS) is a chronic and autoimmune disease that causes lesions in the central nervous system. It is diagnosed based on accurate identification and segmentation of lesions in magnetic resonance imaging (MRI). The structure and dimension of the lesions provide useful information about the course and status of the disease. Manual detection of lesions is labor intensive, highly time-consuming, and prone to error. One of the challenges in automatic MS lesion segmentation is the high variability of the lesion's size and shape. In this work, a novel hybridization of the multi-scale features extraction, multi-pathway 3D convolutional neural network (CNN), and Conditional Random Field (CRF) is employed for an automated MS lesion detection and segmentation. To capture regions of interest of various shapes and sizes, we extracted multi-scale features using multi-resolution 3D input images for accurate MS lesion segmentation. To reduce over-segmentation, we employed the CRF as a post-processing step to refine the MS lesion segmentation by minimizing false positives. The CNN model is trained with 5 subjects with a mean of 4.4 time points taken from the ISBI 2015 MS lesion segmentation challenge. The model is tested on 14 subjects with a mean of 4.4 time points in the ISBI 2015 dataset. The results showed that the devised model obtained a Total Weighted Score of 91.1%, which is higher than the human rater Score of 89.4%.
AbstractList Multiple Sclerosis (MS) is a chronic and autoimmune disease that causes lesions in the central nervous system. It is diagnosed based on accurate identification and segmentation of lesions in magnetic resonance imaging (MRI). The structure and dimension of the lesions provide useful information about the course and status of the disease. Manual detection of lesions is labor intensive, highly time-consuming, and prone to error. One of the challenges in automatic MS lesion segmentation is the high variability of the lesion's size and shape. In this work, a novel hybridization of the multi-scale features extraction, multi-pathway 3D convolutional neural network (CNN), and Conditional Random Field (CRF) is employed for an automated MS lesion detection and segmentation. To capture regions of interest of various shapes and sizes, we extracted multi-scale features using multi-resolution 3D input images for accurate MS lesion segmentation. To reduce over-segmentation, we employed the CRF as a post-processing step to refine the MS lesion segmentation by minimizing false positives. The CNN model is trained with 5 subjects with a mean of 4.4 time points taken from the ISBI 2015 MS lesion segmentation challenge. The model is tested on 14 subjects with a mean of 4.4 time points in the ISBI 2015 dataset. The results showed that the devised model obtained a Total Weighted Score of 91.1%, which is higher than the human rater Score of 89.4%.
Author Hanif, Muhammad
Maab, Iffat
Mian Qaisar, Saeed
Javed, Kamran
Ansari, Shahab U.
Saeed, Reeda
Haider, Usman
Plawiak, Pawel
Author_xml – sequence: 1
  givenname: Reeda
  orcidid: 0009-0006-8175-6919
  surname: Saeed
  fullname: Saeed, Reeda
  organization: Artificial Intelligence in Medicine (AIM) Laboratory, Faculty of Computer Science and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
– sequence: 2
  givenname: Shahab U.
  orcidid: 0000-0002-3257-9462
  surname: Ansari
  fullname: Ansari, Shahab U.
  organization: Artificial Intelligence in Medicine (AIM) Laboratory, Faculty of Computer Science and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
– sequence: 3
  givenname: Muhammad
  orcidid: 0000-0002-9236-5263
  surname: Hanif
  fullname: Hanif, Muhammad
  organization: Artificial Intelligence in Medicine (AIM) Laboratory, Faculty of Computer Science and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
– sequence: 4
  givenname: Kamran
  surname: Javed
  fullname: Javed, Kamran
  organization: National Centre of Artificial Intelligence (NCAI), Saudi Data and Artificial Intelligence Authority (SDAIA), Riyadh, Saudi Arabia
– sequence: 5
  givenname: Usman
  surname: Haider
  fullname: Haider, Usman
  organization: Department of Computer Science, National University of Computer and Emerging Sciences (FAST-NUCES), Islamabad, Pakistan
– sequence: 6
  givenname: Iffat
  surname: Maab
  fullname: Maab, Iffat
  organization: Department of Technology Management for Innovation, The University of Tokyo, Tokyo, Japan
– sequence: 7
  givenname: Saeed
  orcidid: 0000-0002-4268-3482
  surname: Mian Qaisar
  fullname: Mian Qaisar, Saeed
  email: saeed.qaisar@aum.edu.kw
  organization: College of Engineering and Technology, American University of the Middle East, Eqaila, Kuwait
– sequence: 8
  givenname: Pawel
  orcidid: 0000-0002-4317-2801
  surname: Plawiak
  fullname: Plawiak, Pawel
  email: plawiak@pk.edu.pl
  organization: Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Krakow, Poland
BookMark eNpNUU1vEzEUtFCRKKW_AA6WOG-w1-uvY7S0ECktqAFxtF5sb-tosw62o6r_Hqdbob6Ln8Yz8_w879HZFCeP0EdKFpQS_WXZ91ebzaIlLV8wzoVS_A06b6nQDeNMnL3q36HLnHeklqoQl-co3RzHEpqfUB4e4Qmzr7i_vcV_QnnAfZxcKCFOMOI7mFzc4-vgR4eHmPDyWOIeind44-_3fipwYuI44GfDw-jxxo4-xRwyXvtcLzMOE765W31AbwcYs798OS_Q7-urX_33Zv3j26pfrhvLBC0N3XKhmePWOi2kVYOTjGi5bUF3AoB3WnGx5YQxQiTQjhGrLLQguXSD05JdoNXs6yLszCGFPaQnEyGYZyCmewOphPpKoztnldBbYYnrrCXac8oHZxlYZ3nHq9fn2euQ4t-jz8Xs4jHVn8mGUU10KzulKovNLFv3zskP_6dSYk5ZmTkrc8rKvGRVVZ9mVfDev1LUNbVW7B-qe5E4
CODEN IAECCG
Cites_doi 10.1007/978-3-319-46723-8_54
10.1155/2021/4138137
10.1016/j.neuroimage.2019.03.068
10.1186/s13244-023-01460-3
10.1016/S0140-6736(08)61620-7
10.1016/j.compmedimag.2020.101772
10.1016/j.bspc.2023.105856
10.1016/j.media.2016.10.004
10.1007/978-3-319-24574-4_28
10.1177/1756285613488434
10.1016/j.nicl.2024.103611
10.1016/j.procs.2020.02.267
10.1109/ACCESS.2018.2886371
10.1016/j.compeleceng.2019.106462
10.1038/s41598-024-72649-9
10.1016/j.bbe.2022.05.006
10.1109/ICCV.2015.123
10.1016/j.neuroimage.2016.12.064
10.1159/000110935
10.1016/j.neuroimage.2017.04.034
10.1111/j.1445-5994.1972.tb03071.x
10.1016/B978-0-12-816176-0.00023-5
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3556885
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 62164
ExternalDocumentID oai_doaj_org_article_94dc869b6c0d4cc09e515fdc3acdc545
10_1109_ACCESS_2025_3556885
10946998
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-1b5693d5ccd967c8fd73097b2a946aa549856b5033007a1430c8ca2a757dfd973
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:00:35 EDT 2025
Mon Jun 30 11:38:15 EDT 2025
Tue Jul 01 05:11:30 EDT 2025
Wed Aug 27 02:04:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-1b5693d5ccd967c8fd73097b2a946aa549856b5033007a1430c8ca2a757dfd973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9236-5263
0000-0002-4317-2801
0000-0002-3257-9462
0000-0002-4268-3482
0009-0006-8175-6919
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10946998
PQID 3190927488
PQPubID 4845423
PageCount 11
ParticipantIDs proquest_journals_3190927488
crossref_primary_10_1109_ACCESS_2025_3556885
doaj_primary_oai_doaj_org_article_94dc869b6c0d4cc09e515fdc3acdc545
ieee_primary_10946998
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
Dhawan (ref21)
ref31
ref30
ref33
ref10
ref32
Brodal (ref1) 2004
ref2
Sutskever (ref26)
ref17
ref18
Krahenbuhl (ref22)
Simon (ref7) 2006; 27
Kaiming (ref25)
ref23
ref20
Ghafoorian (ref11)
ref28
ref27
ref29
ref8
Srivastava (ref24) 2014; 15
ref9
ref4
Commowick (ref19)
ref3
(ref6) 2021
ref5
Roy (ref14) 2018
(ref16) 2008
References_xml – volume-title: The Central Nervous System: Structure and Function
  year: 2004
  ident: ref1
– ident: ref10
  doi: 10.1007/978-3-319-46723-8_54
– ident: ref20
  doi: 10.1155/2021/4138137
– start-page: 770
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
  ident: ref25
  article-title: Deep residual learning for image recognition
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref22
  article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials
– volume: 27
  start-page: 455
  issue: 2
  year: 2006
  ident: ref7
  article-title: Standardized MR imaging protocol for multiple sclerosis: Consortium of MS centers consensus guidelines
  publication-title: Amer. J. Neuroradiol.
– ident: ref13
  doi: 10.1016/j.neuroimage.2019.03.068
– ident: ref27
  doi: 10.1186/s13244-023-01460-3
– ident: ref2
  doi: 10.1016/S0140-6736(08)61620-7
– ident: ref34
  doi: 10.1016/j.compmedimag.2020.101772
– ident: ref32
  doi: 10.1016/j.bspc.2023.105856
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: ref24
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref9
  doi: 10.1016/j.media.2016.10.004
– ident: ref18
  doi: 10.1007/978-3-319-24574-4_28
– volume-title: Healthline
  year: 2021
  ident: ref6
– volume-title: MS Lesion Segmentation Challenge 2008
  year: 2008
  ident: ref16
– ident: ref5
  doi: 10.1177/1756285613488434
– ident: ref28
  doi: 10.1016/j.nicl.2024.103611
– ident: ref30
  doi: 10.1016/j.procs.2020.02.267
– ident: ref17
  doi: 10.1109/ACCESS.2018.2886371
– ident: ref29
  doi: 10.1016/j.compeleceng.2019.106462
– start-page: 1
  volume-title: Proc. 30th Int. Conf. Mach. Learn.
  ident: ref26
  article-title: On the importance of initialization and momentum in deep learning
– start-page: 1
  volume-title: Proc. MICCAI
  ident: ref19
  article-title: MSSEG challenge proceedings: Multiple sclerosis lesions segmentation challenge using a data management and processing infrastructure
– ident: ref33
  doi: 10.1038/s41598-024-72649-9
– ident: ref31
  doi: 10.1016/j.bbe.2022.05.006
– start-page: 1
  volume-title: Proc. Longitudinal Multiple Sclerosis Lesion Segmentation Challenge
  ident: ref11
  article-title: Convolutional neural networks for ms lesion segmentation, method description of diag team
– ident: ref23
  doi: 10.1109/ICCV.2015.123
– ident: ref12
  doi: 10.1016/j.neuroimage.2016.12.064
– ident: ref4
  doi: 10.1159/000110935
– year: 2018
  ident: ref14
  article-title: Multiple sclerosis lesion segmentation from brain MRI via fully convolutional neural networks
  publication-title: arXiv:1803.09172
– ident: ref15
  doi: 10.1016/j.neuroimage.2017.04.034
– start-page: 729
  volume-title: Proc. 6th Int. Conf. Comput. Sustain. Global Develop. (INDIACom)
  ident: ref21
  article-title: Post processing of image segmentation using conditional random fields
– ident: ref3
  doi: 10.1111/j.1445-5994.1972.tb03071.x
– ident: ref8
  doi: 10.1016/B978-0-12-816176-0.00023-5
SSID ssj0000816957
Score 2.3405745
Snippet Multiple Sclerosis (MS) is a chronic and autoimmune disease that causes lesions in the central nervous system. It is diagnosed based on accurate identification...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 62154
SubjectTerms Artificial neural networks
Autoimmune diseases
Automation
Central nervous system
conditional random field
Conditional random fields
Convolutional neural networks
Feature extraction
Filters
Image segmentation
Lesions
Magnetic resonance imaging
MS lesion segmentation
Multiple sclerosis
Solid modeling
Three-dimensional displays
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAPIpYaNEcOBLqPOzYx23oqiB2hVoqerPssQN7aIK6qVD_fceJW0XiwIVbFCVyPBPPfJ8f3zD2nqPXunVVhhQIssqFNnNVXWdBlFxziXQdzw6vN_L0ovpyKS5npb7inrBJHngy3JGuPCqpnUTuK0SuA2Xg1mNp0SOl_xh9KefNyNQYg1UutaiTzFDO9dGyaahHRAgL8bGMsluxevIsFY2K_anEyl9xeUw2q2fsaUKJsJy-7jl7FLoX7MlMO_Alux6PzmbfCMH9sbdQfoJms4Ef2-EXNH1chx7n-ODMdr6_glXcqAYEUGF5M_SEUoOH8_DzKp086qBvYZ32FsI5tUlfvN3B1xAn03aw7WB99nmfXaxOvjenWSqgkGEp8yHLnZC69ALJIbJG1Xoaz7p2hdWVtJaooRLSxYVMQgqWkBNHhbawtah963VdvmJ7Xd-F1wyw0MLlQdGrxHEsKh8KGQgNIOV4bcsF-3BvS_N70skwI7_g2kymN9H0Jpl-wY6jvR8ejSLX4w1yvUmuN_9y_YLtR2_N2qNuEX1csIN795k0IneGQg3XRMGVevM_2n7LHsf-TJMxB2xvuL4JhwRPBvdu_BPvAG-p4Mk
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-Pathway 3D CNN With Conditional Random Field for Automated Segmentation of Multiple Sclerosis Lesions in MRI
URI https://ieeexplore.ieee.org/document/10946998
https://www.proquest.com/docview/3190927488
https://doaj.org/article/94dc869b6c0d4cc09e515fdc3acdc545
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT3DgWcRCqebAkSzZJHbs4xJYFcSuUEtFb5Y9dmCFmqBuVgh-PWPHW61ASNysKJYfY4-_bzwzZuxFjk6p1lYZkiLIKuvbzFZ1nXle5ioXSOUQO7xcidOL6v0lv0zB6jEWxnsfnc_8NBTjXb7rcRtMZbTDFbE5JQ_YATG3MVjrxqASXpBQvE6ZhejXV_OmoUEQByz4tAyZtsKDyXunT0zSn15V-UsVx_NlcY-tdj0b3Uq-TbeDneKvP5I2_nfX77O7CWnCfFwaD9gt3z1kd_byDz5i1zH8NvtIKPCH-QnlG2hWK_i8Hr5C04e77GgnhDPTuf4KFsHZDQjkwnw79IR0vYNz_-UqRS910LewTP6JcE5t0hSsN_DBB4PcBtYdLM_eHbGLxdtPzWmWHmHIsBSzIZtZLlTpOJJQRY2ydaQTVG0LQwMyhuil5MKGy1BCG4bQV44STWFqXrvWqbp8zA67vvNPGGChuJ15SVWJJxmUzhfCE6JAwgnKlBP2cicc_X3MtaEjR8mVHmWpgyx1kuWEvQ4CvPk1JMqOH2jiddp3WlUOpVBWYO4qxFx5AnCtw9KgQ0KPE3YUhLXX3iinCTverQeddvVGk7rKFdF4KZ_-o9ozdjt0cbTRHLPD4XrrnxNqGexJZPsncc3-BhdL6ro
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgOQCH5bUruizgA0dS0iR27GMJVF1oI7QPsTfLHjtQoU3QNhWCX8_YcVcVCImbFcXyY8bjb8bzIORVClbKxhQJoCBICuOaxBRlmTiWpzLlgG0fO7ys-fyi-HDJLmOweoiFcc4F5zM39s3wlm872HhTGZ5widqcFLfJHbz42WQI17oxqfgaEpKVMbcQ_vxmWlW4DNQCMzbOfa4tXzJ55_4JafpjXZW_hHG4YWYPSL2d2-BY8m286c0Yfv2RtvG_J_-Q7EesSacDczwit1z7mNzfyUD4hFyHANzkE-LAH_onzd_Rqq7p51X_lVadf80OlkJ6qlvbXdGZd3ejCHPpdNN3iHWdpWfuy1WMX2pp19Bl9FCkZzgmbsFqTRfOm-TWdNXS5enJAbmYvT-v5kksw5BAzid9MjGMy9wyQLLyEkRjUSrI0mQaF6Q1KpiCceOfQxFvaMRfKQjQmS5ZaRsry_yQ7LVd654SCplkZuIEdkVNSYOwLuMOMQUgUpA6H5HXW-Ko70O2DRW0lFSqgZbK01JFWo7IW0_Am199quzwATdexZOnZGFBcGk4pLYASKVDCNdYyDVYQDYakQNPrJ3xBjqNyPGWH1Q812uFAiuVqMgLcfSPbi_J3fn5cqEWJ_XHZ-Sen-5gsTkme_31xj1HDNObF4FzfwPxeu0O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Pathway+3D+CNN+With+Conditional+Random+Field+for+Automated+Segmentation+of+Multiple+Sclerosis+Lesions+in+MRI&rft.jtitle=IEEE+access&rft.au=Saeed%2C+Reeda&rft.au=Ansari%2C+Shahab+U.&rft.au=Hanif%2C+Muhammad&rft.au=Javed%2C+Kamran&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=62154&rft.epage=62164&rft_id=info:doi/10.1109%2FACCESS.2025.3556885&rft.externalDocID=10946998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon