RetinexDIP: A Unified Deep Framework for Low-Light Image Enhancement

Low-light images suffer from low contrast and unclear details, which not only reduces the available information for humans but limits the application of computer vision algorithms. Among the existing enhancement techniques, Retinex-based and learning-based methods are under the spotlight today. In t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 3; pp. 1076 - 1088
Main Authors Zhao, Zunjin, Xiong, Bangshu, Wang, Lei, Ou, Qiaofeng, Yu, Lei, Kuang, Fa
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low-light images suffer from low contrast and unclear details, which not only reduces the available information for humans but limits the application of computer vision algorithms. Among the existing enhancement techniques, Retinex-based and learning-based methods are under the spotlight today. In this paper, we bridge the gap between the two methods. First, we propose a novel "generative" strategy for Retinex decomposition, by which the decomposition is cast as a generative problem. Second, based on the strategy, a unified deep framework is proposed to estimate the latent components and perform low-light image enhancement. Third, our method can weaken the coupling relationship between the two components while performing Retinex decomposition. Finally, the RetinexDIP performs Retinex decomposition without any external images, and the estimated illumination can be easily adjusted and is used to perform enhancement. The proposed method is compared with ten state-of-the-art algorithms on seven public datasets, and the experimental results demonstrate the superiority of our method. Code is available at: https://github.com/zhaozunjin/RetinexDIP .
AbstractList Low-light images suffer from low contrast and unclear details, which not only reduces the available information for humans but limits the application of computer vision algorithms. Among the existing enhancement techniques, Retinex-based and learning-based methods are under the spotlight today. In this paper, we bridge the gap between the two methods. First, we propose a novel "generative" strategy for Retinex decomposition, by which the decomposition is cast as a generative problem. Second, based on the strategy, a unified deep framework is proposed to estimate the latent components and perform low-light image enhancement. Third, our method can weaken the coupling relationship between the two components while performing Retinex decomposition. Finally, the RetinexDIP performs Retinex decomposition without any external images, and the estimated illumination can be easily adjusted and is used to perform enhancement. The proposed method is compared with ten state-of-the-art algorithms on seven public datasets, and the experimental results demonstrate the superiority of our method. Code is available at: https://github.com/zhaozunjin/RetinexDIP .
Author Kuang, Fa
Wang, Lei
Zhao, Zunjin
Ou, Qiaofeng
Yu, Lei
Xiong, Bangshu
Author_xml – sequence: 1
  givenname: Zunjin
  orcidid: 0000-0003-3224-650X
  surname: Zhao
  fullname: Zhao, Zunjin
  email: zhaotitus111@gmail.com
  organization: School of Information Engineering, Nanchang Hangkong University, Nanchang, China
– sequence: 2
  givenname: Bangshu
  orcidid: 0000-0002-7652-5589
  surname: Xiong
  fullname: Xiong, Bangshu
  email: xiongbs@126.com
  organization: School of Information Engineering, Nanchang Hangkong University, Nanchang, China
– sequence: 3
  givenname: Lei
  orcidid: 0000-0001-7266-148X
  surname: Wang
  fullname: Wang, Lei
  organization: School of Information Engineering, Nanchang Hangkong University, Nanchang, China
– sequence: 4
  givenname: Qiaofeng
  surname: Ou
  fullname: Ou, Qiaofeng
  organization: School of Information Engineering, Nanchang Hangkong University, Nanchang, China
– sequence: 5
  givenname: Lei
  surname: Yu
  fullname: Yu, Lei
  organization: School of Information Engineering, Nanchang Hangkong University, Nanchang, China
– sequence: 6
  givenname: Fa
  surname: Kuang
  fullname: Kuang, Fa
  organization: School of Information Engineering, Nanchang Hangkong University, Nanchang, China
BookMark eNp9kE1PwkAURScGEwH9A7pp4ro4b6bTTt0RPpSkiUbBbTMtb2AQZnBagv57ixAXLlzdt7jnvuR0SMs6i4RcA-0B0PRuOnh9m_YYZdDjNOE8gTPSBiFkyBgVreamAkLJQFyQTlWtKIVIRkmbDF-wNhY_h5Pn-6AfzKzRBufBEHEbjL3a4N7590A7H2RuH2ZmsayDyUYtMBjZpbIlbtDWl-Rcq3WFV6fsktl4NB08htnTw2TQz8KSx1CHoDAuJMWYM0CRaiVQSR6zFBIVC8kKDZo2qWRRpgnjQqRAUeoI0mIuNOddcnvc3Xr3scOqzldu523zMmcxT6KIMnFoyWOr9K6qPOq8NLWqjbO1V2adA80PzvIfZ_nBWX5y1qDsD7r1ZqP81__QzREyiPgLpBEVcZTyb8lRd4g
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2023_3292940
crossref_primary_10_3390_electronics11071000
crossref_primary_10_1007_s00530_024_01298_9
crossref_primary_10_1145_3616013
crossref_primary_10_1109_JSTARS_2024_3357093
crossref_primary_10_1109_TPAMI_2024_3432308
crossref_primary_10_1109_JSEN_2023_3253697
crossref_primary_10_1109_TCSVT_2022_3146731
crossref_primary_10_1016_j_dsp_2024_104961
crossref_primary_10_3390_s23239593
crossref_primary_10_1016_j_engappai_2024_109521
crossref_primary_10_1109_TCSVT_2022_3195996
crossref_primary_10_11834_jig_230271
crossref_primary_10_1007_s11042_022_14210_2
crossref_primary_10_1016_j_ijleo_2022_170329
crossref_primary_10_1016_j_neucom_2025_129992
crossref_primary_10_1109_TCSVT_2024_3441713
crossref_primary_10_3788_AI_2024_20003
crossref_primary_10_1038_s41598_024_81231_2
crossref_primary_10_1109_TIM_2022_3232641
crossref_primary_10_1109_TCSVT_2023_3262685
crossref_primary_10_1016_j_cag_2023_08_004
crossref_primary_10_1109_TMM_2023_3293736
crossref_primary_10_1016_j_patcog_2022_109039
crossref_primary_10_1016_j_cviu_2024_104276
crossref_primary_10_1109_TETCI_2024_3359051
crossref_primary_10_1016_j_jvcir_2023_103932
crossref_primary_10_1109_TCSVT_2022_3141578
crossref_primary_10_3390_electronics13183645
crossref_primary_10_1109_TNNLS_2023_3289626
crossref_primary_10_1016_j_patrec_2025_02_001
crossref_primary_10_1109_TCSVT_2023_3233989
crossref_primary_10_1016_j_imavis_2024_105149
crossref_primary_10_1109_TPAMI_2021_3126387
crossref_primary_10_1109_TIP_2023_3301332
crossref_primary_10_1109_TCSVT_2022_3186880
crossref_primary_10_1109_ACCESS_2022_3227069
crossref_primary_10_1109_ACCESS_2022_3202940
crossref_primary_10_1049_ipr2_12732
crossref_primary_10_1109_TCSVT_2023_3323128
crossref_primary_10_1109_TCSVT_2024_3454763
crossref_primary_10_1016_j_engappai_2022_105411
crossref_primary_10_1109_TCSVT_2022_3190916
crossref_primary_10_1109_TIM_2024_3522633
crossref_primary_10_1117_1_JEI_33_2_023020
crossref_primary_10_1117_1_JEI_33_4_043033
crossref_primary_10_1109_TCSVT_2024_3487849
crossref_primary_10_1109_TETCI_2024_3369321
crossref_primary_10_1145_3700136
crossref_primary_10_1007_s00371_023_03249_3
crossref_primary_10_1016_j_jvcir_2023_103962
crossref_primary_10_2139_ssrn_4157024
crossref_primary_10_1038_s41598_024_64421_w
crossref_primary_10_1109_TCSVT_2023_3299232
crossref_primary_10_1109_JSEN_2024_3511554
crossref_primary_10_1117_1_JEI_31_6_063055
crossref_primary_10_1364_OE_495858
crossref_primary_10_1038_s41598_023_46693_w
crossref_primary_10_1117_1_JEI_31_5_053001
crossref_primary_10_1007_s11227_024_06683_9
crossref_primary_10_1016_j_aei_2025_103165
crossref_primary_10_1016_j_inffus_2024_102467
crossref_primary_10_1109_ACCESS_2023_3278734
crossref_primary_10_1109_TMM_2023_3291498
crossref_primary_10_1016_j_sigpro_2024_109689
crossref_primary_10_3390_electronics13050950
crossref_primary_10_1016_j_neucom_2023_126772
crossref_primary_10_1109_TCSVT_2023_3340506
crossref_primary_10_1109_TGRS_2024_3422314
crossref_primary_10_3390_bioengineering12030239
crossref_primary_10_1007_s10489_024_05569_w
crossref_primary_10_1109_TCSVT_2023_3285765
crossref_primary_10_1109_TCSVT_2023_3343696
crossref_primary_10_3390_app142311033
crossref_primary_10_3390_s23187763
crossref_primary_10_1038_s41598_024_58965_0
crossref_primary_10_1080_13682199_2023_2260663
crossref_primary_10_23919_cje_2021_00_350
crossref_primary_10_3390_computers13060134
crossref_primary_10_1109_TCSVT_2023_3325357
crossref_primary_10_1109_TIP_2023_3266171
crossref_primary_10_1109_JSTSP_2024_3463416
crossref_primary_10_1016_j_jvcir_2024_104313
crossref_primary_10_1109_TCSVT_2023_3239511
crossref_primary_10_1109_TCSVT_2024_3408007
crossref_primary_10_1109_TCSVT_2022_3181781
crossref_primary_10_1007_s11042_023_17527_8
crossref_primary_10_1016_j_jvcir_2023_103863
crossref_primary_10_3390_electronics12163517
crossref_primary_10_1038_s41598_024_69412_5
crossref_primary_10_3934_mbe_2024085
crossref_primary_10_3390_s24030772
crossref_primary_10_1007_s41064_022_00226_8
crossref_primary_10_1016_j_engappai_2023_106969
crossref_primary_10_1016_j_compind_2023_103862
crossref_primary_10_1109_TNNLS_2023_3280037
crossref_primary_10_1007_s10489_024_05534_7
crossref_primary_10_1007_s11831_023_09998_7
crossref_primary_10_1016_j_displa_2023_102614
crossref_primary_10_1109_TCE_2024_3377110
crossref_primary_10_1007_s11042_023_15242_y
crossref_primary_10_26599_TST_2022_9010047
crossref_primary_10_3390_app14209430
crossref_primary_10_1109_TETCI_2024_3358200
crossref_primary_10_1109_TMM_2022_3193059
crossref_primary_10_1109_LSP_2024_3399119
crossref_primary_10_1016_j_neunet_2025_107149
crossref_primary_10_1109_TCSVT_2021_3113559
crossref_primary_10_3390_s22186799
crossref_primary_10_1364_JOSAA_533672
crossref_primary_10_1016_j_eswa_2023_120271
crossref_primary_10_1016_j_patcog_2022_109195
crossref_primary_10_1016_j_engappai_2023_106611
crossref_primary_10_1007_s11042_023_17159_y
crossref_primary_10_1109_JSEN_2023_3328995
crossref_primary_10_1109_TCI_2023_3323835
crossref_primary_10_1007_s11263_024_02084_w
crossref_primary_10_1007_s11063_023_11407_w
crossref_primary_10_1016_j_cag_2023_10_016
crossref_primary_10_14801_jkiit_2024_22_1_39
crossref_primary_10_1016_j_apm_2022_11_022
crossref_primary_10_1109_TCSVT_2024_3465670
crossref_primary_10_21595_jme_2024_23977
crossref_primary_10_1109_TCSII_2024_3392600
crossref_primary_10_1016_j_imavis_2024_105102
crossref_primary_10_3390_photonics10020198
crossref_primary_10_1109_TCSVT_2023_3284856
crossref_primary_10_1016_j_engappai_2023_107793
crossref_primary_10_1109_JSEN_2025_3534566
crossref_primary_10_2139_ssrn_4162676
crossref_primary_10_1016_j_knosys_2023_110730
crossref_primary_10_1109_TCSVT_2023_3303574
crossref_primary_10_11834_jig_220707
crossref_primary_10_1016_j_jvcir_2024_104293
crossref_primary_10_1049_ipr2_13226
crossref_primary_10_1109_TCSVT_2022_3202692
crossref_primary_10_3390_app15031604
crossref_primary_10_1016_j_cviu_2024_103952
crossref_primary_10_1109_ACCESS_2022_3209807
crossref_primary_10_1016_j_jvcir_2024_104211
crossref_primary_10_1007_s11063_024_11565_5
crossref_primary_10_1016_j_neunet_2025_107162
crossref_primary_10_1109_TII_2024_3476574
crossref_primary_10_3390_s22155593
crossref_primary_10_1016_j_jvcir_2023_103887
crossref_primary_10_1117_1_JEI_32_2_023014
crossref_primary_10_1016_j_displa_2023_102550
crossref_primary_10_1007_s11760_023_02613_z
crossref_primary_10_1109_TCSVT_2023_3313348
crossref_primary_10_3389_fnbot_2021_700011
crossref_primary_10_1109_TCE_2023_3280229
crossref_primary_10_1109_TCSVT_2023_3286802
crossref_primary_10_1109_TMM_2024_3400668
crossref_primary_10_3390_app13010380
crossref_primary_10_1109_TCSVT_2023_3260212
crossref_primary_10_1007_s10489_022_04013_1
crossref_primary_10_1007_s00530_024_01515_5
crossref_primary_10_3390_electronics13193883
crossref_primary_10_1109_TIM_2024_3370779
crossref_primary_10_3390_rs14143398
crossref_primary_10_1049_ipr2_13239
crossref_primary_10_1117_1_JEI_32_5_053023
crossref_primary_10_3390_rs17050905
crossref_primary_10_1016_j_knosys_2023_111099
crossref_primary_10_1016_j_jvcir_2025_104402
crossref_primary_10_3390_rs14184608
crossref_primary_10_1016_j_patcog_2025_111554
crossref_primary_10_1016_j_jvcir_2024_104223
crossref_primary_10_1109_TCSVT_2023_3324591
crossref_primary_10_1111_cgf_15210
crossref_primary_10_1016_j_dsp_2025_105087
crossref_primary_10_1016_j_sigpro_2022_108752
crossref_primary_10_1109_ACCESS_2022_3199771
crossref_primary_10_3390_electronics11172750
crossref_primary_10_1117_1_JEI_32_2_023005
crossref_primary_10_3390_app14124962
crossref_primary_10_1016_j_jksuci_2023_101814
crossref_primary_10_1109_TCSVT_2022_3153685
crossref_primary_10_32604_cmc_2023_042416
Cites_doi 10.1109/ICIP.1996.560995
10.1109/ICIP.2015.7351501
10.1109/TIP.2018.2794218
10.1109/TCSVT.2017.2763180
10.1109/ICIP.2019.8803197
10.1145/3343031.3350926
10.1109/CVPR.2016.304
10.1109/VCIP.2017.8305143
10.1109/TIP.2013.2261309
10.1109/ICCV.2019.00281
10.1109/VBC.1990.109340
10.1109/TCSVT.2018.2828141
10.1109/SITIS.2013.19
10.1016/j.patrec.2018.01.010
10.1109/83.557356
10.1109/83.597272
10.1109/ICIP.2017.8296876
10.1145/3343031.3350983
10.1016/j.sigpro.2016.05.031
10.1109/LSP.2012.2227726
10.1145/3130800.3130816
10.1109/CVPR.2018.00347
10.1109/CVPR.2018.00984
10.1109/TIP.2015.2474701
10.1109/TIP.2019.2910412
10.1016/s0734-189x(87)80186-x
10.1109/TCE.2007.381734
10.1109/TNNLS.2017.2649101
10.1109/TCYB.2016.2575544
10.1109/TIP.2014.2324813
10.1109/TIP.2017.2703078
10.1109/CVPR42600.2020.00185
10.1109/LSP.2020.2965824
10.1109/TCSVT.2019.2919310
10.1145/3072959.3073592
10.1038/scientificamerican1277-108
10.1109/CVPR.2019.00701
10.1109/CVPR42600.2020.00340
10.1145/1836845.1836920
10.1109/GlobalSIP.2013.6737082
10.1109/TIP.2018.2810539
10.1109/TCE.2007.4429280
10.1109/TIP.2013.2284059
10.1109/TIP.2016.2639450
10.1109/ACCESS.2018.2812809
10.1109/TCE.2017.014847
10.1023/A:1022314423998
10.1109/83.841534
10.1109/TIP.2011.2157513
10.1109/CVPRW50498.2020.00276
10.1137/100806588
10.1016/j.patcog.2016.06.008
10.1109/TMM.2020.2969790
10.1109/ISCAS.2018.8351427
10.1109/CVPR.2019.01128
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2021.3073371
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1088
ExternalDocumentID 10_1109_TCSVT_2021_3073371
9405649
Genre orig-research
GrantInformation_xml – fundername: Innovation Fund Designated for Graduate of Nanchang Hangkong University
  grantid: YC2019025
  funderid: 10.13039/100009554
– fundername: NSFC of China
  grantid: 61866027
  funderid: 10.13039/501100001809
– fundername: Key Research and Development Program of Jiangxi Province of China
  grantid: 20171BBE50013
  funderid: 10.13039/501100013064
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-1ae6b80e6321e59fa5ea8362917a6582bf1f0582a8bc972355910e8f419bd5f33
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 03:59:58 EDT 2025
Thu Apr 24 23:12:38 EDT 2025
Tue Jul 01 00:41:15 EDT 2025
Wed Aug 27 02:49:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-1ae6b80e6321e59fa5ea8362917a6582bf1f0582a8bc972355910e8f419bd5f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7266-148X
0000-0003-3224-650X
0000-0002-7652-5589
PQID 2637440253
PQPubID 85433
PageCount 13
ParticipantIDs proquest_journals_2637440253
crossref_primary_10_1109_TCSVT_2021_3073371
crossref_citationtrail_10_1109_TCSVT_2021_3073371
ieee_primary_9405649
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref59
ref14
ref58
Lv (ref49) 2019
ref52
ref11
ref55
ref10
Kimmel (ref36) 2003; 52
ref17
ref16
ref19
ref18
ref51
ref50
ref46
Jung (ref57) 2019
ref45
ref48
ref47
ref42
ref44
ref43
Guan (ref54) 2019
ref8
ref7
ref9
ref4
ref3
Lv (ref41)
ref6
ref5
Wei (ref12) 2018
ref35
ref34
ref37
ref31
ref30
ref33
Waqas Zamir (ref53) 2019
ref32
ref1
ref39
ref38
ref24
Zhang (ref2) 2020
ref23
ref26
ref25
ref20
Zhang (ref28)
ref64
ref63
ref22
ref21
ref65
ref27
Ying (ref40) 2017
ref29
Jiang (ref56) 2019
ref60
ref62
ref61
References_xml – ident: ref30
  doi: 10.1109/ICIP.1996.560995
– ident: ref26
  doi: 10.1109/ICIP.2015.7351501
– ident: ref42
  doi: 10.1109/TIP.2018.2794218
– year: 2018
  ident: ref12
  article-title: Deep retinex decomposition for low-light enhancement
  publication-title: arXiv:1808.04560
– ident: ref62
  doi: 10.1109/TCSVT.2017.2763180
– ident: ref33
  doi: 10.1109/ICIP.2019.8803197
– ident: ref15
  doi: 10.1145/3343031.3350926
– ident: ref7
  doi: 10.1109/CVPR.2016.304
– ident: ref44
  doi: 10.1109/VCIP.2017.8305143
– ident: ref10
  doi: 10.1109/TIP.2013.2261309
– ident: ref18
  doi: 10.1109/ICCV.2019.00281
– year: 2019
  ident: ref57
  article-title: Multi-frame GAN: Image enhancement for stereo visual odometry in low light
  publication-title: arXiv:1910.06632
– year: 2019
  ident: ref56
  article-title: EnlightenGAN: Deep light enhancement without paired supervision
  publication-title: arXiv:1906.06972
– ident: ref20
  doi: 10.1109/VBC.1990.109340
– start-page: 2034
  volume-title: Proc. 21st Int. Conf. Pattern Recognit. (ICPR)
  ident: ref28
  article-title: Enhancement and noise reduction of very low light level images
– ident: ref63
  doi: 10.1109/TCSVT.2018.2828141
– ident: ref32
  doi: 10.1109/SITIS.2013.19
– year: 2019
  ident: ref49
  article-title: Attention guided low-light image enhancement with a large scale low-light simulation dataset
  publication-title: arXiv:1908.00682
– ident: ref46
  doi: 10.1016/j.patrec.2018.01.010
– ident: ref29
  doi: 10.1109/83.557356
– ident: ref31
  doi: 10.1109/83.597272
– year: 2017
  ident: ref40
  article-title: A bio-inspired multi-exposure fusion framework for low-light image enhancement
  publication-title: arXiv:1711.00591
– ident: ref13
  doi: 10.1109/ICIP.2017.8296876
– ident: ref3
  doi: 10.1145/3343031.3350983
– ident: ref39
  doi: 10.1016/j.sigpro.2016.05.031
– start-page: 220
  volume-title: Proc. BMVC
  ident: ref41
  article-title: MBLLEN: Low-light image/video enhancement using CNNs
– ident: ref59
  doi: 10.1109/LSP.2012.2227726
– year: 2019
  ident: ref53
  article-title: Learning digital camera pipeline for extreme low-light imaging
  publication-title: arXiv:1904.05939
– ident: ref45
  doi: 10.1145/3130800.3130816
– ident: ref55
  doi: 10.1109/CVPR.2018.00347
– ident: ref16
  doi: 10.1109/CVPR.2018.00984
– ident: ref37
  doi: 10.1109/TIP.2015.2474701
– ident: ref50
  doi: 10.1109/TIP.2019.2910412
– ident: ref19
  doi: 10.1016/s0734-189x(87)80186-x
– ident: ref22
  doi: 10.1109/TCE.2007.381734
– year: 2020
  ident: ref2
  article-title: Self-supervised image enhancement network: Training with low light images only
  publication-title: arXiv:2002.11300
– ident: ref60
  doi: 10.1109/TNNLS.2017.2649101
– ident: ref61
  doi: 10.1109/TCYB.2016.2575544
– ident: ref34
  doi: 10.1109/TIP.2014.2324813
– ident: ref38
  doi: 10.1109/TIP.2017.2703078
– ident: ref58
  doi: 10.1109/CVPR42600.2020.00185
– ident: ref14
  doi: 10.1109/LSP.2020.2965824
– ident: ref64
  doi: 10.1109/TCSVT.2019.2919310
– ident: ref48
  doi: 10.1145/3072959.3073592
– ident: ref11
  doi: 10.1038/scientificamerican1277-108
– ident: ref47
  doi: 10.1109/CVPR.2019.00701
– ident: ref65
  doi: 10.1109/CVPR42600.2020.00340
– ident: ref27
  doi: 10.1145/1836845.1836920
– ident: ref9
  doi: 10.1109/GlobalSIP.2013.6737082
– ident: ref5
  doi: 10.1109/TIP.2018.2810539
– ident: ref21
  doi: 10.1109/TCE.2007.4429280
– ident: ref24
  doi: 10.1109/TIP.2013.2284059
– ident: ref8
  doi: 10.1109/TIP.2016.2639450
– ident: ref51
  doi: 10.1109/ACCESS.2018.2812809
– ident: ref6
  doi: 10.1109/TCE.2017.014847
– volume: 52
  start-page: 7
  issue: 1
  year: 2003
  ident: ref36
  article-title: A variational framework for Retinex
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1022314423998
– ident: ref23
  doi: 10.1109/83.841534
– ident: ref25
  doi: 10.1109/TIP.2011.2157513
– ident: ref52
  doi: 10.1109/CVPRW50498.2020.00276
– ident: ref35
  doi: 10.1137/100806588
– ident: ref43
  doi: 10.1016/j.patcog.2016.06.008
– ident: ref1
  doi: 10.1109/TMM.2020.2969790
– ident: ref4
  doi: 10.1109/ISCAS.2018.8351427
– ident: ref17
  doi: 10.1109/CVPR.2019.01128
– year: 2019
  ident: ref54
  article-title: NODE: Extreme low light raw image denoising using a noise decomposition network
  publication-title: arXiv:1909.05249
SSID ssj0014847
Score 2.7075355
Snippet Low-light images suffer from low contrast and unclear details, which not only reduces the available information for humans but limits the application of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1076
SubjectTerms Algorithms
Cameras
Computer vision
Couplings
Decomposition
deep prior
Electronics packaging
Histograms
Image contrast
Image enhancement
Lighting
Low-light image enhancement
Machine learning
retinex decomposition
Task analysis
zero-reference
Title RetinexDIP: A Unified Deep Framework for Low-Light Image Enhancement
URI https://ieeexplore.ieee.org/document/9405649
https://www.proquest.com/docview/2637440253
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJzjwrtgWkA-9tV7iOHFsbohlBRVUqCyIW2Q7EyG13V3RXYH49Yy9yQpaVHFKDrZieSYz32fPA-Czx8qTYSx4XmU5J4-vOWlJylVRFa7QyiYuHA1cfFen19m32_x2Ab7Oc2EQMQafYTe8xrv8auSn4ajswBC6UJlZhEUibrNcrfmNQaZjMzGCC4Jr8mNtgkxiDgbHVzcDooKp6AaNloV45YRiV5V_THH0L_01uGhXNgsr-dmdTlzXP_1VtPG9S1-H1QZosqOZZmzAAg43YeVF-cEt6P0I-c742Du7PGRHjOBnTYCU9RDHrN8GbTFCtex89MDPA41nZ7_JALGT4V3QlvDNbbjunwyOT3nTVYF7qcSEC4vK6QSVTAXmprY5Wk1ujHibJTiSulrUCT2tdj60JCPKIRLUdSaMq_Jayg-wNBwNcQeYSWpJ-Mkq4bPMmsSaXEu0qUNXeaOwA6Ld5tI3JcdD54tfZaQeiSmjaMogmrIRTQe-zOeMZwU3_jt6K-z1fGSzzR3YbaVZNv_knzJVMlRDTHP58e1Zn2A5DckNMcJsF5Ym91PcI8gxcftR154Bp1LPEQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a4wAcGDAmChv4wA3cxXHs2NymdVUL7YSgQ7tFtvMiJKCdtlYg_nqe3aQaAyFOycFWLL-X933Pfj8AXgasAxnGkqu6UJwQ33DSkpzrsi59abTLfDwamJ7q0Vnx9lydb8HrTS4MIqbgM-zH13SXXy_CKh6VHVpiF7qwt-A24b4S62ytzZ1BYVI7MSIMghtCsi5FJrOHs-OPn2bkDOaiH3ValuI3GEp9Vf4wxglhhjsw7da2Diz50l8tfT_8vFG28X8X_wDut1STHa114yFs4fwR3LtWgHAXBh9ixjP-GIzfv2FHjAhoQ5SUDRAv2LAL22LEa9lk8Z1PoiPPxt_IBLGT-eeoL_Gbj-FseDI7HvG2rwIPUoslFw61NxlqmQtUtnEKnSEgI8_NESHJfSOajJ7O-BCbkpHTITI0TSGsr1Uj5R5szxdzfALMZo0kBuW0CEXhbOasMhJd7tHXwWrsgei2uQpt0fHY--JrlZyPzFZJNFUUTdWKpgevNnMu1iU3_jl6N-71ZmS7zT3Y76RZtX_lVZVrGesh5ko-_fusF3BnNJtOqsn49N0zuJvHVIcUb7YP28vLFR4QAVn650nvfgGjX9Ja
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RetinexDIP%3A+A+Unified+Deep+Framework+for+Low-Light+Image+Enhancement&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Zhao%2C+Zunjin&rft.au=Xiong%2C+Bangshu&rft.au=Wang%2C+Lei&rft.au=Ou%2C+Qiaofeng&rft.date=2022-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=3&rft.spage=1076&rft_id=info:doi/10.1109%2FTCSVT.2021.3073371&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon