Leveraging State-of-the-Art Topic Modeling for News Impact Analysis on Financial Markets: A Comparative Study
News impact analysis has become a common task conducted by finance researchers, which involves reading and selecting news articles based on themes and sentiments, pairing news events and relevant stocks, and measuring the impact of selected news on stock prices. To facilitate more efficient news sel...
Saved in:
Published in | Electronics (Basel) Vol. 12; no. 12; p. 2605 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | News impact analysis has become a common task conducted by finance researchers, which involves reading and selecting news articles based on themes and sentiments, pairing news events and relevant stocks, and measuring the impact of selected news on stock prices. To facilitate more efficient news selection, topic modeling can be applied to generate topics out of a large number of news documents. However, there is very limited existing literature comparing topic models in the context of finance-related news impact analysis. In this paper, we compare three state-of-the-art topic models, namely Latent Dirichlet allocation (LDA), Top2Vec, and BERTopic, in a defined scenario of news impact analysis on financial markets, where 38,240 news articles with an average length of 590 words are analyzed. A service-oriented framework for news impact analysis called “News Impact Analysis” (NIA) is advocated to leverage multiple topic models and provide an automated and seamless news impact analysis process for finance researchers. Experimental results have shown that BERTopic performed best in this scenario, with minimal data preprocessing, the highest coherence score, the best interpretability, and reasonable computing time. In addition, a finance researcher was able to conduct the entire news impact analysis process, which validated the feasibility and usability of the NIA framework. |
---|---|
AbstractList | News impact analysis has become a common task conducted by finance researchers, which involves reading and selecting news articles based on themes and sentiments, pairing news events and relevant stocks, and measuring the impact of selected news on stock prices. To facilitate more efficient news selection, topic modeling can be applied to generate topics out of a large number of news documents. However, there is very limited existing literature comparing topic models in the context of finance-related news impact analysis. In this paper, we compare three state-of-the-art topic models, namely Latent Dirichlet allocation (LDA), Top2Vec, and BERTopic, in a defined scenario of news impact analysis on financial markets, where 38,240 news articles with an average length of 590 words are analyzed. A service-oriented framework for news impact analysis called “News Impact Analysis” (NIA) is advocated to leverage multiple topic models and provide an automated and seamless news impact analysis process for finance researchers. Experimental results have shown that BERTopic performed best in this scenario, with minimal data preprocessing, the highest coherence score, the best interpretability, and reasonable computing time. In addition, a finance researcher was able to conduct the entire news impact analysis process, which validated the feasibility and usability of the NIA framework. |
Audience | Academic |
Author | Liao, Wenqi Rabhi, Fethi Chen, Weisi Al-Qudah, Islam |
Author_xml | – sequence: 1 givenname: Weisi orcidid: 0000-0001-8131-392X surname: Chen fullname: Chen, Weisi – sequence: 2 givenname: Fethi surname: Rabhi fullname: Rabhi, Fethi – sequence: 3 givenname: Wenqi surname: Liao fullname: Liao, Wenqi – sequence: 4 givenname: Islam surname: Al-Qudah fullname: Al-Qudah, Islam |
BookMark | eNp9UT1vGzEMFYoUSJr4F2QR0PlSfZxOVreD0aQBnHSIOx9omXKVniVXkh3431eGMxRBEXIgQb73SJCfyFmIAQm55uxGSsO-4Ii2pBi8zVxwITqmPpALwbRpjDDi7J_8nExyfmbVDJdTyS7IZo57TLD2YU2fChRsomvKL2z6VOgibr2lD3GF47HvYqKP-JLp_WYLttA-wHjIPtMY6K0PEKyHkT5A-o0lf6U9ncUKTFD8Hqv4bnW4Ih8djBknr_GS_Lz9tph9b-Y_7u5n_byxsuOl4aCFbpew6iRo1kolQFu3RImida2ZalhayZx2jvMWhELTKYXadthxZ5WWl-TzSXeb4p8d5jI8x12q6-ZBTIXRxhjVVtTNCbWGEQcfXCwJbPUVbrytR3a-1nuttFbCmKOsPBFsijkndMM2-Q2kw8DZcPzF8J9fVJZ5w7K-XtrHUMf58V3uX9qklS4 |
CitedBy_id | crossref_primary_10_1371_journal_pone_0296855 crossref_primary_10_3390_analytics3030021 crossref_primary_10_1016_j_eswa_2023_121391 crossref_primary_10_1109_ACCESS_2023_3295694 crossref_primary_10_3390_bdcc8080086 crossref_primary_10_1111_beer_12808 crossref_primary_10_1038_s41598_023_45758_0 crossref_primary_10_1177_20552076241282622 crossref_primary_10_1057_s41599_023_02087_x crossref_primary_10_1109_ACCESS_2025_3552221 crossref_primary_10_3389_frai_2024_1329185 crossref_primary_10_3390_math11204375 crossref_primary_10_1007_s41060_024_00516_x crossref_primary_10_1007_s00779_024_01820_w crossref_primary_10_3390_info15100659 crossref_primary_10_1007_s13198_024_02641_z crossref_primary_10_3390_app14177675 |
Cites_doi | 10.1038/s42254-023-00581-4 10.1162/tacl_a_00078 10.1007/s10489-023-04452-4 10.1109/ACCESS.2021.3062875 10.1080/1331677X.2021.1941179 10.1007/978-3-030-98305-5_12 10.1016/j.ipm.2021.102708 10.1007/s11761-023-00358-8 10.1016/j.tourman.2019.01.002 10.1145/3507900 10.1177/0972150920957274 10.1080/19312458.2018.1430754 10.1016/j.is.2020.101582 10.3389/fsoc.2022.886498 10.3390/bdcc7010038 10.1007/s11280-022-01029-y 10.1016/j.is.2022.102131 10.1016/j.asoc.2022.109673 10.1016/j.compedu.2020.103855 10.1016/j.techfore.2021.121265 10.1016/j.knosys.2022.108742 10.1145/3520084.3520104 10.1109/ICOMET.2019.8673428 10.3390/bdcc6040130 10.1016/j.neucom.2021.05.103 10.1016/j.eswa.2023.119509 10.1186/s40537-019-0255-7 10.1126/sciadv.aaq1360 10.1186/s40537-022-00586-3 10.1080/00036846.2018.1564115 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.3390/electronics12122605 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | A757752997 10_3390_electronics12122605 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC PMFND 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c361t-1a7274bad63a704352a7cfbe3e24f4987abc30f7ff114a25e9655e7c6e61fc573 |
IEDL.DBID | BENPR |
ISSN | 2079-9292 |
IngestDate | Sat Jul 26 00:29:35 EDT 2025 Tue Jun 10 21:10:40 EDT 2025 Tue Jul 01 01:47:48 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-1a7274bad63a704352a7cfbe3e24f4987abc30f7ff114a25e9655e7c6e61fc573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8131-392X |
OpenAccessLink | https://www.proquest.com/docview/2829799954?pq-origsite=%requestingapplication% |
PQID | 2829799954 |
PQPubID | 2032404 |
ParticipantIDs | proquest_journals_2829799954 gale_infotracacademiconefile_A757752997 crossref_primary_10_3390_electronics12122605 crossref_citationtrail_10_3390_electronics12122605 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Poongodi (ref_30) 2021; 58 Churchill (ref_14) 2022; 54 Egger (ref_31) 2022; 7 ref_36 Eachempati (ref_9) 2022; 174 Ashtiani (ref_11) 2023; 217 ref_13 ref_35 ref_12 Bonifazi (ref_24) 2022; 9 Asmussen (ref_26) 2019; 6 ref_34 Vayansky (ref_15) 2020; 94 Bhat (ref_21) 2020; 41 Birhane (ref_38) 2023; 5 ref_19 Hu (ref_27) 2019; 72 ref_37 Abdelrazek (ref_16) 2023; 112 Ghasiya (ref_29) 2021; 9 Maier (ref_25) 2018; 12 Blei (ref_18) 2003; 3 Allen (ref_6) 2019; 51 TajMazinani (ref_4) 2022; 26 ref_23 ref_22 Yin (ref_32) 2022; 25 Lin (ref_10) 2022; 130 Lauriola (ref_5) 2022; 470 Chen (ref_28) 2020; 151 ref_3 Egger (ref_33) 2022; 77 Shahzad (ref_8) 2022; 35 Tabbakh (ref_1) 2022; 247 Gerlach (ref_20) 2018; 4 Gallagher (ref_17) 2017; 5 Chen (ref_2) 2023; 17 ref_7 |
References_xml | – volume: 5 start-page: 277 year: 2023 ident: ref_38 article-title: Science in the age of large language models publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-023-00581-4 – volume: 5 start-page: 529 year: 2017 ident: ref_17 article-title: Anchored Correlation Explanation: Topic Modeling with Minimal Domain Knowledge publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00078 – ident: ref_34 doi: 10.1007/s10489-023-04452-4 – volume: 9 start-page: 36645 year: 2021 ident: ref_29 article-title: Investigating COVID-19 News across Four Nations: A Topic Modeling and Sentiment Analysis Approach publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3062875 – volume: 35 start-page: 2313 year: 2022 ident: ref_8 article-title: Outbreak of epidemic diseases and stock returns: An event study of emerging economy publication-title: Econ. Res.-Ekon. Istraživanja doi: 10.1080/1331677X.2021.1941179 – ident: ref_35 doi: 10.1007/978-3-030-98305-5_12 – volume: 58 start-page: 102708 year: 2021 ident: ref_30 article-title: Global cryptocurrency trend prediction using social media publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2021.102708 – volume: 17 start-page: 129 year: 2023 ident: ref_2 article-title: A CEP-driven framework for real-time news impact prediction on financial markets publication-title: Serv. Oriented Comput. Appl. doi: 10.1007/s11761-023-00358-8 – volume: 72 start-page: 417 year: 2019 ident: ref_27 article-title: What do hotel customers complain about? Text analysis using structural topic model publication-title: Tour. Manag. doi: 10.1016/j.tourman.2019.01.002 – volume: 54 start-page: 215 year: 2022 ident: ref_14 article-title: The Evolution of Topic Modeling publication-title: ACM Comput. Surv. doi: 10.1145/3507900 – ident: ref_37 doi: 10.1177/0972150920957274 – volume: 12 start-page: 93 year: 2018 ident: ref_25 article-title: Applying LDA Topic Modeling in Communication Research: Toward a Valid and Reliable Methodology publication-title: Commun. Methods Meas. doi: 10.1080/19312458.2018.1430754 – volume: 94 start-page: 101582 year: 2020 ident: ref_15 article-title: A review of topic modeling methods publication-title: Inf. Syst. doi: 10.1016/j.is.2020.101582 – ident: ref_23 – volume: 7 start-page: 80 year: 2022 ident: ref_31 article-title: A Topic Modeling Comparison between LDA, NMF, Top2Vec, and BERTopic to Demystify Twitter Posts publication-title: Front. Sociol. doi: 10.3389/fsoc.2022.886498 – ident: ref_13 doi: 10.3390/bdcc7010038 – volume: 25 start-page: 1067 year: 2022 ident: ref_32 article-title: Sentiment analysis and topic modeling for COVID-19 vaccine discussions publication-title: World Wide Web doi: 10.1007/s11280-022-01029-y – volume: 112 start-page: 102131 year: 2023 ident: ref_16 article-title: Topic modeling algorithms and applications: A survey publication-title: Inf. Syst. doi: 10.1016/j.is.2022.102131 – volume: 77 start-page: 1234 year: 2022 ident: ref_33 article-title: Identifying hidden semantic structures in Instagram data: A topic modelling comparison publication-title: Tour. Rev. – volume: 130 start-page: 109673 year: 2022 ident: ref_10 article-title: Factors affecting text mining based stock prediction: Text feature representations, machine learning models, and news platforms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109673 – volume: 151 start-page: 103855 year: 2020 ident: ref_28 article-title: Detecting latent topics and trends in educational technologies over four decades using structural topic modeling: A retrospective of all volumes of Computers & Education publication-title: Comput. Educ. doi: 10.1016/j.compedu.2020.103855 – volume: 174 start-page: 121265 year: 2022 ident: ref_9 article-title: Can customer sentiment impact firm value? An integrated text mining approach publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2021.121265 – volume: 247 start-page: 108742 year: 2022 ident: ref_1 article-title: Investigating the informativeness of technical indicators and news sentiment in financial market price prediction publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108742 – ident: ref_12 doi: 10.1145/3520084.3520104 – ident: ref_7 doi: 10.1109/ICOMET.2019.8673428 – volume: 26 start-page: 116 year: 2022 ident: ref_4 article-title: A comprehensive review of stock price prediction using text mining publication-title: Adv. Decis. Sci. – ident: ref_36 – ident: ref_3 doi: 10.3390/bdcc6040130 – ident: ref_19 – volume: 470 start-page: 443 year: 2022 ident: ref_5 article-title: An introduction to Deep Learning in Natural Language Processing: Models, techniques, and tools publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.05.103 – ident: ref_22 – volume: 217 start-page: 119509 year: 2023 ident: ref_11 article-title: News-based intelligent prediction of financial markets using text mining and machine learning: A systematic literature review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.119509 – volume: 6 start-page: 93 year: 2019 ident: ref_26 article-title: Smart literature review: A practical topic modelling approach to exploratory literature review publication-title: J. Big Data doi: 10.1186/s40537-019-0255-7 – volume: 4 start-page: eaaq1360 year: 2018 ident: ref_20 article-title: A network approach to topic models publication-title: Sci. Adv. doi: 10.1126/sciadv.aaq1360 – volume: 9 start-page: 37 year: 2022 ident: ref_24 article-title: Defining user spectra to classify Ethereum users based on their behavior publication-title: J. Big Data doi: 10.1186/s40537-022-00586-3 – volume: 51 start-page: 3212 year: 2019 ident: ref_6 article-title: Daily market news sentiment and stock prices publication-title: Appl. Econ. doi: 10.1080/00036846.2018.1564115 – volume: 3 start-page: 993 year: 2003 ident: ref_18 article-title: Latent dirichlet allocation publication-title: J. Mach. Learn. Res. – volume: 41 start-page: 823 year: 2020 ident: ref_21 article-title: Deep LDA: A new way to topic model publication-title: J. Inf. Optim. Sci. |
SSID | ssj0000913830 |
Score | 2.3856614 |
Snippet | News impact analysis has become a common task conducted by finance researchers, which involves reading and selecting news articles based on themes and... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2605 |
SubjectTerms | Analysis Big data Comparative studies Computational linguistics Computing time Data mining Deep learning Dirichlet problem Finance Financial markets Impact analysis Language processing Methods Modelling Natural language interfaces Natural language processing News Securities markets Semantics Sentiment analysis Social networks Subject specialists |
Title | Leveraging State-of-the-Art Topic Modeling for News Impact Analysis on Financial Markets: A Comparative Study |
URI | https://www.proquest.com/docview/2829799954 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7W5GV7GN0vlq0NehjsZaK2ZUlWX0aaNc1GU8bWQt-MLEtQ2OK0yR763-_OkZsWQp5tGXOS7r476b4P4FOdJsYZVXAdjOZ5nRpulau5sIkMmVMutI3Csws1vcp_XMvrWHBbxmuVnU9sHXXdOKqRH9GJnzbEXvZ1cctJNYpOV6OExh700QUXRQ_6J6cXP389VFmI9bIQyZpuSGB-f7RRl1mmOIbg_JOQtN0xt9Fmsg8vI0xko_W8voJnfv4aXjwiD3wDf889LsNWZIi1kJE3gSOc4ziIXTaLG8dI6IzazRkiU0bujH1vmyJZR0XCmjmbdJwbbNZ2QC-P2YiNN6TgjK4a3r-Fq8np5XjKo3gCd0KlK55aRCZ5ZWslrE4QFGVWu1B54bM85KbQtnIiCToEzIhsJr1RUnrtlFdpcFKLd9CbN3P_HphLncLMAhPYKs9tnlS1MiJgaKtNyKyRA8g6-5UuMouTwMWfEjMMMnq5xegD-PIwaLEm1tj9-meamJK2HX7b2dg9gH9IBFblSEutJcZWPYCDbu7KuB-X5Wb1fNj9-CM8J0H59WWwA-it7v75Q4Qdq2oIe8XkbAj90bfZ-e9hXGn_AcnQ3PU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5ROLQ9VH2KFNr60KqXWuyuXxgJoQgISUk4BYnb1uu1JSSaTZtUiD_V38jMPkgrIW6cvbZW47G_GdvzfQCfyzSx3updbqI1XJap5U77kguXqJh57WNdKDw508Nz-f1CXazB364Whp5VdntivVGXlacz8h268TOW2MsO5r84qUbR7WonodG4xWm4ucaUbbE_OsL5_ZJlg-Pp4ZC3qgLcC50ueeoQsmXhSi2cSTBayJzxsQgiZDJKTMFd4UUSTYyYKrhMBauVCsbroNPolRE47hPYkAKRnCrTByd3ZzrEsbkrkobcCNuTnZWWzSJFkKDk4T8AvB8GamwbvIQXbVDK-o0XvYK1MHsNz_-hKnwDP8cBnb6WNGJ1gMqryDF45NiJTav5pWckq0bF7QzjYEabJxvVJZisIz5h1YwNOoYPNqnrrRd7rM8OVxTkjB423ryF80cx6jtYn1WzsAnMp15jHoPpciGlk0lRaisiAmlpY-as6kHW2S_3LY85yWlc5ZjPkNHze4zeg293neYNjcfDn3-liclpkePY3rW1CviHRJeV940yRiGSmx5sd3OXt6t_ka989f3DzZ_g6XA6Gefj0dnpFjwjKfvmGdo2rC9__wkfMOBZFh9rL2Pw47Hd-hba4RYy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dSxwxEB_0hKIPpR-KZ63NQ0tfGm53s0kuhVLOj8Oreogo-LZmswkU6u3Zu1L81_rXdWY_PAXxzefdDUsymZlfMvP7AXws4sg4o_pcB6N5WsSGW-UKLmwkQ-KUC1Wj8MlYHV6kPy7l5RL8a3thqKyy9YmVoy5KR2fkPbrx04bYy3qhKYs43R9-n95wUpCim9ZWTqM2kSN_-xfh2-zbaB_X-lOSDA_O9w55ozDAnVDxnMcWw3ea20IJqyPMHBKrXci98EkaUoTjNnciCjoEhA02kd4oKb12yqs4OKkFjrsMK5pQUQdWdg_Gp2d3JzzEuNkXUU11JISJegtlm1mMIYOgxINw-HhQqCLd8BW8bFJUNqht6jUs-ckbWLtHXPgWro89boFK4IhV6SovA8dUkuNH7Lyc_nSMRNao1Z1hVszIlbJR1ZDJWhoUVk7YsOX7YCdV9_XsKxuwvQUhOaMyx9t1uHiWad2AzqSc-E1gLnYKUQ2C5zxNbRrlhTIiYFgtTEiskV1I2vnLXMNqTuIavzJENzTp2SOT3oUvdx9Na1KPp1__TAuT0ZbHsZ1tOhfwD4k8KxtoqbXEuK67sN2uXdb4glm2sNytpx9_gBdo0tnxaHz0DlZJ176uSduGzvz3H_8es595vtOYGYOr57bs_yNuG8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+State-of-the-Art+Topic+Modeling+for+News+Impact+Analysis+on+Financial+Markets%3A+A+Comparative+Study&rft.jtitle=Electronics+%28Basel%29&rft.au=Chen%2C+Weisi&rft.au=Rabhi%2C+Fethi&rft.au=Liao%2C+Wenqi&rft.au=Al-Qudah%2C+Islam&rft.date=2023-06-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=12&rft.issue=12&rft.spage=2605&rft_id=info:doi/10.3390%2Felectronics12122605&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics12122605 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |