Leveraging State-of-the-Art Topic Modeling for News Impact Analysis on Financial Markets: A Comparative Study

News impact analysis has become a common task conducted by finance researchers, which involves reading and selecting news articles based on themes and sentiments, pairing news events and relevant stocks, and measuring the impact of selected news on stock prices. To facilitate more efficient news sel...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 12; no. 12; p. 2605
Main Authors Chen, Weisi, Rabhi, Fethi, Liao, Wenqi, Al-Qudah, Islam
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract News impact analysis has become a common task conducted by finance researchers, which involves reading and selecting news articles based on themes and sentiments, pairing news events and relevant stocks, and measuring the impact of selected news on stock prices. To facilitate more efficient news selection, topic modeling can be applied to generate topics out of a large number of news documents. However, there is very limited existing literature comparing topic models in the context of finance-related news impact analysis. In this paper, we compare three state-of-the-art topic models, namely Latent Dirichlet allocation (LDA), Top2Vec, and BERTopic, in a defined scenario of news impact analysis on financial markets, where 38,240 news articles with an average length of 590 words are analyzed. A service-oriented framework for news impact analysis called “News Impact Analysis” (NIA) is advocated to leverage multiple topic models and provide an automated and seamless news impact analysis process for finance researchers. Experimental results have shown that BERTopic performed best in this scenario, with minimal data preprocessing, the highest coherence score, the best interpretability, and reasonable computing time. In addition, a finance researcher was able to conduct the entire news impact analysis process, which validated the feasibility and usability of the NIA framework.
AbstractList News impact analysis has become a common task conducted by finance researchers, which involves reading and selecting news articles based on themes and sentiments, pairing news events and relevant stocks, and measuring the impact of selected news on stock prices. To facilitate more efficient news selection, topic modeling can be applied to generate topics out of a large number of news documents. However, there is very limited existing literature comparing topic models in the context of finance-related news impact analysis. In this paper, we compare three state-of-the-art topic models, namely Latent Dirichlet allocation (LDA), Top2Vec, and BERTopic, in a defined scenario of news impact analysis on financial markets, where 38,240 news articles with an average length of 590 words are analyzed. A service-oriented framework for news impact analysis called “News Impact Analysis” (NIA) is advocated to leverage multiple topic models and provide an automated and seamless news impact analysis process for finance researchers. Experimental results have shown that BERTopic performed best in this scenario, with minimal data preprocessing, the highest coherence score, the best interpretability, and reasonable computing time. In addition, a finance researcher was able to conduct the entire news impact analysis process, which validated the feasibility and usability of the NIA framework.
Audience Academic
Author Liao, Wenqi
Rabhi, Fethi
Chen, Weisi
Al-Qudah, Islam
Author_xml – sequence: 1
  givenname: Weisi
  orcidid: 0000-0001-8131-392X
  surname: Chen
  fullname: Chen, Weisi
– sequence: 2
  givenname: Fethi
  surname: Rabhi
  fullname: Rabhi, Fethi
– sequence: 3
  givenname: Wenqi
  surname: Liao
  fullname: Liao, Wenqi
– sequence: 4
  givenname: Islam
  surname: Al-Qudah
  fullname: Al-Qudah, Islam
BookMark eNp9UT1vGzEMFYoUSJr4F2QR0PlSfZxOVreD0aQBnHSIOx9omXKVniVXkh3431eGMxRBEXIgQb73SJCfyFmIAQm55uxGSsO-4Ii2pBi8zVxwITqmPpALwbRpjDDi7J_8nExyfmbVDJdTyS7IZo57TLD2YU2fChRsomvKL2z6VOgibr2lD3GF47HvYqKP-JLp_WYLttA-wHjIPtMY6K0PEKyHkT5A-o0lf6U9ncUKTFD8Hqv4bnW4Ih8djBknr_GS_Lz9tph9b-Y_7u5n_byxsuOl4aCFbpew6iRo1kolQFu3RImida2ZalhayZx2jvMWhELTKYXadthxZ5WWl-TzSXeb4p8d5jI8x12q6-ZBTIXRxhjVVtTNCbWGEQcfXCwJbPUVbrytR3a-1nuttFbCmKOsPBFsijkndMM2-Q2kw8DZcPzF8J9fVJZ5w7K-XtrHUMf58V3uX9qklS4
CitedBy_id crossref_primary_10_1371_journal_pone_0296855
crossref_primary_10_3390_analytics3030021
crossref_primary_10_1016_j_eswa_2023_121391
crossref_primary_10_1109_ACCESS_2023_3295694
crossref_primary_10_3390_bdcc8080086
crossref_primary_10_1111_beer_12808
crossref_primary_10_1038_s41598_023_45758_0
crossref_primary_10_1177_20552076241282622
crossref_primary_10_1057_s41599_023_02087_x
crossref_primary_10_1109_ACCESS_2025_3552221
crossref_primary_10_3389_frai_2024_1329185
crossref_primary_10_3390_math11204375
crossref_primary_10_1007_s41060_024_00516_x
crossref_primary_10_1007_s00779_024_01820_w
crossref_primary_10_3390_info15100659
crossref_primary_10_1007_s13198_024_02641_z
crossref_primary_10_3390_app14177675
Cites_doi 10.1038/s42254-023-00581-4
10.1162/tacl_a_00078
10.1007/s10489-023-04452-4
10.1109/ACCESS.2021.3062875
10.1080/1331677X.2021.1941179
10.1007/978-3-030-98305-5_12
10.1016/j.ipm.2021.102708
10.1007/s11761-023-00358-8
10.1016/j.tourman.2019.01.002
10.1145/3507900
10.1177/0972150920957274
10.1080/19312458.2018.1430754
10.1016/j.is.2020.101582
10.3389/fsoc.2022.886498
10.3390/bdcc7010038
10.1007/s11280-022-01029-y
10.1016/j.is.2022.102131
10.1016/j.asoc.2022.109673
10.1016/j.compedu.2020.103855
10.1016/j.techfore.2021.121265
10.1016/j.knosys.2022.108742
10.1145/3520084.3520104
10.1109/ICOMET.2019.8673428
10.3390/bdcc6040130
10.1016/j.neucom.2021.05.103
10.1016/j.eswa.2023.119509
10.1186/s40537-019-0255-7
10.1126/sciadv.aaq1360
10.1186/s40537-022-00586-3
10.1080/00036846.2018.1564115
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.3390/electronics12122605
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A757752997
10_3390_electronics12122605
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
PMFND
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-1a7274bad63a704352a7cfbe3e24f4987abc30f7ff114a25e9655e7c6e61fc573
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Sat Jul 26 00:29:35 EDT 2025
Tue Jun 10 21:10:40 EDT 2025
Tue Jul 01 01:47:48 EDT 2025
Thu Apr 24 23:06:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-1a7274bad63a704352a7cfbe3e24f4987abc30f7ff114a25e9655e7c6e61fc573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8131-392X
OpenAccessLink https://www.proquest.com/docview/2829799954?pq-origsite=%requestingapplication%
PQID 2829799954
PQPubID 2032404
ParticipantIDs proquest_journals_2829799954
gale_infotracacademiconefile_A757752997
crossref_primary_10_3390_electronics12122605
crossref_citationtrail_10_3390_electronics12122605
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Poongodi (ref_30) 2021; 58
Churchill (ref_14) 2022; 54
Egger (ref_31) 2022; 7
ref_36
Eachempati (ref_9) 2022; 174
Ashtiani (ref_11) 2023; 217
ref_13
ref_35
ref_12
Bonifazi (ref_24) 2022; 9
Asmussen (ref_26) 2019; 6
ref_34
Vayansky (ref_15) 2020; 94
Bhat (ref_21) 2020; 41
Birhane (ref_38) 2023; 5
ref_19
Hu (ref_27) 2019; 72
ref_37
Abdelrazek (ref_16) 2023; 112
Ghasiya (ref_29) 2021; 9
Maier (ref_25) 2018; 12
Blei (ref_18) 2003; 3
Allen (ref_6) 2019; 51
TajMazinani (ref_4) 2022; 26
ref_23
ref_22
Yin (ref_32) 2022; 25
Lin (ref_10) 2022; 130
Lauriola (ref_5) 2022; 470
Chen (ref_28) 2020; 151
ref_3
Egger (ref_33) 2022; 77
Shahzad (ref_8) 2022; 35
Tabbakh (ref_1) 2022; 247
Gerlach (ref_20) 2018; 4
Gallagher (ref_17) 2017; 5
Chen (ref_2) 2023; 17
ref_7
References_xml – volume: 5
  start-page: 277
  year: 2023
  ident: ref_38
  article-title: Science in the age of large language models
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-023-00581-4
– volume: 5
  start-page: 529
  year: 2017
  ident: ref_17
  article-title: Anchored Correlation Explanation: Topic Modeling with Minimal Domain Knowledge
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00078
– ident: ref_34
  doi: 10.1007/s10489-023-04452-4
– volume: 9
  start-page: 36645
  year: 2021
  ident: ref_29
  article-title: Investigating COVID-19 News across Four Nations: A Topic Modeling and Sentiment Analysis Approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3062875
– volume: 35
  start-page: 2313
  year: 2022
  ident: ref_8
  article-title: Outbreak of epidemic diseases and stock returns: An event study of emerging economy
  publication-title: Econ. Res.-Ekon. Istraživanja
  doi: 10.1080/1331677X.2021.1941179
– ident: ref_35
  doi: 10.1007/978-3-030-98305-5_12
– volume: 58
  start-page: 102708
  year: 2021
  ident: ref_30
  article-title: Global cryptocurrency trend prediction using social media
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2021.102708
– volume: 17
  start-page: 129
  year: 2023
  ident: ref_2
  article-title: A CEP-driven framework for real-time news impact prediction on financial markets
  publication-title: Serv. Oriented Comput. Appl.
  doi: 10.1007/s11761-023-00358-8
– volume: 72
  start-page: 417
  year: 2019
  ident: ref_27
  article-title: What do hotel customers complain about? Text analysis using structural topic model
  publication-title: Tour. Manag.
  doi: 10.1016/j.tourman.2019.01.002
– volume: 54
  start-page: 215
  year: 2022
  ident: ref_14
  article-title: The Evolution of Topic Modeling
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3507900
– ident: ref_37
  doi: 10.1177/0972150920957274
– volume: 12
  start-page: 93
  year: 2018
  ident: ref_25
  article-title: Applying LDA Topic Modeling in Communication Research: Toward a Valid and Reliable Methodology
  publication-title: Commun. Methods Meas.
  doi: 10.1080/19312458.2018.1430754
– volume: 94
  start-page: 101582
  year: 2020
  ident: ref_15
  article-title: A review of topic modeling methods
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2020.101582
– ident: ref_23
– volume: 7
  start-page: 80
  year: 2022
  ident: ref_31
  article-title: A Topic Modeling Comparison between LDA, NMF, Top2Vec, and BERTopic to Demystify Twitter Posts
  publication-title: Front. Sociol.
  doi: 10.3389/fsoc.2022.886498
– ident: ref_13
  doi: 10.3390/bdcc7010038
– volume: 25
  start-page: 1067
  year: 2022
  ident: ref_32
  article-title: Sentiment analysis and topic modeling for COVID-19 vaccine discussions
  publication-title: World Wide Web
  doi: 10.1007/s11280-022-01029-y
– volume: 112
  start-page: 102131
  year: 2023
  ident: ref_16
  article-title: Topic modeling algorithms and applications: A survey
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2022.102131
– volume: 77
  start-page: 1234
  year: 2022
  ident: ref_33
  article-title: Identifying hidden semantic structures in Instagram data: A topic modelling comparison
  publication-title: Tour. Rev.
– volume: 130
  start-page: 109673
  year: 2022
  ident: ref_10
  article-title: Factors affecting text mining based stock prediction: Text feature representations, machine learning models, and news platforms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109673
– volume: 151
  start-page: 103855
  year: 2020
  ident: ref_28
  article-title: Detecting latent topics and trends in educational technologies over four decades using structural topic modeling: A retrospective of all volumes of Computers & Education
  publication-title: Comput. Educ.
  doi: 10.1016/j.compedu.2020.103855
– volume: 174
  start-page: 121265
  year: 2022
  ident: ref_9
  article-title: Can customer sentiment impact firm value? An integrated text mining approach
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2021.121265
– volume: 247
  start-page: 108742
  year: 2022
  ident: ref_1
  article-title: Investigating the informativeness of technical indicators and news sentiment in financial market price prediction
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108742
– ident: ref_12
  doi: 10.1145/3520084.3520104
– ident: ref_7
  doi: 10.1109/ICOMET.2019.8673428
– volume: 26
  start-page: 116
  year: 2022
  ident: ref_4
  article-title: A comprehensive review of stock price prediction using text mining
  publication-title: Adv. Decis. Sci.
– ident: ref_36
– ident: ref_3
  doi: 10.3390/bdcc6040130
– ident: ref_19
– volume: 470
  start-page: 443
  year: 2022
  ident: ref_5
  article-title: An introduction to Deep Learning in Natural Language Processing: Models, techniques, and tools
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.05.103
– ident: ref_22
– volume: 217
  start-page: 119509
  year: 2023
  ident: ref_11
  article-title: News-based intelligent prediction of financial markets using text mining and machine learning: A systematic literature review
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.119509
– volume: 6
  start-page: 93
  year: 2019
  ident: ref_26
  article-title: Smart literature review: A practical topic modelling approach to exploratory literature review
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0255-7
– volume: 4
  start-page: eaaq1360
  year: 2018
  ident: ref_20
  article-title: A network approach to topic models
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaq1360
– volume: 9
  start-page: 37
  year: 2022
  ident: ref_24
  article-title: Defining user spectra to classify Ethereum users based on their behavior
  publication-title: J. Big Data
  doi: 10.1186/s40537-022-00586-3
– volume: 51
  start-page: 3212
  year: 2019
  ident: ref_6
  article-title: Daily market news sentiment and stock prices
  publication-title: Appl. Econ.
  doi: 10.1080/00036846.2018.1564115
– volume: 3
  start-page: 993
  year: 2003
  ident: ref_18
  article-title: Latent dirichlet allocation
  publication-title: J. Mach. Learn. Res.
– volume: 41
  start-page: 823
  year: 2020
  ident: ref_21
  article-title: Deep LDA: A new way to topic model
  publication-title: J. Inf. Optim. Sci.
SSID ssj0000913830
Score 2.3856614
Snippet News impact analysis has become a common task conducted by finance researchers, which involves reading and selecting news articles based on themes and...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2605
SubjectTerms Analysis
Big data
Comparative studies
Computational linguistics
Computing time
Data mining
Deep learning
Dirichlet problem
Finance
Financial markets
Impact analysis
Language processing
Methods
Modelling
Natural language interfaces
Natural language processing
News
Securities markets
Semantics
Sentiment analysis
Social networks
Subject specialists
Title Leveraging State-of-the-Art Topic Modeling for News Impact Analysis on Financial Markets: A Comparative Study
URI https://www.proquest.com/docview/2829799954
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7W5GV7GN0vlq0NehjsZaK2ZUlWX0aaNc1GU8bWQt-MLEtQ2OK0yR763-_OkZsWQp5tGXOS7r476b4P4FOdJsYZVXAdjOZ5nRpulau5sIkMmVMutI3Csws1vcp_XMvrWHBbxmuVnU9sHXXdOKqRH9GJnzbEXvZ1cctJNYpOV6OExh700QUXRQ_6J6cXP389VFmI9bIQyZpuSGB-f7RRl1mmOIbg_JOQtN0xt9Fmsg8vI0xko_W8voJnfv4aXjwiD3wDf889LsNWZIi1kJE3gSOc4ziIXTaLG8dI6IzazRkiU0bujH1vmyJZR0XCmjmbdJwbbNZ2QC-P2YiNN6TgjK4a3r-Fq8np5XjKo3gCd0KlK55aRCZ5ZWslrE4QFGVWu1B54bM85KbQtnIiCToEzIhsJr1RUnrtlFdpcFKLd9CbN3P_HphLncLMAhPYKs9tnlS1MiJgaKtNyKyRA8g6-5UuMouTwMWfEjMMMnq5xegD-PIwaLEm1tj9-meamJK2HX7b2dg9gH9IBFblSEutJcZWPYCDbu7KuB-X5Wb1fNj9-CM8J0H59WWwA-it7v75Q4Qdq2oIe8XkbAj90bfZ-e9hXGn_AcnQ3PU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5ROLQ9VH2KFNr60KqXWuyuXxgJoQgISUk4BYnb1uu1JSSaTZtUiD_V38jMPkgrIW6cvbZW47G_GdvzfQCfyzSx3updbqI1XJap5U77kguXqJh57WNdKDw508Nz-f1CXazB364Whp5VdntivVGXlacz8h268TOW2MsO5r84qUbR7WonodG4xWm4ucaUbbE_OsL5_ZJlg-Pp4ZC3qgLcC50ueeoQsmXhSi2cSTBayJzxsQgiZDJKTMFd4UUSTYyYKrhMBauVCsbroNPolRE47hPYkAKRnCrTByd3ZzrEsbkrkobcCNuTnZWWzSJFkKDk4T8AvB8GamwbvIQXbVDK-o0XvYK1MHsNz_-hKnwDP8cBnb6WNGJ1gMqryDF45NiJTav5pWckq0bF7QzjYEabJxvVJZisIz5h1YwNOoYPNqnrrRd7rM8OVxTkjB423ryF80cx6jtYn1WzsAnMp15jHoPpciGlk0lRaisiAmlpY-as6kHW2S_3LY85yWlc5ZjPkNHze4zeg293neYNjcfDn3-liclpkePY3rW1CviHRJeV940yRiGSmx5sd3OXt6t_ka989f3DzZ_g6XA6Gefj0dnpFjwjKfvmGdo2rC9__wkfMOBZFh9rL2Pw47Hd-hba4RYy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dSxwxEB_0hKIPpR-KZ63NQ0tfGm53s0kuhVLOj8Oreogo-LZmswkU6u3Zu1L81_rXdWY_PAXxzefdDUsymZlfMvP7AXws4sg4o_pcB6N5WsSGW-UKLmwkQ-KUC1Wj8MlYHV6kPy7l5RL8a3thqKyy9YmVoy5KR2fkPbrx04bYy3qhKYs43R9-n95wUpCim9ZWTqM2kSN_-xfh2-zbaB_X-lOSDA_O9w55ozDAnVDxnMcWw3ea20IJqyPMHBKrXci98EkaUoTjNnciCjoEhA02kd4oKb12yqs4OKkFjrsMK5pQUQdWdg_Gp2d3JzzEuNkXUU11JISJegtlm1mMIYOgxINw-HhQqCLd8BW8bFJUNqht6jUs-ckbWLtHXPgWro89boFK4IhV6SovA8dUkuNH7Lyc_nSMRNao1Z1hVszIlbJR1ZDJWhoUVk7YsOX7YCdV9_XsKxuwvQUhOaMyx9t1uHiWad2AzqSc-E1gLnYKUQ2C5zxNbRrlhTIiYFgtTEiskV1I2vnLXMNqTuIavzJENzTp2SOT3oUvdx9Na1KPp1__TAuT0ZbHsZ1tOhfwD4k8KxtoqbXEuK67sN2uXdb4glm2sNytpx9_gBdo0tnxaHz0DlZJ176uSduGzvz3H_8es595vtOYGYOr57bs_yNuG8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+State-of-the-Art+Topic+Modeling+for+News+Impact+Analysis+on+Financial+Markets%3A+A+Comparative+Study&rft.jtitle=Electronics+%28Basel%29&rft.au=Chen%2C+Weisi&rft.au=Rabhi%2C+Fethi&rft.au=Liao%2C+Wenqi&rft.au=Al-Qudah%2C+Islam&rft.date=2023-06-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=12&rft.issue=12&rft.spage=2605&rft_id=info:doi/10.3390%2Felectronics12122605&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics12122605
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon