Two-Stage UA-GAN for Precipitation Nowcasting
Short-term rainfall prediction by radar echo map extrapolation has been a very hot area of research in recent years, which is also an area worth studying owing to its importance for precipitation disaster prevention. Existing methods have some shortcomings. In terms of image indicators, the predicte...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 23; p. 5948 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Short-term rainfall prediction by radar echo map extrapolation has been a very hot area of research in recent years, which is also an area worth studying owing to its importance for precipitation disaster prevention. Existing methods have some shortcomings. In terms of image indicators, the predicted images are not clear enough and lack small-scale details, while in terms of precipitation accuracy indicators, the prediction is not accurate enough. In this paper, we proposed a two-stage model (two-stage UA-GAN) to achieve more accurate prediction echo images with more details. For the first stage, we used the Trajectory Gated Recurrent Unit (TrajGRU) model to carry out a pre-prediction, which proved to have a good ability to capture spatiotemporal movement of rain field. In the second stage, we proposed a spatiotemporal attention enhanced Generative Adversarial Networks (GAN) model with a U-Net structure and a new deep residual attention module in order to carry out the refinement and improvement of the first-stage prediction. Experimental results showed that our model outperforms the optical-flow based method Real-Time Optical Flow by Variational Methods for Echoes of Radar (ROVER), and some well-known Recurrent Neural Network (RNN)-based models (TrajGRU, PredRNN++, ConvGRU, Convolutional Long Short-Term Memory (ConvLSTM)) in terms of both image detail indexes and precipitation accuracy indexes, and is visible to the naked eye to have better accuracy and more details. |
---|---|
AbstractList | Short-term rainfall prediction by radar echo map extrapolation has been a very hot area of research in recent years, which is also an area worth studying owing to its importance for precipitation disaster prevention. Existing methods have some shortcomings. In terms of image indicators, the predicted images are not clear enough and lack small-scale details, while in terms of precipitation accuracy indicators, the prediction is not accurate enough. In this paper, we proposed a two-stage model (two-stage UA-GAN) to achieve more accurate prediction echo images with more details. For the first stage, we used the Trajectory Gated Recurrent Unit (TrajGRU) model to carry out a pre-prediction, which proved to have a good ability to capture spatiotemporal movement of rain field. In the second stage, we proposed a spatiotemporal attention enhanced Generative Adversarial Networks (GAN) model with a U-Net structure and a new deep residual attention module in order to carry out the refinement and improvement of the first-stage prediction. Experimental results showed that our model outperforms the optical-flow based method Real-Time Optical Flow by Variational Methods for Echoes of Radar (ROVER), and some well-known Recurrent Neural Network (RNN)-based models (TrajGRU, PredRNN++, ConvGRU, Convolutional Long Short-Term Memory (ConvLSTM)) in terms of both image detail indexes and precipitation accuracy indexes, and is visible to the naked eye to have better accuracy and more details. |
Author | Zhang, Tianbao Chen, Pengju Xu, Liujia Chen, Xunlai Niu, Dan Li, Yinghao |
Author_xml | – sequence: 1 givenname: Liujia surname: Xu fullname: Xu, Liujia – sequence: 2 givenname: Dan surname: Niu fullname: Niu, Dan – sequence: 3 givenname: Tianbao surname: Zhang fullname: Zhang, Tianbao – sequence: 4 givenname: Pengju surname: Chen fullname: Chen, Pengju – sequence: 5 givenname: Xunlai orcidid: 0000-0001-6906-2654 surname: Chen fullname: Chen, Xunlai – sequence: 6 givenname: Yinghao surname: Li fullname: Li, Yinghao |
BookMark | eNptkE9LAzEQxYMoWGsvfoKCN2E1_3dzLEVroVTB9hxms0lJqZuapBS_vastKuJcZhh-897wLtBpG1qL0BXBt4wpfBcT4ZQJxasT1KO4pAWnip7-ms_RIKU17ooxojDvoWKxD8VLhpUdLkfFZDQfuhCHz9Eav_UZsg_tcB72BlL27eoSnTnYJDs49j5aPtwvxo_F7GkyHY9mhWGS5IKUwjrTABHO1BZzVguoG9ZgURtKTAWUgDCgpFOggIpKCI6J5bSRhgsHrI-mB90mwFpvo3-F-K4DeP21CHGlIWZvNlYz1hBLqKGCGF6KpgLpSkudtETWIG2ndX3Q2sbwtrMp63XYxbZ7X9OSV0LiUrGOujlQJoaUonXfrgTrz3T1T7odjP_A5phVjuA3_518AIoTfC8 |
CitedBy_id | crossref_primary_10_3390_rs15061639 crossref_primary_10_1109_LGRS_2024_3486112 crossref_primary_10_3390_rs15225329 crossref_primary_10_1016_j_cageo_2025_105851 crossref_primary_10_3390_rs16193597 crossref_primary_10_1109_JSTARS_2024_3376987 crossref_primary_10_1109_TGRS_2025_3528423 crossref_primary_10_1007_s11227_024_06577_w crossref_primary_10_3390_rs16101681 crossref_primary_10_1109_TGRS_2024_3355755 crossref_primary_10_1109_TGRS_2024_3382172 crossref_primary_10_1016_j_patcog_2024_111193 |
Cites_doi | 10.1175/1520-0450(2004)043<0231:POPFCR>2.0.CO;2 10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2 10.1175/1520-0450(2003)042<0381:ADASSA>2.0.CO;2 10.1038/273287a0 10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2 10.1038/s41586-021-03854-z 10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2 10.3390/atmos8030048 10.1109/CVPR.2017.632 10.1109/CVPR.2017.179 10.1175/MWR-D-19-0396.1 10.1175/1520-0450(2004)043<0074:SDOTPO>2.0.CO;2 10.5194/gmd-12-4185-2019 10.1109/ACCESS.2020.2995187 10.1175/JTECH-D-18-0192.1 10.1109/CVPR.2015.7299117 10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2 10.3390/rs13214285 10.1175/BAMS-D-11-00263.1 10.1109/LGRS.2022.3141498 10.1175/JAS-D-12-029.1 10.1007/978-3-319-59081-3_37 10.1109/JSTARS.2021.3083647 10.5194/gmd-12-1387-2019 10.1109/TIP.2003.819861 10.1126/science.1115255 10.1007/s10651-007-0043-y |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs14235948 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_33d1e12c251c475d8a6f7e2f6e16ba6e 10_3390_rs14235948 |
GeographicLocations | Hong Kong China China |
GeographicLocations_xml | – name: Hong Kong China – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-175efcda15fcbe043b5abd3d05bc21c8a21a5ca96f9a9a25855401e42d6c45fa3 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:31:05 EDT 2025 Fri Jul 25 09:34:45 EDT 2025 Tue Jul 01 03:10:52 EDT 2025 Thu Apr 24 23:11:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-175efcda15fcbe043b5abd3d05bc21c8a21a5ca96f9a9a25855401e42d6c45fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6906-2654 |
OpenAccessLink | https://www.proquest.com/docview/2748560793?pq-origsite=%requestingapplication% |
PQID | 2748560793 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_33d1e12c251c475d8a6f7e2f6e16ba6e proquest_journals_2748560793 crossref_primary_10_3390_rs14235948 crossref_citationtrail_10_3390_rs14235948 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Dixon (ref_10) 1993; 10 Pulkkinen (ref_36) 2019; 12 Germann (ref_15) 2004; 43 ref_35 ref_34 ref_33 Gneiting (ref_1) 2005; 310 ref_32 ref_31 ref_30 Germann (ref_12) 2001; 130 ref_19 Tolstykh (ref_6) 2005; 41 Che (ref_40) 2022; 19 ref_17 ref_39 Ayzel (ref_5) 2019; 12 ref_16 Pontius (ref_41) 2008; 15 Turner (ref_38) 2011; 43 Shi (ref_18) 2018; 38 Radhakrishna (ref_37) 2012; 69 Sun (ref_7) 2014; 95 Wang (ref_29) 2021; 14 Seed (ref_14) 2003; 42 ref_25 ref_24 ref_23 ref_22 Xiao (ref_4) 2021; 149 ref_21 Zhang (ref_3) 2021; 40 ref_20 Radhakrishnan (ref_9) 2019; 37 ref_2 Liu (ref_27) 2020; 8 Li (ref_13) 1995; 34 Wang (ref_42) 2004; 13 Marshall (ref_8) 1948; 5 ref_28 ref_26 Rinehart (ref_11) 1978; 273 |
References_xml | – volume: 43 start-page: 231 year: 2011 ident: ref_38 article-title: Predictability of Precipitation from Continental Radar Images. Part III: Operational Nowcasting Implementation (MAPLE) publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/1520-0450(2004)043<0231:POPFCR>2.0.CO;2 – ident: ref_24 – ident: ref_26 – ident: ref_34 – volume: 5 start-page: 165 year: 1948 ident: ref_8 article-title: The distribution of raindrops with size publication-title: J. Meteor. doi: 10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2 – volume: 42 start-page: 381 year: 2003 ident: ref_14 article-title: A Dynamic and Spatial Scaling Approach to Advection Forecasting publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(2003)042<0381:ADASSA>2.0.CO;2 – volume: 273 start-page: 287 year: 1978 ident: ref_11 article-title: Three-Dimensional Storm Motion Detection by Conventional Weather Radar publication-title: Nature doi: 10.1038/273287a0 – volume: 34 start-page: 1286 year: 1995 ident: ref_13 article-title: Nowcasting of Motion and Growth of Precipitation with Radar over a Complex Orography publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2 – ident: ref_28 doi: 10.1038/s41586-021-03854-z – volume: 10 start-page: 785 year: 1993 ident: ref_10 article-title: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A Radar-Based Methodology publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2 – volume: 38 start-page: 661 year: 2018 ident: ref_18 article-title: Weather Radar Echo Extrapolation Method Based on Convolutional Neural Networks publication-title: J. Comput. Appl. – ident: ref_16 doi: 10.3390/atmos8030048 – ident: ref_31 doi: 10.1109/CVPR.2017.632 – ident: ref_39 – ident: ref_32 doi: 10.1109/CVPR.2017.179 – volume: 149 start-page: 353 year: 2021 ident: ref_4 article-title: Lightning Data Assimilation Scheme in a 4DVAR System and Its Impact on Very Short-Term Convective Forecasting publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-19-0396.1 – volume: 43 start-page: 74 year: 2004 ident: ref_15 article-title: Scale Dependence of the Predictability of Precipitation from Continental Radar Images. Part II: Probability Forecasts publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(2004)043<0074:SDOTPO>2.0.CO;2 – ident: ref_35 – volume: 12 start-page: 4185 year: 2019 ident: ref_36 article-title: Pysteps: An Open-Source Python Library for Probabilistic Precipitation Nowcasting (v1.0) publication-title: Geosci. Model Dev. doi: 10.5194/gmd-12-4185-2019 – ident: ref_23 – volume: 8 start-page: 93179 year: 2020 ident: ref_27 article-title: MPL-GAN: Towards Realistic Meteorological Predictive Learning Using Conditional GAN publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2995187 – volume: 37 start-page: 211 year: 2019 ident: ref_9 article-title: CASA Prediction System over Dallas–Fort Worth Urban Network: Blending of Nowcasting and High-Resolution Numerical Weather Prediction Model publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-18-0192.1 – ident: ref_17 doi: 10.1109/CVPR.2015.7299117 – volume: 41 start-page: 285 year: 2005 ident: ref_6 article-title: Some Current Problems in Numerical Weather Prediction publication-title: Izv. Atmos. Ocean. Phys. – volume: 130 start-page: 2859 year: 2001 ident: ref_12 article-title: Scale-Dependence of the Predictability of Precipitation from Continental Radar Images. Part I: Description of the Methodology publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2 – ident: ref_30 doi: 10.3390/rs13214285 – ident: ref_25 – volume: 95 start-page: 409 year: 2014 ident: ref_7 article-title: Use of NWP for Nowcasting Convective Precipitation: Recent Progress and Challenges publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-11-00263.1 – volume: 19 start-page: 1 year: 2022 ident: ref_40 article-title: ED-DRAP: Encoder–Decoder Deep Residual Attention Prediction Network for Radar Echoes publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2022.3141498 – ident: ref_33 – ident: ref_2 – volume: 69 start-page: 3336 year: 2012 ident: ref_37 article-title: Predictability of Precipitation from Continental Radar Images. Part V: Growth and Decay publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-12-029.1 – volume: 40 start-page: 10 year: 2021 ident: ref_3 article-title: Considerations on Reduction of Main Agricultural Natural Disasters in Henan Province, Taking July 20th Flood in Henan Province as a Case publication-title: Manag. Agric. Sci. Technol. – ident: ref_21 doi: 10.1007/978-3-319-59081-3_37 – volume: 14 start-page: 5735 year: 2021 ident: ref_29 article-title: Using Conditional Generative Adversarial 3D Convolutional Neural Network for Precise Radar Extrapolation publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3083647 – volume: 12 start-page: 1387 year: 2019 ident: ref_5 article-title: Optical Flow Models as an Open Benchmark for Radar-Based Precipitation Nowcasting (Rainymotion v0.1) publication-title: Geosci. Model Dev. doi: 10.5194/gmd-12-1387-2019 – volume: 13 start-page: 600 year: 2004 ident: ref_42 article-title: Image Quality Assessment: From Error Visibility to Structural Similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 310 start-page: 248 year: 2005 ident: ref_1 article-title: Weather Forecasting with Ensemble Methods publication-title: Science doi: 10.1126/science.1115255 – ident: ref_19 – ident: ref_22 – ident: ref_20 – volume: 15 start-page: 111 year: 2008 ident: ref_41 article-title: Components of Information for Multiple Resolution Comparison between Maps That Share a Real Variable publication-title: Environ. Ecol. Stat. doi: 10.1007/s10651-007-0043-y |
SSID | ssj0000331904 |
Score | 2.4275715 |
Snippet | Short-term rainfall prediction by radar echo map extrapolation has been a very hot area of research in recent years, which is also an area worth studying owing... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 5948 |
SubjectTerms | Accuracy Algorithms Artificial intelligence attention mechanism Emergency preparedness GAN Generative adversarial networks Indicators Long short-term memory Neural networks Nowcasting Optical flow (image analysis) Precipitation precipitation nowcasting Predictions Radar Radar echoes Rain Rainfall Recurrent neural networks Remote sensing spatiotemporal prediction Statistical methods Variational methods Weather forecasting |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Si17EJ1arLOjFQ-jmubvHKtYiWDy00NuSnSR6kLb0QfHfO9nd1oqCF6_LwCYzyXzfwOQbQm609rGyQtA4yTiViTDUCMUoz1zQhwOmIDxOfu7r3lA-jdRoa9RX6Amr5IErx7WFsMwxDojDIBNlU6N94rjXjunCaBeyL2LeVjFV5mCBRyuWlR6pwLq-PZszZA5BnOQbApVC_T_ycAku3QOyX7PCqFOt5pDsuPER2a0HlL99HBM6WE0oEsNXFw079LHTj5BsRi9BmmJaq2xH_ckKzDy0MZ-QYfdhcN-j9aQDCkKzBUUMdx6sYcpD4WIpCmUKK2ysCuAMUsOZUWAy7TOTGa5Cb1nMnORWg1TeiFPSGE_G7oxEFtBd3kqfGCtT3K5AOw3IBEA5iFmT3K53n0O9wDCN4j3HciB4Kv_yVJNcb2ynlfjFr1Z3wYkbiyBYXX7AMOZ1GPO_wtgkrXUI8voWzXOsmFNkZJhCzv_jHxdkj4fHC2UzSos0FrOlu0RKsSiuytPzCY-jx8M priority: 102 providerName: Directory of Open Access Journals |
Title | Two-Stage UA-GAN for Precipitation Nowcasting |
URI | https://www.proquest.com/docview/2748560793 https://doaj.org/article/33d1e12c251c475d8a6f7e2f6e16ba6e |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED4N-rC9TBtjWhmrIrGXPVjEP5M8obJR0DQqNKjEW-Sc7fKAmtJ2QvvvOadu0bRpr8lFss_23XeX83cAn40JuXZSsryoBFOFtMxKzZmofOSHQ64xXk6-HJuLifp-q29Twm2Zyio3NrEz1K7FmCM_puipJO9M2-lk_sBi16j4dzW10NiBHpngkoKv3unZ-OrnNsuSS9piuVrzkkqK748XS04IIpKU_OGJOsL-v-xx52RGb-B1QofZcL2cb-GFn-3By9So_O73O2A3jy0jgDj12WTIzofjjEBndhUpKuaJbTsbt49ol7GceR8mo7ObrxcsdTxgKA1fMfLlPqCzXAdsfK5ko23jpMt1g4JjaQW3Gm1lQmUrK3SsMcu5V8IZVDpY-R52Z-3Mf4DMIfc8OBUK61RJ05UkZ5AQAWqPOe_Dl83sa0wDjF0p7msKC6Km6mdN9eFoKztfk2D8U-o0KnErEYmruwftYlqnc0DfOBqXQIJVqArtSmtC4UUwnpvGGt-Hw80S1Ok0LevntT_4_-uP8ErE6wlduckh7K4Wv_wnAg2rZgA75eh8AL3ht8sf14O0TwZdCP4EsYvDuQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigXVF4itBRLwIHDqt6n7QNCKZCmtI04JFJvZj272x5QHJJUUf9UfyOzjp0Kgbj16h1bu7MzO9-uZ78BeGdMSLWTkqVZIZjKpGVWas5E4SM_HHKN8XLy-cgMJ-rbhb7YgtvuLkxMq-zWxGahdjXGM_JD2j3lFJ3JnD7NfrFYNSr-Xe1KaKzN4tTfrGjLtvh48oXm970Qg6_jz0PWVhVgKA1fMoqXPqCzXAesfKpkpW3lpEt1hYJjbgW3Gm1hQmELK3TM40q5V8IZVDpYSd99AA-VlEX0qHxwvDnTSSUZdKrWLKjUnh7OF5zwSqRE-SPuNeUB_lr9m5A22IXHLRZN-mvjeQJbfvoUdtqy6Fc3z4CNVzUjOHrpk0mfHfdHCUHc5HskxJi13N7JqF6hXcTk6ecwuRdNvIDtaT31LyFxyD0PToXMOpXTcCXJGST8gdpjynvwoRt9iW0HYw2MnyVtQqKmyjtN9eDtRna2ptz4p9RRVOJGItJkNw_q-WXZeh2946hfAgnEocq0y60JmRfBeG4qa3wP9rspKFvfXZR3lvbq_81vYGc4Pj8rz05Gp3vwSMSLEU2iyz5sL-fX_jXBlWV10NhIAj_u2yh_A9QG_TA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuiKdIKbAScOBgxe_NHhBKaUNLYRWhRupt8fpRDiibJkFR_xq_jvHGmwqBuPW6O7uyx589M_b4G4DXWgeqnBCE5gUnMheGGKEY4YWP_HCWKRsvJ38p9fFUfjpX5zvwq7sLE9MquzWxXahdY-Me-QCjpyFaZ4TTIKS0iMnh-P38ksQKUvGktSunsYHIqb9aY_i2fHdyiGP9hvPx0dmHY5IqDBArNFsRtJ0-WGeYCrb2VIpamdoJR1VtObNDw5lR1hQ6FKYwXMWcLsq85E5bqYIR-N9bsJtjVER7sHtwVE6-bnd4qEB4U7nhRBWioIPFkqH3EglS_rCCbbGAv2xBa-DG9-Fe8kyz0QZKD2DHzx7CnVQk_fvVIyBn64agc3rhs-mIfByVGTq82STSY8wT03dWNmtrljGV-jFMb0QXT6A3a2b-KWTOMs-CkyE3Tg6xuwLltEVvxCpvKevD2673lU0NjBUxflQYkkRNVdea6sOrrex8Q8DxT6mDqMStRCTNbh80i4sqzUH8xmG7uEWXzspcuaHRIfc8aM90bbTvw343BFWaycvqGnd7_3_9Em4jIKvPJ-XpM7jL4y2JNutlH3qrxU__HH2XVf0igSSDbzeNy9-cKwLR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Stage+UA-GAN+for+Precipitation+Nowcasting&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Xu%2C+Liujia&rft.au=Niu%2C+Dan&rft.au=Zhang%2C+Tianbao&rft.au=Chen%2C+Pengju&rft.date=2022-12-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=23&rft.spage=5948&rft_id=info:doi/10.3390%2Frs14235948&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14235948 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |