Two-Stage UA-GAN for Precipitation Nowcasting

Short-term rainfall prediction by radar echo map extrapolation has been a very hot area of research in recent years, which is also an area worth studying owing to its importance for precipitation disaster prevention. Existing methods have some shortcomings. In terms of image indicators, the predicte...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 23; p. 5948
Main Authors Xu, Liujia, Niu, Dan, Zhang, Tianbao, Chen, Pengju, Chen, Xunlai, Li, Yinghao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Short-term rainfall prediction by radar echo map extrapolation has been a very hot area of research in recent years, which is also an area worth studying owing to its importance for precipitation disaster prevention. Existing methods have some shortcomings. In terms of image indicators, the predicted images are not clear enough and lack small-scale details, while in terms of precipitation accuracy indicators, the prediction is not accurate enough. In this paper, we proposed a two-stage model (two-stage UA-GAN) to achieve more accurate prediction echo images with more details. For the first stage, we used the Trajectory Gated Recurrent Unit (TrajGRU) model to carry out a pre-prediction, which proved to have a good ability to capture spatiotemporal movement of rain field. In the second stage, we proposed a spatiotemporal attention enhanced Generative Adversarial Networks (GAN) model with a U-Net structure and a new deep residual attention module in order to carry out the refinement and improvement of the first-stage prediction. Experimental results showed that our model outperforms the optical-flow based method Real-Time Optical Flow by Variational Methods for Echoes of Radar (ROVER), and some well-known Recurrent Neural Network (RNN)-based models (TrajGRU, PredRNN++, ConvGRU, Convolutional Long Short-Term Memory (ConvLSTM)) in terms of both image detail indexes and precipitation accuracy indexes, and is visible to the naked eye to have better accuracy and more details.
AbstractList Short-term rainfall prediction by radar echo map extrapolation has been a very hot area of research in recent years, which is also an area worth studying owing to its importance for precipitation disaster prevention. Existing methods have some shortcomings. In terms of image indicators, the predicted images are not clear enough and lack small-scale details, while in terms of precipitation accuracy indicators, the prediction is not accurate enough. In this paper, we proposed a two-stage model (two-stage UA-GAN) to achieve more accurate prediction echo images with more details. For the first stage, we used the Trajectory Gated Recurrent Unit (TrajGRU) model to carry out a pre-prediction, which proved to have a good ability to capture spatiotemporal movement of rain field. In the second stage, we proposed a spatiotemporal attention enhanced Generative Adversarial Networks (GAN) model with a U-Net structure and a new deep residual attention module in order to carry out the refinement and improvement of the first-stage prediction. Experimental results showed that our model outperforms the optical-flow based method Real-Time Optical Flow by Variational Methods for Echoes of Radar (ROVER), and some well-known Recurrent Neural Network (RNN)-based models (TrajGRU, PredRNN++, ConvGRU, Convolutional Long Short-Term Memory (ConvLSTM)) in terms of both image detail indexes and precipitation accuracy indexes, and is visible to the naked eye to have better accuracy and more details.
Author Zhang, Tianbao
Chen, Pengju
Xu, Liujia
Chen, Xunlai
Niu, Dan
Li, Yinghao
Author_xml – sequence: 1
  givenname: Liujia
  surname: Xu
  fullname: Xu, Liujia
– sequence: 2
  givenname: Dan
  surname: Niu
  fullname: Niu, Dan
– sequence: 3
  givenname: Tianbao
  surname: Zhang
  fullname: Zhang, Tianbao
– sequence: 4
  givenname: Pengju
  surname: Chen
  fullname: Chen, Pengju
– sequence: 5
  givenname: Xunlai
  orcidid: 0000-0001-6906-2654
  surname: Chen
  fullname: Chen, Xunlai
– sequence: 6
  givenname: Yinghao
  surname: Li
  fullname: Li, Yinghao
BookMark eNptkE9LAzEQxYMoWGsvfoKCN2E1_3dzLEVroVTB9hxms0lJqZuapBS_vastKuJcZhh-897wLtBpG1qL0BXBt4wpfBcT4ZQJxasT1KO4pAWnip7-ms_RIKU17ooxojDvoWKxD8VLhpUdLkfFZDQfuhCHz9Eav_UZsg_tcB72BlL27eoSnTnYJDs49j5aPtwvxo_F7GkyHY9mhWGS5IKUwjrTABHO1BZzVguoG9ZgURtKTAWUgDCgpFOggIpKCI6J5bSRhgsHrI-mB90mwFpvo3-F-K4DeP21CHGlIWZvNlYz1hBLqKGCGF6KpgLpSkudtETWIG2ndX3Q2sbwtrMp63XYxbZ7X9OSV0LiUrGOujlQJoaUonXfrgTrz3T1T7odjP_A5phVjuA3_518AIoTfC8
CitedBy_id crossref_primary_10_3390_rs15061639
crossref_primary_10_1109_LGRS_2024_3486112
crossref_primary_10_3390_rs15225329
crossref_primary_10_1016_j_cageo_2025_105851
crossref_primary_10_3390_rs16193597
crossref_primary_10_1109_JSTARS_2024_3376987
crossref_primary_10_1109_TGRS_2025_3528423
crossref_primary_10_1007_s11227_024_06577_w
crossref_primary_10_3390_rs16101681
crossref_primary_10_1109_TGRS_2024_3355755
crossref_primary_10_1109_TGRS_2024_3382172
crossref_primary_10_1016_j_patcog_2024_111193
Cites_doi 10.1175/1520-0450(2004)043<0231:POPFCR>2.0.CO;2
10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
10.1175/1520-0450(2003)042<0381:ADASSA>2.0.CO;2
10.1038/273287a0
10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2
10.1038/s41586-021-03854-z
10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
10.3390/atmos8030048
10.1109/CVPR.2017.632
10.1109/CVPR.2017.179
10.1175/MWR-D-19-0396.1
10.1175/1520-0450(2004)043<0074:SDOTPO>2.0.CO;2
10.5194/gmd-12-4185-2019
10.1109/ACCESS.2020.2995187
10.1175/JTECH-D-18-0192.1
10.1109/CVPR.2015.7299117
10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2
10.3390/rs13214285
10.1175/BAMS-D-11-00263.1
10.1109/LGRS.2022.3141498
10.1175/JAS-D-12-029.1
10.1007/978-3-319-59081-3_37
10.1109/JSTARS.2021.3083647
10.5194/gmd-12-1387-2019
10.1109/TIP.2003.819861
10.1126/science.1115255
10.1007/s10651-007-0043-y
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs14235948
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_33d1e12c251c475d8a6f7e2f6e16ba6e
10_3390_rs14235948
GeographicLocations Hong Kong China
China
GeographicLocations_xml – name: Hong Kong China
– name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-175efcda15fcbe043b5abd3d05bc21c8a21a5ca96f9a9a25855401e42d6c45fa3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:31:05 EDT 2025
Fri Jul 25 09:34:45 EDT 2025
Tue Jul 01 03:10:52 EDT 2025
Thu Apr 24 23:11:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-175efcda15fcbe043b5abd3d05bc21c8a21a5ca96f9a9a25855401e42d6c45fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6906-2654
OpenAccessLink https://www.proquest.com/docview/2748560793?pq-origsite=%requestingapplication%
PQID 2748560793
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_33d1e12c251c475d8a6f7e2f6e16ba6e
proquest_journals_2748560793
crossref_primary_10_3390_rs14235948
crossref_citationtrail_10_3390_rs14235948
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Dixon (ref_10) 1993; 10
Pulkkinen (ref_36) 2019; 12
Germann (ref_15) 2004; 43
ref_35
ref_34
ref_33
Gneiting (ref_1) 2005; 310
ref_32
ref_31
ref_30
Germann (ref_12) 2001; 130
ref_19
Tolstykh (ref_6) 2005; 41
Che (ref_40) 2022; 19
ref_17
ref_39
Ayzel (ref_5) 2019; 12
ref_16
Pontius (ref_41) 2008; 15
Turner (ref_38) 2011; 43
Shi (ref_18) 2018; 38
Radhakrishna (ref_37) 2012; 69
Sun (ref_7) 2014; 95
Wang (ref_29) 2021; 14
Seed (ref_14) 2003; 42
ref_25
ref_24
ref_23
ref_22
Xiao (ref_4) 2021; 149
ref_21
Zhang (ref_3) 2021; 40
ref_20
Radhakrishnan (ref_9) 2019; 37
ref_2
Liu (ref_27) 2020; 8
Li (ref_13) 1995; 34
Wang (ref_42) 2004; 13
Marshall (ref_8) 1948; 5
ref_28
ref_26
Rinehart (ref_11) 1978; 273
References_xml – volume: 43
  start-page: 231
  year: 2011
  ident: ref_38
  article-title: Predictability of Precipitation from Continental Radar Images. Part III: Operational Nowcasting Implementation (MAPLE)
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/1520-0450(2004)043<0231:POPFCR>2.0.CO;2
– ident: ref_24
– ident: ref_26
– ident: ref_34
– volume: 5
  start-page: 165
  year: 1948
  ident: ref_8
  article-title: The distribution of raindrops with size
  publication-title: J. Meteor.
  doi: 10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
– volume: 42
  start-page: 381
  year: 2003
  ident: ref_14
  article-title: A Dynamic and Spatial Scaling Approach to Advection Forecasting
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(2003)042<0381:ADASSA>2.0.CO;2
– volume: 273
  start-page: 287
  year: 1978
  ident: ref_11
  article-title: Three-Dimensional Storm Motion Detection by Conventional Weather Radar
  publication-title: Nature
  doi: 10.1038/273287a0
– volume: 34
  start-page: 1286
  year: 1995
  ident: ref_13
  article-title: Nowcasting of Motion and Growth of Precipitation with Radar over a Complex Orography
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2
– ident: ref_28
  doi: 10.1038/s41586-021-03854-z
– volume: 10
  start-page: 785
  year: 1993
  ident: ref_10
  article-title: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A Radar-Based Methodology
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
– volume: 38
  start-page: 661
  year: 2018
  ident: ref_18
  article-title: Weather Radar Echo Extrapolation Method Based on Convolutional Neural Networks
  publication-title: J. Comput. Appl.
– ident: ref_16
  doi: 10.3390/atmos8030048
– ident: ref_31
  doi: 10.1109/CVPR.2017.632
– ident: ref_39
– ident: ref_32
  doi: 10.1109/CVPR.2017.179
– volume: 149
  start-page: 353
  year: 2021
  ident: ref_4
  article-title: Lightning Data Assimilation Scheme in a 4DVAR System and Its Impact on Very Short-Term Convective Forecasting
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-19-0396.1
– volume: 43
  start-page: 74
  year: 2004
  ident: ref_15
  article-title: Scale Dependence of the Predictability of Precipitation from Continental Radar Images. Part II: Probability Forecasts
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(2004)043<0074:SDOTPO>2.0.CO;2
– ident: ref_35
– volume: 12
  start-page: 4185
  year: 2019
  ident: ref_36
  article-title: Pysteps: An Open-Source Python Library for Probabilistic Precipitation Nowcasting (v1.0)
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-12-4185-2019
– ident: ref_23
– volume: 8
  start-page: 93179
  year: 2020
  ident: ref_27
  article-title: MPL-GAN: Towards Realistic Meteorological Predictive Learning Using Conditional GAN
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2995187
– volume: 37
  start-page: 211
  year: 2019
  ident: ref_9
  article-title: CASA Prediction System over Dallas–Fort Worth Urban Network: Blending of Nowcasting and High-Resolution Numerical Weather Prediction Model
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-18-0192.1
– ident: ref_17
  doi: 10.1109/CVPR.2015.7299117
– volume: 41
  start-page: 285
  year: 2005
  ident: ref_6
  article-title: Some Current Problems in Numerical Weather Prediction
  publication-title: Izv. Atmos. Ocean. Phys.
– volume: 130
  start-page: 2859
  year: 2001
  ident: ref_12
  article-title: Scale-Dependence of the Predictability of Precipitation from Continental Radar Images. Part I: Description of the Methodology
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2
– ident: ref_30
  doi: 10.3390/rs13214285
– ident: ref_25
– volume: 95
  start-page: 409
  year: 2014
  ident: ref_7
  article-title: Use of NWP for Nowcasting Convective Precipitation: Recent Progress and Challenges
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-11-00263.1
– volume: 19
  start-page: 1
  year: 2022
  ident: ref_40
  article-title: ED-DRAP: Encoder–Decoder Deep Residual Attention Prediction Network for Radar Echoes
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2022.3141498
– ident: ref_33
– ident: ref_2
– volume: 69
  start-page: 3336
  year: 2012
  ident: ref_37
  article-title: Predictability of Precipitation from Continental Radar Images. Part V: Growth and Decay
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-12-029.1
– volume: 40
  start-page: 10
  year: 2021
  ident: ref_3
  article-title: Considerations on Reduction of Main Agricultural Natural Disasters in Henan Province, Taking July 20th Flood in Henan Province as a Case
  publication-title: Manag. Agric. Sci. Technol.
– ident: ref_21
  doi: 10.1007/978-3-319-59081-3_37
– volume: 14
  start-page: 5735
  year: 2021
  ident: ref_29
  article-title: Using Conditional Generative Adversarial 3D Convolutional Neural Network for Precise Radar Extrapolation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3083647
– volume: 12
  start-page: 1387
  year: 2019
  ident: ref_5
  article-title: Optical Flow Models as an Open Benchmark for Radar-Based Precipitation Nowcasting (Rainymotion v0.1)
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-12-1387-2019
– volume: 13
  start-page: 600
  year: 2004
  ident: ref_42
  article-title: Image Quality Assessment: From Error Visibility to Structural Similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 310
  start-page: 248
  year: 2005
  ident: ref_1
  article-title: Weather Forecasting with Ensemble Methods
  publication-title: Science
  doi: 10.1126/science.1115255
– ident: ref_19
– ident: ref_22
– ident: ref_20
– volume: 15
  start-page: 111
  year: 2008
  ident: ref_41
  article-title: Components of Information for Multiple Resolution Comparison between Maps That Share a Real Variable
  publication-title: Environ. Ecol. Stat.
  doi: 10.1007/s10651-007-0043-y
SSID ssj0000331904
Score 2.4275715
Snippet Short-term rainfall prediction by radar echo map extrapolation has been a very hot area of research in recent years, which is also an area worth studying owing...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5948
SubjectTerms Accuracy
Algorithms
Artificial intelligence
attention mechanism
Emergency preparedness
GAN
Generative adversarial networks
Indicators
Long short-term memory
Neural networks
Nowcasting
Optical flow (image analysis)
Precipitation
precipitation nowcasting
Predictions
Radar
Radar echoes
Rain
Rainfall
Recurrent neural networks
Remote sensing
spatiotemporal prediction
Statistical methods
Variational methods
Weather forecasting
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Si17EJ1arLOjFQ-jmubvHKtYiWDy00NuSnSR6kLb0QfHfO9nd1oqCF6_LwCYzyXzfwOQbQm609rGyQtA4yTiViTDUCMUoz1zQhwOmIDxOfu7r3lA-jdRoa9RX6Amr5IErx7WFsMwxDojDIBNlU6N94rjXjunCaBeyL2LeVjFV5mCBRyuWlR6pwLq-PZszZA5BnOQbApVC_T_ycAku3QOyX7PCqFOt5pDsuPER2a0HlL99HBM6WE0oEsNXFw079LHTj5BsRi9BmmJaq2xH_ckKzDy0MZ-QYfdhcN-j9aQDCkKzBUUMdx6sYcpD4WIpCmUKK2ysCuAMUsOZUWAy7TOTGa5Cb1nMnORWg1TeiFPSGE_G7oxEFtBd3kqfGCtT3K5AOw3IBEA5iFmT3K53n0O9wDCN4j3HciB4Kv_yVJNcb2ynlfjFr1Z3wYkbiyBYXX7AMOZ1GPO_wtgkrXUI8voWzXOsmFNkZJhCzv_jHxdkj4fHC2UzSos0FrOlu0RKsSiuytPzCY-jx8M
  priority: 102
  providerName: Directory of Open Access Journals
Title Two-Stage UA-GAN for Precipitation Nowcasting
URI https://www.proquest.com/docview/2748560793
https://doaj.org/article/33d1e12c251c475d8a6f7e2f6e16ba6e
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED4N-rC9TBtjWhmrIrGXPVjEP5M8obJR0DQqNKjEW-Sc7fKAmtJ2QvvvOadu0bRpr8lFss_23XeX83cAn40JuXZSsryoBFOFtMxKzZmofOSHQ64xXk6-HJuLifp-q29Twm2Zyio3NrEz1K7FmCM_puipJO9M2-lk_sBi16j4dzW10NiBHpngkoKv3unZ-OrnNsuSS9piuVrzkkqK748XS04IIpKU_OGJOsL-v-xx52RGb-B1QofZcL2cb-GFn-3By9So_O73O2A3jy0jgDj12WTIzofjjEBndhUpKuaJbTsbt49ol7GceR8mo7ObrxcsdTxgKA1fMfLlPqCzXAdsfK5ko23jpMt1g4JjaQW3Gm1lQmUrK3SsMcu5V8IZVDpY-R52Z-3Mf4DMIfc8OBUK61RJ05UkZ5AQAWqPOe_Dl83sa0wDjF0p7msKC6Km6mdN9eFoKztfk2D8U-o0KnErEYmruwftYlqnc0DfOBqXQIJVqArtSmtC4UUwnpvGGt-Hw80S1Ok0LevntT_4_-uP8ErE6wlduckh7K4Wv_wnAg2rZgA75eh8AL3ht8sf14O0TwZdCP4EsYvDuQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigXVF4itBRLwIHDqt6n7QNCKZCmtI04JFJvZj272x5QHJJUUf9UfyOzjp0Kgbj16h1bu7MzO9-uZ78BeGdMSLWTkqVZIZjKpGVWas5E4SM_HHKN8XLy-cgMJ-rbhb7YgtvuLkxMq-zWxGahdjXGM_JD2j3lFJ3JnD7NfrFYNSr-Xe1KaKzN4tTfrGjLtvh48oXm970Qg6_jz0PWVhVgKA1fMoqXPqCzXAesfKpkpW3lpEt1hYJjbgW3Gm1hQmELK3TM40q5V8IZVDpYSd99AA-VlEX0qHxwvDnTSSUZdKrWLKjUnh7OF5zwSqRE-SPuNeUB_lr9m5A22IXHLRZN-mvjeQJbfvoUdtqy6Fc3z4CNVzUjOHrpk0mfHfdHCUHc5HskxJi13N7JqF6hXcTk6ecwuRdNvIDtaT31LyFxyD0PToXMOpXTcCXJGST8gdpjynvwoRt9iW0HYw2MnyVtQqKmyjtN9eDtRna2ptz4p9RRVOJGItJkNw_q-WXZeh2946hfAgnEocq0y60JmRfBeG4qa3wP9rspKFvfXZR3lvbq_81vYGc4Pj8rz05Gp3vwSMSLEU2iyz5sL-fX_jXBlWV10NhIAj_u2yh_A9QG_TA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuiKdIKbAScOBgxe_NHhBKaUNLYRWhRupt8fpRDiibJkFR_xq_jvHGmwqBuPW6O7uyx589M_b4G4DXWgeqnBCE5gUnMheGGKEY4YWP_HCWKRsvJ38p9fFUfjpX5zvwq7sLE9MquzWxXahdY-Me-QCjpyFaZ4TTIKS0iMnh-P38ksQKUvGktSunsYHIqb9aY_i2fHdyiGP9hvPx0dmHY5IqDBArNFsRtJ0-WGeYCrb2VIpamdoJR1VtObNDw5lR1hQ6FKYwXMWcLsq85E5bqYIR-N9bsJtjVER7sHtwVE6-bnd4qEB4U7nhRBWioIPFkqH3EglS_rCCbbGAv2xBa-DG9-Fe8kyz0QZKD2DHzx7CnVQk_fvVIyBn64agc3rhs-mIfByVGTq82STSY8wT03dWNmtrljGV-jFMb0QXT6A3a2b-KWTOMs-CkyE3Tg6xuwLltEVvxCpvKevD2673lU0NjBUxflQYkkRNVdea6sOrrex8Q8DxT6mDqMStRCTNbh80i4sqzUH8xmG7uEWXzspcuaHRIfc8aM90bbTvw343BFWaycvqGnd7_3_9Em4jIKvPJ-XpM7jL4y2JNutlH3qrxU__HH2XVf0igSSDbzeNy9-cKwLR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Stage+UA-GAN+for+Precipitation+Nowcasting&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Xu%2C+Liujia&rft.au=Niu%2C+Dan&rft.au=Zhang%2C+Tianbao&rft.au=Chen%2C+Pengju&rft.date=2022-12-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=23&rft.spage=5948&rft_id=info:doi/10.3390%2Frs14235948&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14235948
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon