Predictive Model for Long-Term Lane Occupancy Rate Based on CT-Transformer and Variational Mode Decomposition
Lane occupancy is a crucial indicator of traffic flow and is significant for traffic management and planning. However, predicting lane occupancy is challenging due to numerous influencing factors, such as weather, holidays, and events, which render the data nonsmooth. To enhance lane occupancy predi...
Saved in:
Published in | Applied sciences Vol. 14; no. 12; p. 5346 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lane occupancy is a crucial indicator of traffic flow and is significant for traffic management and planning. However, predicting lane occupancy is challenging due to numerous influencing factors, such as weather, holidays, and events, which render the data nonsmooth. To enhance lane occupancy prediction accuracy, this study introduces a fusion model that combines the CT-Transformer (CSPNet-Attention and Two-stage Transformer framework) with the Temporal Convolutional Neural Network-Long Short-Term Memory (TCN-LSTM) models alongside the Variational Mode. This includes a long-term lane occupancy prediction model utilizing the Variational Mode Decomposition (VMD) technique. Initially, the Variational Mode Decomposition decomposes the original traffic flow data into multiple smooth subsequences. Subsequently, each subsequence’s autocorrelation and partial correlation coefficients ascertain the presence of seasonal characteristics. Based on these characteristics, the CT-Transformer and TCN-LSTM models process each subsequence for long-term lane occupancy rate prediction, respectively. Finally, predictions from both models are integrated using variable modes to derive the ultimate lane occupancy predictions. The core CT-Transformer model, an enhancement of the GBT (Two-stage Transformer) model, comprises two phases: autoregressive and prediction. The autoregressive phase leverages historical data for initial predictions inputted into the prediction phase. Here, the novel CSPNet-Attention mechanism replaces the conventional attention mechanism in the Encoder, reducing memory usage and computational resource loss, thereby enhancing the model’s accuracy and robustness. Experiments on the PeMS public dataset demonstrate that the proposed model surpasses existing methods in predicting long-term lane occupancy, offering decent reliability and generalizability. |
---|---|
AbstractList | Lane occupancy is a crucial indicator of traffic flow and is significant for traffic management and planning. However, predicting lane occupancy is challenging due to numerous influencing factors, such as weather, holidays, and events, which render the data nonsmooth. To enhance lane occupancy prediction accuracy, this study introduces a fusion model that combines the CT-Transformer (CSPNet-Attention and Two-stage Transformer framework) with the Temporal Convolutional Neural Network-Long Short-Term Memory (TCN-LSTM) models alongside the Variational Mode. This includes a long-term lane occupancy prediction model utilizing the Variational Mode Decomposition (VMD) technique. Initially, the Variational Mode Decomposition decomposes the original traffic flow data into multiple smooth subsequences. Subsequently, each subsequence’s autocorrelation and partial correlation coefficients ascertain the presence of seasonal characteristics. Based on these characteristics, the CT-Transformer and TCN-LSTM models process each subsequence for long-term lane occupancy rate prediction, respectively. Finally, predictions from both models are integrated using variable modes to derive the ultimate lane occupancy predictions. The core CT-Transformer model, an enhancement of the GBT (Two-stage Transformer) model, comprises two phases: autoregressive and prediction. The autoregressive phase leverages historical data for initial predictions inputted into the prediction phase. Here, the novel CSPNet-Attention mechanism replaces the conventional attention mechanism in the Encoder, reducing memory usage and computational resource loss, thereby enhancing the model’s accuracy and robustness. Experiments on the PeMS public dataset demonstrate that the proposed model surpasses existing methods in predicting long-term lane occupancy, offering decent reliability and generalizability. |
Audience | Academic |
Author | Yu, Xin Liu, Danyang Liu, Gaoxiang |
Author_xml | – sequence: 1 givenname: Gaoxiang surname: Liu fullname: Liu, Gaoxiang – sequence: 2 givenname: Xin surname: Yu fullname: Yu, Xin – sequence: 3 givenname: Danyang surname: Liu fullname: Liu, Danyang |
BookMark | eNpNkU9r3DAQxUVIIWmaU7-AoMfiRP9Wlo_ptmkCW1KK6dWMpdGiZS25kreQbx9ttpRoDhKPeT80896T85giEvKRsxspO3YL88wVFyup9Bm5FKzVjVS8PX_zviDXpexYPR2XhrNLMv3M6IJdwl-kP5LDPfUp002K26bHPNENRKRP1h5miPaZ_oIF6Rco6GiKdN03fYZYqmXCTCE6-htygCWkCPtXHv2KNk1zKuEofiDvPOwLXv-7r0h__61fPzSbp--P67tNY6XmS8OVFsJ5ySTz2ivJDY5aaesFgtGdUZ4JpdjK8XY0RqGpw6DTBnmnxIrJK_J4wroEu2HOYYL8PCQIw6uQ8naAvAS7x8Fb6cSKa6bFqDpTUWKEUYEyhunWqsr6dGLNOf05YFmGXTrkOl4ZJGtFXbc2x66bU9cWKjREn5YMtpbDKdiakw9Vv2u7TqhWGF0Nn08Gm1MpGf3_b3I2HOMc3sQpXwBauJFa |
Cites_doi | 10.1142/S0129183123501590 10.1137/0515056 10.1098/rspa.1998.0193 10.3390/app12167978 10.1109/CVPRW50498.2020.00203 10.1162/neco.1997.9.8.1735 10.1109/TITS.2016.2515663 10.1016/j.ins.2022.08.080 10.1007/978-3-030-05710-7 10.1007/s11042-023-15395-w 10.1155/2019/3958127 10.1155/2021/7756299 10.1016/j.neunet.2023.06.044 10.3390/app12094482 10.3390/app13127139 10.1109/CVPR.2015.7298878 10.3390/app13020711 10.1109/TITS.2020.2987909 10.1109/ACCESS.2023.3312711 10.1142/S0129183121501588 10.1109/ACCESS.2020.2975655 10.1109/ACCESS.2021.3050836 10.1109/TSP.2013.2288675 10.1109/TITS.2019.2900481 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app14125346 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_fc3d2516062b498e812bab4a488067c4 A799247286 10_3390_app14125346 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-14622df3030f6f4318eb646cf2ea86984f024405d17b884e8138ed68e1942503 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:22:00 EDT 2025 Mon Jun 30 14:48:10 EDT 2025 Tue Jun 10 21:07:53 EDT 2025 Tue Jul 01 01:31:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-14622df3030f6f4318eb646cf2ea86984f024405d17b884e8138ed68e1942503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3072253684?pq-origsite=%requestingapplication% |
PQID | 3072253684 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fc3d2516062b498e812bab4a488067c4 proquest_journals_3072253684 gale_infotracacademiconefile_A799247286 crossref_primary_10_3390_app14125346 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Shen (ref_10) 2023; 165 ref_14 Zhao (ref_31) 2023; 11 ref_36 ref_35 Hochreiter (ref_5) 1997; 9 Du (ref_18) 2019; 21 Zhao (ref_29) 2022; 2022 Huang (ref_33) 2023; 34 Wu (ref_7) 2021; 34 Tian (ref_30) 2020; 22 Tian (ref_3) 2020; 8 ref_15 ref_37 Zhang (ref_17) 2019; 15 Zhang (ref_26) 2021; 32 Li (ref_28) 2021; 9 Lin (ref_27) 2024; 83 Vaswani (ref_20) 2017; 30 Dragomiretskiy (ref_34) 2013; 62 Kim (ref_13) 2019; 2019 Chen (ref_19) 2022; 611 ref_24 Guan (ref_1) 2016; 17 Wumaier (ref_16) 2020; 39 ref_23 Grossmann (ref_11) 1984; 15 ref_22 ref_21 Yu (ref_32) 2021; 2021 ref_2 Cucurull (ref_25) 2017; 1050 ref_9 ref_8 ref_4 Huang (ref_12) 1998; 454 ref_6 |
References_xml | – ident: ref_9 – volume: 34 start-page: 2350159 year: 2023 ident: ref_33 article-title: A hybrid model of neural network with VMD-CNN-GRU for traffic flow prediction publication-title: Int. J. Mod. Phys. C doi: 10.1142/S0129183123501590 – volume: 15 start-page: 723 year: 1984 ident: ref_11 article-title: Decomposition of Hardy functions into square integrable wavelets of constant shape publication-title: SIAM J. Math. Anal. doi: 10.1137/0515056 – volume: 454 start-page: 903 year: 1998 ident: ref_12 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – ident: ref_37 doi: 10.3390/app12167978 – ident: ref_14 doi: 10.1109/CVPRW50498.2020.00203 – volume: 9 start-page: 1735 year: 1997 ident: ref_5 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 17 start-page: 2171 year: 2016 ident: ref_1 article-title: Excess propagation loss modeling of semiclosed obstacles for intelligent transportation system publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2515663 – volume: 611 start-page: 522 year: 2022 ident: ref_19 article-title: A spatial-temporal short-term traffic flow prediction model based on dynamical-learning graph convolution mechanism publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.08.080 – volume: 1050 start-page: 10 year: 2017 ident: ref_25 article-title: Graph attention networks publication-title: Stat – volume: 2022 start-page: 1 year: 2022 ident: ref_29 article-title: An Attention Encoder-Decoder Dual Graph Convolutional Network with Time Series Correlation for Multi-Step Traffic Flow Prediction publication-title: J. Adv. Transp. – ident: ref_24 doi: 10.1007/978-3-030-05710-7 – volume: 83 start-page: 7379 year: 2024 ident: ref_27 article-title: Attention based convolutional networks for traffic flow prediction publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-15395-w – volume: 2019 start-page: 3958127 year: 2019 ident: ref_13 article-title: A Hybrid Approach Based on Variational Mode Decomposition for Analyzing and Predicting Urban Travel Speed publication-title: J. Adv. Transp. doi: 10.1155/2019/3958127 – ident: ref_23 – ident: ref_21 – volume: 2021 start-page: 7756299 year: 2021 ident: ref_32 article-title: A Hybrid Model for Short-Term Traffic flow Prediction Based on Variational Mode Decomposition, Wavelet Threshold Denoising, and Long Short-Term Memory Neural Network publication-title: Complexity doi: 10.1155/2021/7756299 – volume: 165 start-page: 953 year: 2023 ident: ref_10 article-title: GBT: Two-stage transformer framework for nonstationary time series forecasting publication-title: Neural Netw. doi: 10.1016/j.neunet.2023.06.044 – ident: ref_2 doi: 10.3390/app12094482 – ident: ref_35 doi: 10.3390/app13127139 – ident: ref_6 doi: 10.1109/CVPR.2015.7298878 – ident: ref_8 – volume: 39 start-page: 1501 year: 2020 ident: ref_16 article-title: Short-term forecasting method for dynamic traffic flow based on stochastic forest algorithm publication-title: J. Intell. Fuzzy Syst. Appl. Eng. Technol. – ident: ref_4 doi: 10.3390/app13020711 – ident: ref_15 – volume: 22 start-page: 5566 year: 2020 ident: ref_30 article-title: Approach for Short-Term Traffic Flow Prediction Based on Empirical Mode Decomposition and Combination Model Fusion publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.2987909 – volume: 30 start-page: 5998 year: 2017 ident: ref_20 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 11 start-page: 97072 year: 2023 ident: ref_31 article-title: Short-Term Traffic Flow Prediction Based on VMD and IDBO-LSTM publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3312711 – ident: ref_36 – volume: 32 start-page: 2150158 year: 2021 ident: ref_26 article-title: A combined traffic flow forecasting model based on graph convolutional network and attention mechanism publication-title: Int. J. Mod. Phys. C doi: 10.1142/S0129183121501588 – ident: ref_22 – volume: 8 start-page: 38776 year: 2020 ident: ref_3 article-title: Research on Lane Occupancy Rate Forecasting Based on the Capsule Network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2975655 – volume: 9 start-page: 11264 year: 2021 ident: ref_28 article-title: A Hybrid Deep Learning Framework for Long-Term Traffic Flow Prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3050836 – volume: 62 start-page: 531 year: 2013 ident: ref_34 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 34 start-page: 22419 year: 2021 ident: ref_7 article-title: Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting publication-title: Adv. Neural Inf. Process. Syst. – volume: 15 start-page: 1688 year: 2019 ident: ref_17 article-title: Short-term traffic flow prediction based on spatiotemporal analysis and CNN deep learning publication-title: Transp. A Transp. Sci. – volume: 21 start-page: 972 year: 2019 ident: ref_18 article-title: Deep Irregular Convolutional Residual LSTM for Urban Traffic Passenger Flows Prediction publication-title: IEEE Trans. Intell. Transp-Ortation Syst. doi: 10.1109/TITS.2019.2900481 |
SSID | ssj0000913810 |
Score | 2.2858355 |
Snippet | Lane occupancy is a crucial indicator of traffic flow and is significant for traffic management and planning. However, predicting lane occupancy is challenging... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 5346 |
SubjectTerms | Computational linguistics CSPNet-Attention Electric transformers lane occupancy prediction Language processing Natural language interfaces Neural networks Signal processing TCN-LSTM time-series prediction Traffic congestion Traffic control Traffic flow Transformer Variational Mode Decomposition |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQLSAKBXmoBAwW-XBcZ2wLVYUKQiigbpad2CyQorT8f-4SF2VBLKxRlFh3vnvvkvM7QoYGJxdrHjKXJ5zxUAZMAgqzwCY5-ERHxuHh5IdHMX_h98tk2Rr1hT1hjTxwY7gbl8cFYDDw7MjwVFoAJKMN17jxxCivlUAB81rFVJ2D0xClq5oDeTHU9fg_OOSA5jFS3RYE1Ur9v-XjGmRmB2Tfs0M6blbVJTu27JG9lmZgj3R9NK7plZeMvj4kH08V_nDB1EVxutk7BS5KF6vyjWWQeulCl5Y2gsKQTOkzEEw6Afwq6Kqk04xlW_pqK6rLgr5CBe2_EtbPo7cWe899g9cRyWZ32XTO_CAFlsci3DDIhlFUOECrwAkHlEFaI7jIXWS1FKnkDpAamFsRjoyUHGwcS1sIacMUQjqIj0mnXJX2hFALdDJwupA2dVy6QkIFZLiLE22TJNe2T4Zb06rPRi5DQZmBHlAtD_TJBM3-cwtqXNcXwPPKe1795fk-uUSnKYzETaVz7Q8UwEpR00qNRykUl6NIwusGW78qH6JrBckNclksJD_9j9Wckd0IrNh0kQ1IZ1N92XPgKxtzUW_Nb3Rl5Yc priority: 102 providerName: Directory of Open Access Journals |
Title | Predictive Model for Long-Term Lane Occupancy Rate Based on CT-Transformer and Variational Mode Decomposition |
URI | https://www.proquest.com/docview/3072253684 https://doaj.org/article/fc3d2516062b498e812bab4a488067c4 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9xADB4VuLSHCmirboHVHJDaHkbNYzLrnCqWskUVRQilFbfRPLnQhGaX_187mYW90GsSJdHY_vzZ47EZO7Y0udjIXERXSSFzyASgFxZZqBzKxBQ20uHkn5fq_Jf8cVPdpITbMpVVrjFxAGrfOcqRf0FdRNUrFciv938FTY2i3dU0QmOL7SAEAwZfO_Ozy6vrxywLdb2EPBsP5pUY39O-cC7Rq5dEeTdc0dCx_zlcHpzNYpe9TiyRn4xi3WMvQrvPXm30Dtxne8kql_xTah39-Q37c9XTxgtBGKcpZ3ccOSm_6Npb0SAE8wvTBj42FkZQ5ddINPkc_ZjnXctPG9GsaWzouWk9_42RdMoWDu_j3wLVoKdCr7esWZw1p-ciDVQQrlT5SiAqFoWP6LWyqCJSBwhWSeViEQyoGmREj40MzuczCyAD4OIFryDkNZp2Vr5j223XhveMB6SVWTQeQh0lRA8YCVkZy8qEqnImTNjxemn1_dg2Q2O4QRLQGxKYsDkt--Mj1Ot6uND1tzqZjo6u9MjCMNIqrKwB_6qwxkpD0KNmTk7YRxKaJotc9caZdLAA_5R6W-mTWY1B5qwA_NzhWq46mepSPynWh__fPmAvC1yfsU7skG2v-odwhIxkZadsCxbfp0n5pkNc_w_joeDx |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOiBZQFwr4UAQcLBLbyToHhPrBsqXbCqGAerOc2O4FkpJdhPhR_EdmEqfsBW69xpETzYzfvLE9MwB7FXUutirloc4UV6lOuEYvzBOf1agTK6pAycmnZ_n8s_pwnp1vwO8xF4auVY6Y2AO1a2vaI3-NtoimJ3Ot3l5-59Q1ik5XxxYag1mc-F8_MWRbvjk-Qv0-F2L2rjyc89hVgNcyT1ccoUEIFxC6k5AH9J_aV7nK6yC81XmhVUC3hTTGpdNKa-V1KrV3ufYY7iNfkDjtDbippCxoQenZ-6stHSqxqdNkyALE8YQOoVOFFEISv17ze317gH85gd6zze7B3UhJ2f5gQ1uw4ZttuLNWqHAbtiIELNnLWKf61X349rGjUx7CS0Yt1b4yJMBs0TYXvES8ZwvbeDZUMUYEZ5-Q1bIDdJqOtQ07LHk5cmbfMds49gXD9rg12c_HjjxdeI-3yh5AeR1yfgibTdv4HWAeOWwSrNO-CEoHpzHsqlSQmfVZVls_gb1RtOZyqNFhMLYhDZg1DUzggMR-9QoV1u4ftN2FievUhFo6pHwY1olKFRr_SlS2UpZwLp_WagIvSGmGlv-qs7WNWQz4p1RIy-xPC4xop0Lj53ZHvZqIC0vz14of_X_4Gdyal6cLszg-O3kMtwXKarigtgubq-6Hf4JUaFU97Q2Qgblmg_8DxrMXdQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYTggGgBsaWAD0XAwWriOIlzQKjb7aqly2pVBdSb5SR2L5C02UWIn8a_YyZxyl7g1msSOdHM5M0bez4ADgqaXGxkyF0ZSy5DFXCFXpgHNi5RJ0YUjoqTPy-S0y_y02V8uQW_h1oYSqscMLED6qopaY_8EG0RTS9KlDx0Pi1iOZ19vL7hNEGKTlqHcRq9iZzbXz8xfFt9OJuirt8IMTvJj0-5nzDAyygJ1xxhQojKIYwHLnHoS5UtEpmUTlijkkxJhy4MKU0VpoVS0qowUrZKlMXQH7lDhMveg-0Ug6JgBNuTk8Xy4naDhxpuqjDoawKjKAvoSDqUSCgiYtsbXrAbFvAvl9D5udljeOQJKjvqLWoHtmy9Cw832hbuwo4HhBV757tWv38C35ctnfkQejIasPaNIR1m86a-4jmiP5ub2rK-pzHiObtAjssm6EIr1tTsOOf5wKBty0xdsa8YxPuNym49NrWU_u5zzJ5CfheSfgajuqntc2AWGW3gTKVs5qRylcIgrJAuio2N49LYMRwMotXXfccOjZEOaUBvaGAMExL77SPUZru70LRX2v-12pVRhQQQgzxRyEzhV4nCFNIQ6iVpKcfwlpSmCQzWrSmNr2nAL6W2WvoozTC-TYXC1-0PetUeJVb6r03v_f_2a7iPxq7nZ4vzF_BAoKj6bLV9GK3bH_Yl8qJ18cpbIAN9xzb_B4avHQc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Model+for+Long-Term+Lane+Occupancy+Rate+Based+on+CT-Transformer+and+Variational+Mode+Decomposition&rft.jtitle=Applied+sciences&rft.au=Liu%2C+Gaoxiang&rft.au=Yu%2C+Xin&rft.au=Liu%2C+Danyang&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=12&rft_id=info:doi/10.3390%2Fapp14125346&rft.externalDocID=A799247286 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |