Predictive Model for Long-Term Lane Occupancy Rate Based on CT-Transformer and Variational Mode Decomposition

Lane occupancy is a crucial indicator of traffic flow and is significant for traffic management and planning. However, predicting lane occupancy is challenging due to numerous influencing factors, such as weather, holidays, and events, which render the data nonsmooth. To enhance lane occupancy predi...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 12; p. 5346
Main Authors Liu, Gaoxiang, Yu, Xin, Liu, Danyang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lane occupancy is a crucial indicator of traffic flow and is significant for traffic management and planning. However, predicting lane occupancy is challenging due to numerous influencing factors, such as weather, holidays, and events, which render the data nonsmooth. To enhance lane occupancy prediction accuracy, this study introduces a fusion model that combines the CT-Transformer (CSPNet-Attention and Two-stage Transformer framework) with the Temporal Convolutional Neural Network-Long Short-Term Memory (TCN-LSTM) models alongside the Variational Mode. This includes a long-term lane occupancy prediction model utilizing the Variational Mode Decomposition (VMD) technique. Initially, the Variational Mode Decomposition decomposes the original traffic flow data into multiple smooth subsequences. Subsequently, each subsequence’s autocorrelation and partial correlation coefficients ascertain the presence of seasonal characteristics. Based on these characteristics, the CT-Transformer and TCN-LSTM models process each subsequence for long-term lane occupancy rate prediction, respectively. Finally, predictions from both models are integrated using variable modes to derive the ultimate lane occupancy predictions. The core CT-Transformer model, an enhancement of the GBT (Two-stage Transformer) model, comprises two phases: autoregressive and prediction. The autoregressive phase leverages historical data for initial predictions inputted into the prediction phase. Here, the novel CSPNet-Attention mechanism replaces the conventional attention mechanism in the Encoder, reducing memory usage and computational resource loss, thereby enhancing the model’s accuracy and robustness. Experiments on the PeMS public dataset demonstrate that the proposed model surpasses existing methods in predicting long-term lane occupancy, offering decent reliability and generalizability.
AbstractList Lane occupancy is a crucial indicator of traffic flow and is significant for traffic management and planning. However, predicting lane occupancy is challenging due to numerous influencing factors, such as weather, holidays, and events, which render the data nonsmooth. To enhance lane occupancy prediction accuracy, this study introduces a fusion model that combines the CT-Transformer (CSPNet-Attention and Two-stage Transformer framework) with the Temporal Convolutional Neural Network-Long Short-Term Memory (TCN-LSTM) models alongside the Variational Mode. This includes a long-term lane occupancy prediction model utilizing the Variational Mode Decomposition (VMD) technique. Initially, the Variational Mode Decomposition decomposes the original traffic flow data into multiple smooth subsequences. Subsequently, each subsequence’s autocorrelation and partial correlation coefficients ascertain the presence of seasonal characteristics. Based on these characteristics, the CT-Transformer and TCN-LSTM models process each subsequence for long-term lane occupancy rate prediction, respectively. Finally, predictions from both models are integrated using variable modes to derive the ultimate lane occupancy predictions. The core CT-Transformer model, an enhancement of the GBT (Two-stage Transformer) model, comprises two phases: autoregressive and prediction. The autoregressive phase leverages historical data for initial predictions inputted into the prediction phase. Here, the novel CSPNet-Attention mechanism replaces the conventional attention mechanism in the Encoder, reducing memory usage and computational resource loss, thereby enhancing the model’s accuracy and robustness. Experiments on the PeMS public dataset demonstrate that the proposed model surpasses existing methods in predicting long-term lane occupancy, offering decent reliability and generalizability.
Audience Academic
Author Yu, Xin
Liu, Danyang
Liu, Gaoxiang
Author_xml – sequence: 1
  givenname: Gaoxiang
  surname: Liu
  fullname: Liu, Gaoxiang
– sequence: 2
  givenname: Xin
  surname: Yu
  fullname: Yu, Xin
– sequence: 3
  givenname: Danyang
  surname: Liu
  fullname: Liu, Danyang
BookMark eNpNkU9r3DAQxUVIIWmaU7-AoMfiRP9Wlo_ptmkCW1KK6dWMpdGiZS25kreQbx9ttpRoDhKPeT80896T85giEvKRsxspO3YL88wVFyup9Bm5FKzVjVS8PX_zviDXpexYPR2XhrNLMv3M6IJdwl-kP5LDPfUp002K26bHPNENRKRP1h5miPaZ_oIF6Rco6GiKdN03fYZYqmXCTCE6-htygCWkCPtXHv2KNk1zKuEofiDvPOwLXv-7r0h__61fPzSbp--P67tNY6XmS8OVFsJ5ySTz2ivJDY5aaesFgtGdUZ4JpdjK8XY0RqGpw6DTBnmnxIrJK_J4wroEu2HOYYL8PCQIw6uQ8naAvAS7x8Fb6cSKa6bFqDpTUWKEUYEyhunWqsr6dGLNOf05YFmGXTrkOl4ZJGtFXbc2x66bU9cWKjREn5YMtpbDKdiakw9Vv2u7TqhWGF0Nn08Gm1MpGf3_b3I2HOMc3sQpXwBauJFa
Cites_doi 10.1142/S0129183123501590
10.1137/0515056
10.1098/rspa.1998.0193
10.3390/app12167978
10.1109/CVPRW50498.2020.00203
10.1162/neco.1997.9.8.1735
10.1109/TITS.2016.2515663
10.1016/j.ins.2022.08.080
10.1007/978-3-030-05710-7
10.1007/s11042-023-15395-w
10.1155/2019/3958127
10.1155/2021/7756299
10.1016/j.neunet.2023.06.044
10.3390/app12094482
10.3390/app13127139
10.1109/CVPR.2015.7298878
10.3390/app13020711
10.1109/TITS.2020.2987909
10.1109/ACCESS.2023.3312711
10.1142/S0129183121501588
10.1109/ACCESS.2020.2975655
10.1109/ACCESS.2021.3050836
10.1109/TSP.2013.2288675
10.1109/TITS.2019.2900481
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app14125346
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_fc3d2516062b498e812bab4a488067c4
A799247286
10_3390_app14125346
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-14622df3030f6f4318eb646cf2ea86984f024405d17b884e8138ed68e1942503
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Wed Aug 27 01:22:00 EDT 2025
Mon Jun 30 14:48:10 EDT 2025
Tue Jun 10 21:07:53 EDT 2025
Tue Jul 01 01:31:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-14622df3030f6f4318eb646cf2ea86984f024405d17b884e8138ed68e1942503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3072253684?pq-origsite=%requestingapplication%
PQID 3072253684
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_fc3d2516062b498e812bab4a488067c4
proquest_journals_3072253684
gale_infotracacademiconefile_A799247286
crossref_primary_10_3390_app14125346
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Shen (ref_10) 2023; 165
ref_14
Zhao (ref_31) 2023; 11
ref_36
ref_35
Hochreiter (ref_5) 1997; 9
Du (ref_18) 2019; 21
Zhao (ref_29) 2022; 2022
Huang (ref_33) 2023; 34
Wu (ref_7) 2021; 34
Tian (ref_30) 2020; 22
Tian (ref_3) 2020; 8
ref_15
ref_37
Zhang (ref_17) 2019; 15
Zhang (ref_26) 2021; 32
Li (ref_28) 2021; 9
Lin (ref_27) 2024; 83
Vaswani (ref_20) 2017; 30
Dragomiretskiy (ref_34) 2013; 62
Kim (ref_13) 2019; 2019
Chen (ref_19) 2022; 611
ref_24
Guan (ref_1) 2016; 17
Wumaier (ref_16) 2020; 39
ref_23
Grossmann (ref_11) 1984; 15
ref_22
ref_21
Yu (ref_32) 2021; 2021
ref_2
Cucurull (ref_25) 2017; 1050
ref_9
ref_8
ref_4
Huang (ref_12) 1998; 454
ref_6
References_xml – ident: ref_9
– volume: 34
  start-page: 2350159
  year: 2023
  ident: ref_33
  article-title: A hybrid model of neural network with VMD-CNN-GRU for traffic flow prediction
  publication-title: Int. J. Mod. Phys. C
  doi: 10.1142/S0129183123501590
– volume: 15
  start-page: 723
  year: 1984
  ident: ref_11
  article-title: Decomposition of Hardy functions into square integrable wavelets of constant shape
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0515056
– volume: 454
  start-page: 903
  year: 1998
  ident: ref_12
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– ident: ref_37
  doi: 10.3390/app12167978
– ident: ref_14
  doi: 10.1109/CVPRW50498.2020.00203
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_5
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 17
  start-page: 2171
  year: 2016
  ident: ref_1
  article-title: Excess propagation loss modeling of semiclosed obstacles for intelligent transportation system
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2515663
– volume: 611
  start-page: 522
  year: 2022
  ident: ref_19
  article-title: A spatial-temporal short-term traffic flow prediction model based on dynamical-learning graph convolution mechanism
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.08.080
– volume: 1050
  start-page: 10
  year: 2017
  ident: ref_25
  article-title: Graph attention networks
  publication-title: Stat
– volume: 2022
  start-page: 1
  year: 2022
  ident: ref_29
  article-title: An Attention Encoder-Decoder Dual Graph Convolutional Network with Time Series Correlation for Multi-Step Traffic Flow Prediction
  publication-title: J. Adv. Transp.
– ident: ref_24
  doi: 10.1007/978-3-030-05710-7
– volume: 83
  start-page: 7379
  year: 2024
  ident: ref_27
  article-title: Attention based convolutional networks for traffic flow prediction
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-15395-w
– volume: 2019
  start-page: 3958127
  year: 2019
  ident: ref_13
  article-title: A Hybrid Approach Based on Variational Mode Decomposition for Analyzing and Predicting Urban Travel Speed
  publication-title: J. Adv. Transp.
  doi: 10.1155/2019/3958127
– ident: ref_23
– ident: ref_21
– volume: 2021
  start-page: 7756299
  year: 2021
  ident: ref_32
  article-title: A Hybrid Model for Short-Term Traffic flow Prediction Based on Variational Mode Decomposition, Wavelet Threshold Denoising, and Long Short-Term Memory Neural Network
  publication-title: Complexity
  doi: 10.1155/2021/7756299
– volume: 165
  start-page: 953
  year: 2023
  ident: ref_10
  article-title: GBT: Two-stage transformer framework for nonstationary time series forecasting
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2023.06.044
– ident: ref_2
  doi: 10.3390/app12094482
– ident: ref_35
  doi: 10.3390/app13127139
– ident: ref_6
  doi: 10.1109/CVPR.2015.7298878
– ident: ref_8
– volume: 39
  start-page: 1501
  year: 2020
  ident: ref_16
  article-title: Short-term forecasting method for dynamic traffic flow based on stochastic forest algorithm
  publication-title: J. Intell. Fuzzy Syst. Appl. Eng. Technol.
– ident: ref_4
  doi: 10.3390/app13020711
– ident: ref_15
– volume: 22
  start-page: 5566
  year: 2020
  ident: ref_30
  article-title: Approach for Short-Term Traffic Flow Prediction Based on Empirical Mode Decomposition and Combination Model Fusion
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.2987909
– volume: 30
  start-page: 5998
  year: 2017
  ident: ref_20
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 11
  start-page: 97072
  year: 2023
  ident: ref_31
  article-title: Short-Term Traffic Flow Prediction Based on VMD and IDBO-LSTM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3312711
– ident: ref_36
– volume: 32
  start-page: 2150158
  year: 2021
  ident: ref_26
  article-title: A combined traffic flow forecasting model based on graph convolutional network and attention mechanism
  publication-title: Int. J. Mod. Phys. C
  doi: 10.1142/S0129183121501588
– ident: ref_22
– volume: 8
  start-page: 38776
  year: 2020
  ident: ref_3
  article-title: Research on Lane Occupancy Rate Forecasting Based on the Capsule Network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2975655
– volume: 9
  start-page: 11264
  year: 2021
  ident: ref_28
  article-title: A Hybrid Deep Learning Framework for Long-Term Traffic Flow Prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3050836
– volume: 62
  start-page: 531
  year: 2013
  ident: ref_34
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 34
  start-page: 22419
  year: 2021
  ident: ref_7
  article-title: Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 15
  start-page: 1688
  year: 2019
  ident: ref_17
  article-title: Short-term traffic flow prediction based on spatiotemporal analysis and CNN deep learning
  publication-title: Transp. A Transp. Sci.
– volume: 21
  start-page: 972
  year: 2019
  ident: ref_18
  article-title: Deep Irregular Convolutional Residual LSTM for Urban Traffic Passenger Flows Prediction
  publication-title: IEEE Trans. Intell. Transp-Ortation Syst.
  doi: 10.1109/TITS.2019.2900481
SSID ssj0000913810
Score 2.2858355
Snippet Lane occupancy is a crucial indicator of traffic flow and is significant for traffic management and planning. However, predicting lane occupancy is challenging...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 5346
SubjectTerms Computational linguistics
CSPNet-Attention
Electric transformers
lane occupancy prediction
Language processing
Natural language interfaces
Neural networks
Signal processing
TCN-LSTM
time-series prediction
Traffic congestion
Traffic control
Traffic flow
Transformer
Variational Mode Decomposition
SummonAdditionalLinks – databaseName: DOAJ Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQLSAKBXmoBAwW-XBcZ2wLVYUKQiigbpad2CyQorT8f-4SF2VBLKxRlFh3vnvvkvM7QoYGJxdrHjKXJ5zxUAZMAgqzwCY5-ERHxuHh5IdHMX_h98tk2Rr1hT1hjTxwY7gbl8cFYDDw7MjwVFoAJKMN17jxxCivlUAB81rFVJ2D0xClq5oDeTHU9fg_OOSA5jFS3RYE1Ur9v-XjGmRmB2Tfs0M6blbVJTu27JG9lmZgj3R9NK7plZeMvj4kH08V_nDB1EVxutk7BS5KF6vyjWWQeulCl5Y2gsKQTOkzEEw6Afwq6Kqk04xlW_pqK6rLgr5CBe2_EtbPo7cWe899g9cRyWZ32XTO_CAFlsci3DDIhlFUOECrwAkHlEFaI7jIXWS1FKnkDpAamFsRjoyUHGwcS1sIacMUQjqIj0mnXJX2hFALdDJwupA2dVy6QkIFZLiLE22TJNe2T4Zb06rPRi5DQZmBHlAtD_TJBM3-cwtqXNcXwPPKe1795fk-uUSnKYzETaVz7Q8UwEpR00qNRykUl6NIwusGW78qH6JrBckNclksJD_9j9Wckd0IrNh0kQ1IZ1N92XPgKxtzUW_Nb3Rl5Yc
  priority: 102
  providerName: Directory of Open Access Journals
Title Predictive Model for Long-Term Lane Occupancy Rate Based on CT-Transformer and Variational Mode Decomposition
URI https://www.proquest.com/docview/3072253684
https://doaj.org/article/fc3d2516062b498e812bab4a488067c4
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9xADB4VuLSHCmirboHVHJDaHkbNYzLrnCqWskUVRQilFbfRPLnQhGaX_187mYW90GsSJdHY_vzZ47EZO7Y0udjIXERXSSFzyASgFxZZqBzKxBQ20uHkn5fq_Jf8cVPdpITbMpVVrjFxAGrfOcqRf0FdRNUrFciv938FTY2i3dU0QmOL7SAEAwZfO_Ozy6vrxywLdb2EPBsP5pUY39O-cC7Rq5dEeTdc0dCx_zlcHpzNYpe9TiyRn4xi3WMvQrvPXm30Dtxne8kql_xTah39-Q37c9XTxgtBGKcpZ3ccOSm_6Npb0SAE8wvTBj42FkZQ5ddINPkc_ZjnXctPG9GsaWzouWk9_42RdMoWDu_j3wLVoKdCr7esWZw1p-ciDVQQrlT5SiAqFoWP6LWyqCJSBwhWSeViEQyoGmREj40MzuczCyAD4OIFryDkNZp2Vr5j223XhveMB6SVWTQeQh0lRA8YCVkZy8qEqnImTNjxemn1_dg2Q2O4QRLQGxKYsDkt--Mj1Ot6uND1tzqZjo6u9MjCMNIqrKwB_6qwxkpD0KNmTk7YRxKaJotc9caZdLAA_5R6W-mTWY1B5qwA_NzhWq46mepSPynWh__fPmAvC1yfsU7skG2v-odwhIxkZadsCxbfp0n5pkNc_w_joeDx
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOiBZQFwr4UAQcLBLbyToHhPrBsqXbCqGAerOc2O4FkpJdhPhR_EdmEqfsBW69xpETzYzfvLE9MwB7FXUutirloc4UV6lOuEYvzBOf1agTK6pAycmnZ_n8s_pwnp1vwO8xF4auVY6Y2AO1a2vaI3-NtoimJ3Ot3l5-59Q1ik5XxxYag1mc-F8_MWRbvjk-Qv0-F2L2rjyc89hVgNcyT1ccoUEIFxC6k5AH9J_aV7nK6yC81XmhVUC3hTTGpdNKa-V1KrV3ufYY7iNfkDjtDbippCxoQenZ-6stHSqxqdNkyALE8YQOoVOFFEISv17ze317gH85gd6zze7B3UhJ2f5gQ1uw4ZttuLNWqHAbtiIELNnLWKf61X349rGjUx7CS0Yt1b4yJMBs0TYXvES8ZwvbeDZUMUYEZ5-Q1bIDdJqOtQ07LHk5cmbfMds49gXD9rg12c_HjjxdeI-3yh5AeR1yfgibTdv4HWAeOWwSrNO-CEoHpzHsqlSQmfVZVls_gb1RtOZyqNFhMLYhDZg1DUzggMR-9QoV1u4ftN2FievUhFo6pHwY1olKFRr_SlS2UpZwLp_WagIvSGmGlv-qs7WNWQz4p1RIy-xPC4xop0Lj53ZHvZqIC0vz14of_X_4Gdyal6cLszg-O3kMtwXKarigtgubq-6Hf4JUaFU97Q2Qgblmg_8DxrMXdQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYTggGgBsaWAD0XAwWriOIlzQKjb7aqly2pVBdSb5SR2L5C02UWIn8a_YyZxyl7g1msSOdHM5M0bez4ADgqaXGxkyF0ZSy5DFXCFXpgHNi5RJ0YUjoqTPy-S0y_y02V8uQW_h1oYSqscMLED6qopaY_8EG0RTS9KlDx0Pi1iOZ19vL7hNEGKTlqHcRq9iZzbXz8xfFt9OJuirt8IMTvJj0-5nzDAyygJ1xxhQojKIYwHLnHoS5UtEpmUTlijkkxJhy4MKU0VpoVS0qowUrZKlMXQH7lDhMveg-0Ug6JgBNuTk8Xy4naDhxpuqjDoawKjKAvoSDqUSCgiYtsbXrAbFvAvl9D5udljeOQJKjvqLWoHtmy9Cw832hbuwo4HhBV757tWv38C35ctnfkQejIasPaNIR1m86a-4jmiP5ub2rK-pzHiObtAjssm6EIr1tTsOOf5wKBty0xdsa8YxPuNym49NrWU_u5zzJ5CfheSfgajuqntc2AWGW3gTKVs5qRylcIgrJAuio2N49LYMRwMotXXfccOjZEOaUBvaGAMExL77SPUZru70LRX2v-12pVRhQQQgzxRyEzhV4nCFNIQ6iVpKcfwlpSmCQzWrSmNr2nAL6W2WvoozTC-TYXC1-0PetUeJVb6r03v_f_2a7iPxq7nZ4vzF_BAoKj6bLV9GK3bH_Yl8qJ18cpbIAN9xzb_B4avHQc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Model+for+Long-Term+Lane+Occupancy+Rate+Based+on+CT-Transformer+and+Variational+Mode+Decomposition&rft.jtitle=Applied+sciences&rft.au=Liu%2C+Gaoxiang&rft.au=Yu%2C+Xin&rft.au=Liu%2C+Danyang&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=12&rft_id=info:doi/10.3390%2Fapp14125346&rft.externalDocID=A799247286
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon