Design of an Optimized Thermal Management System for Li-Ion Batteries under Different Discharging Conditions
The design of an optimized thermal management system for Li-ion batteries has challenges because of their stringent operating temperature limit and thermal runaway, which may lead to an explosion. In this paper, an optimized cooling system is proposed for kW scale Li-ion battery stack. A comparative...
Saved in:
Published in | Energies (Basel) Vol. 13; no. 21; p. 5695 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The design of an optimized thermal management system for Li-ion batteries has challenges because of their stringent operating temperature limit and thermal runaway, which may lead to an explosion. In this paper, an optimized cooling system is proposed for kW scale Li-ion battery stack. A comparative study of the existing cooling systems; air cooling and liquid cooling respectively, has been carried out on three cell stack 70Ah LiFePO4 battery at a high discharging rate of 2C. It has been found that the liquid cooling is more efficient than air cooling as the peak temperature of the battery stack gets reduced by 30.62% using air cooling whereas using the liquid cooling method it gets reduced by 38.40%. The performance of the liquid cooling system can further be improved if the contact area between the coolant and battery stack is increased. Therefore, in this work, an immersion-based liquid cooling system has been designed to ensure the maximum heat dissipation. The battery stack having a peak temperature of 49.76 °C at 2C discharging rate is reduced by 44.87% to 27.43 °C after using the immersion-based cooling technique. The proposed thermal management scheme is generalized and thus can be very useful for scalable Li-ion battery storage applications also. |
---|---|
AbstractList | The design of an optimized thermal management system for Li-ion batteries has challenges because of their stringent operating temperature limit and thermal runaway, which may lead to an explosion. In this paper, an optimized cooling system is proposed for kW scale Li-ion battery stack. A comparative study of the existing cooling systems; air cooling and liquid cooling respectively, has been carried out on three cell stack 70Ah LiFePO4 battery at a high discharging rate of 2C. It has been found that the liquid cooling is more efficient than air cooling as the peak temperature of the battery stack gets reduced by 30.62% using air cooling whereas using the liquid cooling method it gets reduced by 38.40%. The performance of the liquid cooling system can further be improved if the contact area between the coolant and battery stack is increased. Therefore, in this work, an immersion-based liquid cooling system has been designed to ensure the maximum heat dissipation. The battery stack having a peak temperature of 49.76 °C at 2C discharging rate is reduced by 44.87% to 27.43 °C after using the immersion-based cooling technique. The proposed thermal management scheme is generalized and thus can be very useful for scalable Li-ion battery storage applications also. |
Author | Ghosh, Aritra Mohanty, Rakesh K. Bhattacharjee, Ankur |
Author_xml | – sequence: 1 givenname: Ankur surname: Bhattacharjee fullname: Bhattacharjee, Ankur – sequence: 2 givenname: Rakesh K. surname: Mohanty fullname: Mohanty, Rakesh K. – sequence: 3 givenname: Aritra orcidid: 0000-0001-9409-7592 surname: Ghosh fullname: Ghosh, Aritra |
BookMark | eNpNkUFr3DAQhUVIIOk2l_wCQW4Fp5LGluVju5u0C1v2kOQsZHnsaLGlraQ9JL--3mxpOpc3DI_3DbxP5NwHj4TccHYH0LCv6DkIXsmmOiNXvGlkwVkN5__tl-Q6pR2bB4ADwBUZV5jc4GnoqfF0u89ucm_Y0acXjJMZ6S_jzYAT-kwfX1PGifYh0o0r1sHT7yZnjA4TPfgOI125vsd49K5csi8mDs4PdBl857ILPn0mF70ZE17_1QV5frh_Wv4sNtsf6-W3TWFB8lxw4LIEFEbKWihrqpZxaFsLNRqLSpmqqRhKa7FshGiVbZiwytZytimDJSzI-pTbBbPT--gmE191ME6_H0IctInZ2RE1F5y3tUAGnS3rcqZ0CmeMYtjW2Kg56_aUtY_h9wFT1rtwiH5-X4sKKikkzLogX04uG0NKEft_VM70sRz9UQ78AUWjgww |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2022_119407 crossref_primary_10_1016_j_jclepro_2021_127705 crossref_primary_10_3390_su131910943 crossref_primary_10_3390_en14217332 crossref_primary_10_1016_j_applthermaleng_2023_121080 crossref_primary_10_1016_j_applthermaleng_2022_119171 crossref_primary_10_1016_j_mtchem_2021_100564 crossref_primary_10_3390_wevj12030102 crossref_primary_10_36306_konjes_945819 crossref_primary_10_1016_j_jclepro_2022_134279 crossref_primary_10_3390_e23101311 crossref_primary_10_3390_batteries9080400 crossref_primary_10_3390_wevj15010013 crossref_primary_10_1016_j_rser_2023_113921 crossref_primary_10_3390_batteries9040191 crossref_primary_10_1021_acsaem_3c00904 crossref_primary_10_1016_j_ijthermalsci_2023_108614 crossref_primary_10_3390_electronics10232940 crossref_primary_10_3390_su13095166 crossref_primary_10_3390_su132111577 crossref_primary_10_3390_su13042396 crossref_primary_10_3390_wevj12020080 crossref_primary_10_3390_en13226120 crossref_primary_10_3390_wevj12010046 crossref_primary_10_1016_j_applthermaleng_2021_117884 crossref_primary_10_1016_j_icheatmasstransfer_2023_106912 crossref_primary_10_3390_su13063430 crossref_primary_10_3390_wevj12010038 crossref_primary_10_3390_wevj12030120 crossref_primary_10_4028_p_uXCM1L crossref_primary_10_3389_fenrg_2022_1099890 crossref_primary_10_3390_en15072554 crossref_primary_10_1016_j_est_2023_107580 crossref_primary_10_3390_electronics10151859 crossref_primary_10_3390_en14051248 crossref_primary_10_1016_j_tsep_2023_102069 crossref_primary_10_3390_en14185749 crossref_primary_10_1177_09544089221123975 crossref_primary_10_1002_er_6604 crossref_primary_10_1088_1742_6596_2643_1_012015 crossref_primary_10_1061_JLEED9_EYENG_4855 crossref_primary_10_3390_app13052775 crossref_primary_10_1016_j_est_2023_110229 crossref_primary_10_1016_j_engfailanal_2023_107259 crossref_primary_10_1016_j_enconman_2023_117927 crossref_primary_10_1016_j_energy_2021_120695 crossref_primary_10_3390_sym15071322 crossref_primary_10_1016_j_applthermaleng_2023_120100 crossref_primary_10_1016_j_applthermaleng_2023_120187 crossref_primary_10_3390_en14041043 crossref_primary_10_3390_en14164879 |
Cites_doi | 10.1016/j.jpowsour.2014.07.147 10.1016/j.applthermaleng.2020.115213 10.1016/S0378-7753(02)00048-4 10.3390/wevj1010126 10.1016/j.jpowsour.2004.09.025 10.1016/j.apenergy.2016.06.058 10.3390/en12163099 10.1016/j.ijheatmasstransfer.2018.10.017 10.1016/j.applthermaleng.2017.02.053 10.1016/j.applthermaleng.2018.12.020 10.1016/j.jpowsour.2016.09.120 10.1016/j.energy.2013.09.028 10.1016/j.apenergy.2012.05.064 10.1016/j.jpowsour.2015.03.008 10.1149/1.3515880 10.1115/ISFA2012-7196 10.1016/j.est.2020.101377 10.3390/en13112956 10.1016/j.ensm.2017.05.013 10.3390/en12163045 10.1016/j.jpowsour.2016.04.001 10.1016/j.energy.2015.12.064 10.1016/j.enconman.2014.10.015 10.1016/j.jpowsour.2008.03.082 10.4271/2002-01-1962 10.1016/j.est.2016.08.005 10.1016/j.applthermaleng.2018.10.061 10.1109/OJVT.2020.2972541 10.1016/j.jpowsour.2016.11.018 10.1016/j.energy.2019.06.017 10.1016/j.jpowsour.2016.08.133 10.1016/j.applthermaleng.2016.02.070 10.1016/j.jpowsour.2014.09.110 10.1016/j.enconman.2015.06.056 10.1533/9780857095879.1.13 10.1039/C3RA45748F 10.1016/j.jpowsour.2014.11.017 10.1016/j.ijrefrig.2018.04.004 10.1016/S0378-7753(02)00200-8 10.1039/C8RA05564E 10.1016/B978-0-444-59513-3.00017-0 10.1016/j.ijheatmasstransfer.2017.12.083 10.1016/j.ijheatmasstransfer.2018.04.065 10.3390/en11102550 10.1007/s11434-012-5071-9 10.1016/j.jpowsour.2012.10.060 10.1016/j.jpowsour.2004.05.064 10.1016/j.jpowsour.2016.10.104 10.1016/j.enconman.2016.03.054 10.1016/j.jpowsour.2012.11.039 10.1016/j.jpowsour.2012.02.038 10.1149/2.1381910jes 10.1016/j.apenergy.2015.11.034 10.1016/j.rser.2011.07.096 10.1016/j.jpowsour.2013.03.102 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en13215695 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Databases ProQuest One Community College ProQuest Central Korea Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic ProQuest Central China |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_1211b72e03dc474bbcd8eeac80eb7e98 10_3390_en13215695 |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 HCIFZ I-F IAO KQ8 L6V L8X M7S MODMG M~E OK1 P2P PATMY PIMPY PROAC PYCSY RIG TR2 TUS ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c361t-131643e2a66728ca5b013bbc37eace88a5950e6cce4922b8c902c8c760138ae43 |
IEDL.DBID | DOA |
ISSN | 1996-1073 |
IngestDate | Tue Oct 22 15:04:48 EDT 2024 Thu Oct 10 22:28:24 EDT 2024 Thu Sep 26 21:27:00 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-131643e2a66728ca5b013bbc37eace88a5950e6cce4922b8c902c8c760138ae43 |
ORCID | 0000-0001-9409-7592 |
OpenAccessLink | https://doaj.org/article/1211b72e03dc474bbcd8eeac80eb7e98 |
PQID | 2535626325 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1211b72e03dc474bbcd8eeac80eb7e98 proquest_journals_2535626325 crossref_primary_10_3390_en13215695 |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Xia (ref_36) 2012; 57 Gillet (ref_58) 2018; 90 Lopez (ref_37) 2015; 162 Park (ref_63) 2013; 239 Samimi (ref_61) 2016; 96 Huo (ref_54) 2015; 89 ref_13 Wilke (ref_38) 2017; 340 An (ref_50) 2017; 117 ref_57 ref_12 Yuksel (ref_2) 2017; 338 Park (ref_44) 2013; 227 ref_18 Zhao (ref_48) 2015; 103 ref_15 Deng (ref_51) 2018; 125 Chen (ref_42) 2005; 140 Pra (ref_59) 2014; 270 Lv (ref_62) 2016; 178 Zhao (ref_53) 2019; 129 Chen (ref_5) 2016; 94 Shah (ref_24) 2016; 330 Lan (ref_49) 2016; 101 Rao (ref_16) 2011; 15 Bernardi (ref_21) 1985; 5 Wang (ref_9) 2012; 208 Jhu (ref_28) 2012; 100 Yang (ref_55) 2016; 117 Chen (ref_29) 2016; 318 Pesaran (ref_10) 1999; 4 Feng (ref_4) 2015; 275 Sabbah (ref_39) 2008; 182 Menale (ref_45) 2019; 182 Lu (ref_1) 2013; 226 Hong (ref_19) 2020; 173 Kim (ref_56) 2019; 149 ref_35 Friesen (ref_3) 2016; 334 Pesaran (ref_40) 2002; 110 ref_30 Bandhauer (ref_17) 2011; 15 Jindal (ref_31) 2019; 166 Feng (ref_32) 2018; 10 Ouyang (ref_33) 2018; 8 Eddahech (ref_23) 2013; 61 Li (ref_41) 2019; 146 Kim (ref_11) 2007; 1 Siruvuri (ref_64) 2020; 29 ref_47 Jhu (ref_27) 2011; 192 Golubkov (ref_25) 2014; 4 Yuan (ref_46) 2012; 3 Zhao (ref_52) 2018; 120 Drake (ref_26) 2015; 285 Mills (ref_22) 2005; 141 Karimi (ref_60) 2016; 8 ref_8 Wu (ref_14) 2002; 109 Jaguemont (ref_34) 2016; 164 Mohammadian (ref_43) 2015; 273 ref_7 ref_6 Sundin (ref_20) 2020; 1 |
References_xml | – volume: 270 start-page: 349 year: 2014 ident: ref_59 article-title: Experimental performances of a battery thermal management system using phase change material publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.07.147 contributor: fullname: Pra – volume: 173 start-page: 115213 year: 2020 ident: ref_19 article-title: Thermal performance of direct two-phase refrigerant cooling for lithium-ion batteries in electric vehicles publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115213 contributor: fullname: Hong – volume: 109 start-page: 160 year: 2002 ident: ref_14 article-title: Heat dissipation design for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00048-4 contributor: fullname: Wu – volume: 1 start-page: 126 year: 2007 ident: ref_11 article-title: Battery thermal management design modelling publication-title: J. World Electr. Veh. doi: 10.3390/wevj1010126 contributor: fullname: Kim – volume: 141 start-page: 307 year: 2005 ident: ref_22 article-title: Simulation of passive thermal management system for lithium-ion battery packs publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.09.025 contributor: fullname: Mills – volume: 178 start-page: 376 year: 2016 ident: ref_62 article-title: Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.06.058 contributor: fullname: Lv – volume: 4 start-page: 24 year: 1999 ident: ref_10 article-title: An approach for designing thermal management systems for electric and hybrid vehicle battery packs publication-title: Veh. Therm. Manag. Syst. contributor: fullname: Pesaran – ident: ref_30 doi: 10.3390/en12163099 – volume: 129 start-page: 660 year: 2019 ident: ref_53 article-title: Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channelled liquid flow publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.10.017 contributor: fullname: Zhao – volume: 117 start-page: 534 year: 2017 ident: ref_50 article-title: Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.02.053 contributor: fullname: An – volume: 149 start-page: 192 year: 2019 ident: ref_56 article-title: Review on battery thermal management system for electric vehicles publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.12.020 contributor: fullname: Kim – volume: 334 start-page: 1 year: 2016 ident: ref_3 article-title: Impact of cycling at low temperatures on the safety behaviour of 18,650-type Lithium ion cells: Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.09.120 contributor: fullname: Friesen – volume: 61 start-page: 432 year: 2013 ident: ref_23 article-title: Thermal characterization of a high-power lithium-ion battery: Potentiometric and calorimetric measurement of entropy changes publication-title: J. Energy doi: 10.1016/j.energy.2013.09.028 contributor: fullname: Eddahech – volume: 100 start-page: 127 year: 2012 ident: ref_28 article-title: Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.05.064 contributor: fullname: Jhu – volume: 285 start-page: 266 year: 2015 ident: ref_26 article-title: Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.03.008 contributor: fullname: Drake – volume: 15 start-page: 1 year: 2011 ident: ref_17 article-title: A critical review of thermal issues in lithium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.3515880 contributor: fullname: Bandhauer – ident: ref_13 doi: 10.1115/ISFA2012-7196 – volume: 29 start-page: 101377 year: 2020 ident: ref_64 article-title: Studies on thermal management of Lithium-ion battery pack using water as the cooling fluid publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101377 contributor: fullname: Siruvuri – ident: ref_8 – ident: ref_15 doi: 10.3390/en13112956 – volume: 10 start-page: 246 year: 2018 ident: ref_32 article-title: Thermal runaway mechanism of lithium ion battery for electric vehicles: A review publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.05.013 contributor: fullname: Feng – ident: ref_18 doi: 10.3390/en12163045 – volume: 192 start-page: 99 year: 2011 ident: ref_27 article-title: Thermal explosion hazards on 18,650 lithium ion batteries with a VSP2 adiabatic calorimeter publication-title: J. Hazard. Mater. contributor: fullname: Jhu – volume: 318 start-page: 200 year: 2016 ident: ref_29 article-title: Adiabatic calorimetry test of the reaction kinetics and self-heating model for 18650 Li-ion cells in various states of charge publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.04.001 contributor: fullname: Chen – volume: 96 start-page: 355 year: 2016 ident: ref_61 article-title: Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibres publication-title: Energy doi: 10.1016/j.energy.2015.12.064 contributor: fullname: Samimi – volume: 89 start-page: 387 year: 2015 ident: ref_54 article-title: Investigation of power battery thermal management by using mini-channel cold plate publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.10.015 contributor: fullname: Huo – volume: 182 start-page: 630 year: 2008 ident: ref_39 article-title: Active (air-cooled) vs. passive (phase change material) thermal management of high-power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.03.082 contributor: fullname: Sabbah – ident: ref_6 doi: 10.4271/2002-01-1962 – volume: 8 start-page: 168 year: 2016 ident: ref_60 article-title: Experimental study of a cylindrical lithium ion battery thermal management using phase change material composites publication-title: J. Energy Storage doi: 10.1016/j.est.2016.08.005 contributor: fullname: Karimi – volume: 146 start-page: 866 year: 2019 ident: ref_41 article-title: Experiment and simulation for pouch battery with silica cooling plates and copper mesh-based air-cooling thermal management system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.10.061 contributor: fullname: Li – volume: 1 start-page: 82 year: 2020 ident: ref_20 article-title: Thermal Management of Li-Ion Batteries with Single-Phase Liquid Immersion Cooling publication-title: IEEE Open J. Veh. Technol. doi: 10.1109/OJVT.2020.2972541 contributor: fullname: Sundin – volume: 5 start-page: 132 year: 1985 ident: ref_21 article-title: A General Energy Balance for Battery Systems publication-title: J. Electrochem. Soc. contributor: fullname: Bernardi – volume: 340 start-page: 51 year: 2017 ident: ref_38 article-title: Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.11.018 contributor: fullname: Wilke – volume: 182 start-page: 57 year: 2019 ident: ref_45 article-title: Thermal management of lithium-ion batteries: An experimental investigation publication-title: Energy doi: 10.1016/j.energy.2019.06.017 contributor: fullname: Menale – volume: 330 start-page: 167 year: 2016 ident: ref_24 article-title: Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.08.133 contributor: fullname: Shah – volume: 101 start-page: 284 year: 2016 ident: ref_49 article-title: Thermal management for high power lithium-ion battery by mini channel aluminium tubes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.02.070 contributor: fullname: Lan – ident: ref_7 – volume: 162 start-page: 9 year: 2015 ident: ref_37 article-title: Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules publication-title: J. Electrochem. Soc. contributor: fullname: Lopez – volume: 273 start-page: 431 year: 2015 ident: ref_43 article-title: Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.09.110 contributor: fullname: Mohammadian – volume: 103 start-page: 157 year: 2015 ident: ref_48 article-title: Thermal performance of mini-channel liquid cooled cylinder-based battery thermal management for cylindrical lithium-ion power battery publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.06.056 contributor: fullname: Zhao – ident: ref_12 doi: 10.1533/9780857095879.1.13 – volume: 4 start-page: 3633 year: 2014 ident: ref_25 article-title: Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivine-type cathodes publication-title: RSC Adv. doi: 10.1039/C3RA45748F contributor: fullname: Golubkov – volume: 275 start-page: 261 year: 2015 ident: ref_4 article-title: Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.11.017 contributor: fullname: Feng – volume: 3 start-page: 371 year: 2012 ident: ref_46 article-title: Battery thermal management system with liquid cooling and heating in electric vehicles publication-title: J. Automot. Saf. Energy contributor: fullname: Yuan – volume: 90 start-page: 119 year: 2018 ident: ref_58 article-title: Sleeping evaporator and refrigerant maldistribution: An experimental investigation in an automotive multi-evaporator air-conditioning and battery cooling system publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2018.04.004 contributor: fullname: Gillet – volume: 110 start-page: 377 year: 2002 ident: ref_40 article-title: Battery thermal models for hybrid vehicle simulations publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00200-8 contributor: fullname: Pesaran – volume: 8 start-page: 33414 year: 2018 ident: ref_33 article-title: Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions publication-title: RSC Adv. doi: 10.1039/C8RA05564E contributor: fullname: Ouyang – ident: ref_35 doi: 10.1016/B978-0-444-59513-3.00017-0 – volume: 120 start-page: 751 year: 2018 ident: ref_52 article-title: Thermal behaviour study of discharging/charging cylindrical lithium-ion battery module cooled by channelled liquid flow publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.12.083 contributor: fullname: Zhao – volume: 125 start-page: 143 year: 2018 ident: ref_51 article-title: Study on thermal management of rectangular li-ion battery with serpentine-channel cold plate publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.04.065 contributor: fullname: Deng – ident: ref_47 doi: 10.3390/en11102550 – volume: 57 start-page: 4205 year: 2012 ident: ref_36 article-title: A positive-temperature-coefficient electrode with thermal protection mechanism for rechargeable lithium batteries publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-012-5071-9 contributor: fullname: Xia – volume: 226 start-page: 272 year: 2013 ident: ref_1 article-title: A review on the key issues for lithium-ion battery management in electric vehicles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.10.060 contributor: fullname: Lu – volume: 140 start-page: 111 year: 2005 ident: ref_42 article-title: Thermal analysis of lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.05.064 contributor: fullname: Chen – volume: 338 start-page: 49 year: 2017 ident: ref_2 article-title: Plug-in hybrid electric vehicle LiFePO4 battery life implications of thermal management, driving conditions, and regional climate publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.10.104 contributor: fullname: Yuksel – volume: 117 start-page: 577 year: 2016 ident: ref_55 article-title: Thermal management of Li-ion battery with liquid metal publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.03.054 contributor: fullname: Yang – volume: 227 start-page: 191 year: 2013 ident: ref_44 article-title: Battery cell arrangement and heat transfer fluid effects on the parasitic power consumption and the cell temperature distribution in a hybrid electric vehicle publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.11.039 contributor: fullname: Park – volume: 208 start-page: 210 year: 2012 ident: ref_9 article-title: Thermal runaway caused fire and explosion of Lithium ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.02.038 contributor: fullname: Wang – volume: 166 start-page: 10 year: 2019 ident: ref_31 article-title: Review—Understanding the Thermal Runaway Behaviour of Li-Ion Batteries through Experimental Techniques publication-title: J. Electrochem. Soc. doi: 10.1149/2.1381910jes contributor: fullname: Jindal – volume: 94 start-page: 846 year: 2016 ident: ref_5 article-title: Comparison of different cooling methods for lithium ion battery cells publication-title: J. Power Sources contributor: fullname: Chen – volume: 164 start-page: 99 year: 2016 ident: ref_34 article-title: A Comprehensive Review on Lithium Ion Batteries used in Hybrid and Electric vehicle under Cold Temperature publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.11.034 contributor: fullname: Jaguemont – ident: ref_57 – volume: 15 start-page: 4554 year: 2011 ident: ref_16 article-title: A review of power battery thermal energy management publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2011.07.096 contributor: fullname: Rao – volume: 239 start-page: 30 year: 2013 ident: ref_63 article-title: A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.03.102 contributor: fullname: Park |
SSID | ssj0000331333 |
Score | 2.504794 |
Snippet | The design of an optimized thermal management system for Li-ion batteries has challenges because of their stringent operating temperature limit and thermal... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 5695 |
SubjectTerms | Air cooling Air temperature Batteries Comparative studies Cooling Cooling rate Cooling systems cooling techniques Design optimization discharge rate Efficiency Electric vehicles Energy storage Heat Immersion Li-ion battery Liquid cooling Lithium Lithium-ion batteries Methods Operating temperature Submerging thermal behavior Thermal management Thermal runaway |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXOCAeIrBQJHgWq1L0tY9IdgYA_G4MIlblaYBIY12bOPCr8dOs4eExK1qKyVybMef43xm7KIAE-eFRvsWMQTKxjIADUVACpIrI5Uu6HLy41M8GKr71-jVJ9ymvqxy7hOdoy4qQznytohkRMwpIrocfwXUNYpOV30LjXW20RFJQloN_dtFjiWUEiGYrFlJJaL7ti0RfSFkoXYSK_uQo-v_443dFtPfYds-NuRX9WLusjVb7rGtFcbAfTbquYoLXr1xXfJntPfPjx9bcFxt9LAjvqxm4TUXOceglD98BHdVyWsuTYTGnG6OTXjPN0eZ4dPUUSbhGLxb0Sk2aeMBG_ZvXrqDwDdMCIyMO9RWHsGPtELHcSLA6IiSnHluZILu1QLoKI1CGxtjVSpEDiYNhQFDZTEStFXykDXKqrRHjAPxzkdpaoTUGGPZPAFjQGid4u4mOm9Ndj4XXzaueTEyxBMk5Gwp5Ca7Jsku_iAua_eimrxn3jQyIpnLE2FDWRiVKJxvARYnDCGOalNostZ8XTJvYNNsqQ7H_38-YZuCILK7Pthijdnk255iHDHLz5yy_AKxAcho priority: 102 providerName: ProQuest |
Title | Design of an Optimized Thermal Management System for Li-Ion Batteries under Different Discharging Conditions |
URI | https://www.proquest.com/docview/2535626325 https://doaj.org/article/1211b72e03dc474bbcd8eeac80eb7e98 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA46L3oQf-J0joBey7okbdOj-63oFHGwW0nSDAazlW1e_Ot9r-lcwYMXL6WUQsr3kpf3Ne99j5DbVJpQpwrWNwulJ2zIPalk6uEE0cJwoVIsTn4ah6OJeJgG00qrL8wJc_LADrgWSpDpiFmfp0ZEQmuTSgveQvpWRzZ2Zb5-XCFThQ_mHMgXd3qkHHh9y2bAu4CsYCOJyg5UCPX_8sPF5jI4IodlVEjv3Ncckx2bnZCDilbgKVn0ilwLms-oyugzrPT3-ZdNKdgZfOuCbvNYqFMhpxCO0se5d59n1KloAimmWDO2pL2yLcoa7laFWBKMQbs5nl_jPDwjk0H_rTvyylYJnuFhGxvKA-3hlqkwjJg0KsDfm4AVjwAqK6UK4sC3oTFWxIxpaWKfGWkwIYZLZQU_J7Usz-wFoRIV54M4NowriK4AZWmMZErFsK-x9qxObjbwJR9OESMBJoEgJ1uQ66SDyP68gSrWxQOwbVLaNvnLtnXS2NglKZfWKmEBD1BChwWX_zHGFdlnSKGL8sIGqa2Xn_Ya4oy1bpJdORg2yV6nP355bRYTDK7DafsbkE7Vhg |
link.rule.ids | 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oHtSD8RlR1E302lj30W5PRkEEBbxAwq3ZbhdDgi0CXvz1zrQLmJh4a9om287Oe2e-IeQmVSZIUg3yzQLlCRtwT2mVesggiTBc6BSbk7u9oDUQL0M5dAm3uSurXOrEQlGnucEc-S2TXCJyCpP3008Pp0bh6aobobFJtgQHQ4Od4s3nVY7F5xxCMF6iknKI7m9tBtEXhCw4TuKXHSrg-v9o48LENPfJnvMN6UO5mQdkw2aHZPcXYuARmTSKiguaj6jO6BvI-8f426YUdhs07ISuq1loiUVOwSmlnbHXzjNaYmlCaEyxc2xGG244ygKu5gVkEqxB6zmeYiM3HpNB86lfb3luYIJn4O9xrDwEP9wyHQQhU0ZLTHImieEhqFerlJaR9G1gjBURY4kykc-MMlgWw5W2gp-QSpZn9pRQhbjzMooM4xp8LJuEyhjFtI7AurG7UZVcL8kXT0tcjBjiCSRyvCZylTwiZVdvIJZ1cSOfvcdONGIEmUtCZn2eGhEK-N5UWfhg5cOqNlJVUlvuS-wEbB6v2eHs_8dXZLvV73biTrv3ek52GIbLRSthjVQWsy97AT7FIrksGOcHJtDLSg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELVYJAQHxCrKagmuUVM7y-SEoCVspXCgUm-R47ioUklKWy58PTOJu0hI3KIkkq3xbM8ev2HsKgMdpJlC-xYBOJ4JpAMKMocUJPW09FRGl5NfOsFD13vq-T1b_zSxZZUzn1g66qzQtEdeF770iTlF-PW-LYt4a8XXoy-HOkjRSattp7HK1jEqhmSkEN_P91tcKRGOyYqhVCLSr5sckRjCF2otsRSTSur-P565DDfxDtu2eSK_qRZ2l62YfI9tLbEH7rNhq6y-4EWfq5y_ou1_Dn5MxnHl0dsO-aKyhVe85BwTVN4eOI9FziteTYTJnG6RjXnLNkqZ4tOkpE_CMXizoBNt0swD1o3v3psPjm2e4GgZNKjFPAIhaYQKglCAVj5teKapliG6WgOg_Mh3TaC18SIhUtCRKzRoKpGRoIwnD9laXuTmiHEgDno_irSQCvMtk4agNQilIox0otGvscuZ-JJRxZGRILYgIScLIdfYLUl2_gfxWpcvivFHYs0kIcK5NBTGlZn2Qg_nm4HBCYOLo5oIaux0ti6JNbZJslCN4_8_X7AN1Jmk_dh5PmGbgpBzeavwlK1Nx9_mDNOLaXpe6s0veODPfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+an+Optimized+Thermal+Management+System+for+Li-Ion+Batteries+under+Different+Discharging+Conditions&rft.jtitle=Energies+%28Basel%29&rft.au=Ankur+Bhattacharjee&rft.au=Rakesh+K.+Mohanty&rft.au=Aritra+Ghosh&rft.date=2020-11-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=13&rft.issue=21&rft.spage=5695&rft_id=info:doi/10.3390%2Fen13215695&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1211b72e03dc474bbcd8eeac80eb7e98 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |