Investigating the optimisation of real-world and synthetic object detection training datasets through the consideration of environmental and simulation factors

•Optimisation of a training dataset for training a deep neural network.•Identification of optimal factor levels using ANOVA and Taguchi.•Application of methodology to real-world and synthetic datasets.•Identification of optimal environmental factors for developing simulation environments. Computer v...

Full description

Saved in:
Bibliographic Details
Published inIntelligent systems with applications Vol. 14; p. 200079
Main Authors Newman, Callum, Petzing, Jon, Goh, Yee Mey, Justham, Laura
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Optimisation of a training dataset for training a deep neural network.•Identification of optimal factor levels using ANOVA and Taguchi.•Application of methodology to real-world and synthetic datasets.•Identification of optimal environmental factors for developing simulation environments. Computer vision is used for many industrial applications involving automation, especially those related to efficiency and safety. Computer vision techniques which use machine learning, such as object detectors, need a dataset of images for training and testing. Publicly available datasets or new datasets can be used. However, these datasets rarely consider whether the dataset is leading to optimal performance. Environmental factors, such as lighting and occlusion, will alter the appearance of the images and so images taken under certain condition may have different effects on training. A knowledge gap has formed as to how the test performance of deep neural networks can be improved by considering the effect and interactions of factors where either real or synthetic images are used. The following research illustrates that the different factors can have a significant impact on the test performance and demonstrates a process that can be used on real-world and synthetic images to identify the effect of each factor and discusses how this information may be used to create an optimal training dataset.
AbstractList Computer vision is used for many industrial applications involving automation, especially those related to efficiency and safety. Computer vision techniques which use machine learning, such as object detectors, need a dataset of images for training and testing. Publicly available datasets or new datasets can be used. However, these datasets rarely consider whether the dataset is leading to optimal performance. Environmental factors, such as lighting and occlusion, will alter the appearance of the images and so images taken under certain condition may have different effects on training. A knowledge gap has formed as to how the test performance of deep neural networks can be improved by considering the effect and interactions of factors where either real or synthetic images are used. The following research illustrates that the different factors can have a significant impact on the test performance and demonstrates a process that can be used on real-world and synthetic images to identify the effect of each factor and discusses how this information may be used to create an optimal training dataset.
•Optimisation of a training dataset for training a deep neural network.•Identification of optimal factor levels using ANOVA and Taguchi.•Application of methodology to real-world and synthetic datasets.•Identification of optimal environmental factors for developing simulation environments. Computer vision is used for many industrial applications involving automation, especially those related to efficiency and safety. Computer vision techniques which use machine learning, such as object detectors, need a dataset of images for training and testing. Publicly available datasets or new datasets can be used. However, these datasets rarely consider whether the dataset is leading to optimal performance. Environmental factors, such as lighting and occlusion, will alter the appearance of the images and so images taken under certain condition may have different effects on training. A knowledge gap has formed as to how the test performance of deep neural networks can be improved by considering the effect and interactions of factors where either real or synthetic images are used. The following research illustrates that the different factors can have a significant impact on the test performance and demonstrates a process that can be used on real-world and synthetic images to identify the effect of each factor and discusses how this information may be used to create an optimal training dataset.
ArticleNumber 200079
Author Newman, Callum
Justham, Laura
Petzing, Jon
Goh, Yee Mey
Author_xml – sequence: 1
  givenname: Callum
  orcidid: 0000-0002-7543-6197
  surname: Newman
  fullname: Newman, Callum
  email: c.newman@lboro.ac.uk
– sequence: 2
  givenname: Jon
  orcidid: 0000-0001-5765-5188
  surname: Petzing
  fullname: Petzing, Jon
– sequence: 3
  givenname: Yee Mey
  surname: Goh
  fullname: Goh, Yee Mey
– sequence: 4
  givenname: Laura
  orcidid: 0000-0003-1052-1873
  surname: Justham
  fullname: Justham, Laura
BookMark eNp9kd1KJDEQhYMorH8vsFf9Aj3mb5Jp8EbEXQeEvdHrUJ1Uj2l6EkniiE-zr7ppW8SrvUmFqnM-Ujln5DjEgIT8ZHTFKFNX48rnN1hxynk9KNXdETnlSulW0LU4_nb_QS5zHquEbxgTUp6Sv9twwFz8DooPu6Y8YxNfit_7XBsxNHFoEsLUvsU0uQaCa_J7qKribRP7EW1pHJZaZnFJ4MOMcVAgY8mVl-Lr7vmDa2PI3mH6AmM4-BTDHkOBaWH7_eu0zAewJaZ8QU4GmDJeftZz8vTr7vH2vn3483t7e_PQWqFYaRlTSlHeO6HcRvYDVwy51YOkIDvNKWy0ZWvH6thKZJ0cBBMOeiWBiq5X4pxsF66LMJqX5PeQ3k0Ebz4aMe0MpLr0hAbXvFo6hqCU5J3YoIaBStr3moLWtrL4wrIp5pxw-OIxaubEzGjmxMycmFkSq6brxYR1y4PHZLL1GCw6n-r31mf4_9n_AWidpQo
Cites_doi 10.1016/j.autcon.2014.07.006
10.1109/TPAMI.2015.2437384
10.7717/peerj-cs.222
10.1016/j.patrec.2008.04.005
10.1016/j.autcon.2019.04.006
10.1109/TNNLS.2014.2330900
10.1016/j.marpolbul.2018.04.045
10.1007/s11263-014-0733-5
10.1109/TPAMI.2009.167
10.1109/TPAMI.2016.2577031
10.1007/s11263-018-1070-x
10.1016/j.autcon.2015.10.002
10.3389/fbuil.2020.00097
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.iswa.2022.200079
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2667-3053
ExternalDocumentID oai_doaj_org_article_e5239b91ea6642938e7af040bb70a77c
10_1016_j_iswa_2022_200079
S2667305322000199
GroupedDBID 6I.
AAFTH
AAXUO
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
FDB
GROUPED_DOAJ
M41
M~E
ROL
0R~
0SF
AALRI
AAYXX
ADVLN
AFJKZ
AITUG
CITATION
ID FETCH-LOGICAL-c361t-1166602bd36d84bf261e2c7f40a49720a87c15d136dc4e194f313dab64a039b63
IEDL.DBID DOA
ISSN 2667-3053
IngestDate Tue Oct 22 15:13:56 EDT 2024
Thu Sep 26 19:51:11 EDT 2024
Tue Jul 25 20:57:56 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Computer vision
Autonomous detection
Optimisation
Object detection
Machine learning
Synthetic data
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-1166602bd36d84bf261e2c7f40a49720a87c15d136dc4e194f313dab64a039b63
ORCID 0000-0003-1052-1873
0000-0001-5765-5188
0000-0002-7543-6197
OpenAccessLink https://doaj.org/article/e5239b91ea6642938e7af040bb70a77c
ParticipantIDs doaj_primary_oai_doaj_org_article_e5239b91ea6642938e7af040bb70a77c
crossref_primary_10_1016_j_iswa_2022_200079
elsevier_sciencedirect_doi_10_1016_j_iswa_2022_200079
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Intelligent systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Howal, Jadhav, Arthshi, Nalavade, Shinde (bib0015) 2019
Georgakis, Mousavian, Berg, Kosecka (bib0009) 2017
Deng, Dong, Socher, Li, Li, Fei-Fei (bib0005) 2009
MathsWorks. (n.d.).
Johnson-Roberson, Barto, Mehta, Sridhar, Rosaen, Vasudevan (bib0016) 2017
(MathWorks) Retrieved September 9, (2021)., from
Girshick, Donahue, Darrell, Malik (bib0011) 2015; 38
Soltani, Zhu, Hammad (bib0036) 2016; 62
Nath, Behzadan (bib0023) 2020
Ros, Sellart, Materzynska, Vazquez, Lopez (bib0033) 2016
Blender. (2019).
Newman, Petzing, Goh, Justham (bib0024) 2021; 15
Tsirikoglou, A., Kronander, J., Wrenninge, M., & Unger, J. (2017).
Tajeen, Zhu (bib0038) 2014; 48
(Blender) Retrieved April 12, 2021, from
.
Redmon, Farhadi (bib0028) 2017
Redmon, J., & Farhadi, A. (2018).
Redmon, Divvala, Girshick, Farhadi (bib0027) 2016
Ren, He, Girshick, Sun (bib0030) 2017; 39
Unity. (2020). Unity User Manual 2020.1 (Unity Technologies) Retrieved April 850 12, 2021.
Wong, Kunii, Ong, Kroupa, Koller (bib0042) 2019
Dwibedi, Misra, Hebert (bib0006) 2017
Tremblay, To, Birchfield (bib0039) 2018
Retrieved April 7, 2021, from
(Cortexica) Retrieved April 7, 2021, from
Shoa, Zhu, Li (bib0035) 2015; 26
Cordts (bib0004) 2016
Roberts, Golparvar-Fard (bib0032) 2019; 105
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov (bib0037) 2015
(Mathworks) Retrieved April 9, (2021)., from
Nowruzi, F.E., .Kapoor, P., Kolhatkar, D., Hassanat, F.A., .Laganiere, R., & Rebut, J. (2019).
Felzenswalb, Girshick, McAllester, Ramanan (bib0008) 2010; 32
Martin, Parkes, Zhang, Zhang, McCabe, Duarte (bib0020) 2018; 131
Alhaija, Mustikovela, Mescheder, Geiger, Rother (bib0001) 2018; 126
Peniak, M.. (n.d.).
Hinterstoisser, Lepetit, Wohlhart, Konolige (bib0013) 2018
Brostow, Fauqueur, Cipolla (bib0003) 2009; 30
Liu, Anguelov, Erhan, Szegedy, Reed, Fu (bib0019) 2016
Richter, Hayder, Koltun (bib0031) 2017
Wrenninge, M., & Unger, J. (2018).
Girshick (bib0010) 2015
Everingham, Ali Eslami, Gool, Williams, Winn, Zisserman (bib0007) 2015; 111
Retrieved April 2021, 09, from
Hinterstoisser, Pauly, Heibel, Martina, Bokeloh (bib0014) 2019
He, Zhang, Ren, Sun (bib0012) 2016
Lin, Maire, Belongie, Hays, Perona, Ramanan (bib0018) 2014
Woolf, Fraley, Oom, Terrien, Zalewski (bib0043) 2009
Shafaei, Little, Schmidt (bib0034) 2016
Lin, Goyal, Girshick, He, Dollár (bib0017) 2017
Martin (10.1016/j.iswa.2022.200079_bib0020) 2018; 131
Ros (10.1016/j.iswa.2022.200079_bib0033) 2016
Lin (10.1016/j.iswa.2022.200079_bib0017) 2017
Cordts (10.1016/j.iswa.2022.200079_bib0004) 2016
Everingham (10.1016/j.iswa.2022.200079_bib0007) 2015; 111
Roberts (10.1016/j.iswa.2022.200079_bib0032) 2019; 105
Tajeen (10.1016/j.iswa.2022.200079_bib0038) 2014; 48
Liu (10.1016/j.iswa.2022.200079_bib0019) 2016
Redmon (10.1016/j.iswa.2022.200079_bib0027) 2016
Soltani (10.1016/j.iswa.2022.200079_bib0036) 2016; 62
Deng (10.1016/j.iswa.2022.200079_bib0005) 2009
Redmon (10.1016/j.iswa.2022.200079_bib0028) 2017
Ren (10.1016/j.iswa.2022.200079_bib0030) 2017; 39
Girshick (10.1016/j.iswa.2022.200079_bib0011) 2015; 38
Nath (10.1016/j.iswa.2022.200079_bib0023) 2020
Hinterstoisser (10.1016/j.iswa.2022.200079_bib0013) 2018
Szegedy (10.1016/j.iswa.2022.200079_bib0037) 2015
Tremblay (10.1016/j.iswa.2022.200079_bib0039) 2018
10.1016/j.iswa.2022.200079_bib0029
Lin (10.1016/j.iswa.2022.200079_bib0018) 2014
Johnson-Roberson (10.1016/j.iswa.2022.200079_bib0016) 2017
Hinterstoisser (10.1016/j.iswa.2022.200079_bib0014) 2019
10.1016/j.iswa.2022.200079_bib0022
10.1016/j.iswa.2022.200079_bib0044
Newman (10.1016/j.iswa.2022.200079_bib0024) 2021; 15
Shafaei (10.1016/j.iswa.2022.200079_bib0034) 2016
Woolf (10.1016/j.iswa.2022.200079_bib0043) 2009
Felzenswalb (10.1016/j.iswa.2022.200079_bib0008) 2010; 32
10.1016/j.iswa.2022.200079_bib0021
10.1016/j.iswa.2022.200079_bib0026
Shoa (10.1016/j.iswa.2022.200079_bib0035) 2015; 26
10.1016/j.iswa.2022.200079_bib0002
Richter (10.1016/j.iswa.2022.200079_bib0031) 2017
10.1016/j.iswa.2022.200079_bib0025
Girshick (10.1016/j.iswa.2022.200079_bib0010) 2015
Dwibedi (10.1016/j.iswa.2022.200079_bib0006) 2017
10.1016/j.iswa.2022.200079_bib0040
10.1016/j.iswa.2022.200079_bib0041
Georgakis (10.1016/j.iswa.2022.200079_bib0009) 2017
Brostow (10.1016/j.iswa.2022.200079_bib0003) 2009; 30
He (10.1016/j.iswa.2022.200079_bib0012) 2016
Wong (10.1016/j.iswa.2022.200079_bib0042) 2019
Alhaija (10.1016/j.iswa.2022.200079_bib0001) 2018; 126
Howal (10.1016/j.iswa.2022.200079_bib0015) 2019
References_xml – volume: 105
  year: 2019
  ident: bib0032
  article-title: End-to-end vision-based detection, tracking and activity analysis of earthmoving equipment filmed at ground level
  publication-title: Automation in Construction
  contributor:
    fullname: Golparvar-Fard
– volume: 15
  start-page: 15
  year: 2021
  end-page: 20
  ident: bib0024
  article-title: Developement of an optimised dataset for training a deep neural network
  publication-title: Advances in Transdisciplinary Engineering
  contributor:
    fullname: Justham
– year: 2016
  ident: bib0027
  article-title: You only look once: Unified, real-time object detection
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  contributor:
    fullname: Farhadi
– year: 2015
  ident: bib0010
  article-title: Fast R-CNN
  publication-title: Proceedings of the IEEE international conference on computer vision
  contributor:
    fullname: Girshick
– volume: 111
  start-page: 98
  year: 2015
  end-page: 136
  ident: bib0007
  article-title: The PASCAL visual object classes challenge: A retrospective
  publication-title: International Journal of Computer Vision
  contributor:
    fullname: Zisserman
– year: 2017
  ident: bib0028
  article-title: YOLO9000: Better, faster, stronger
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  contributor:
    fullname: Farhadi
– year: 2016
  ident: bib0012
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  contributor:
    fullname: Sun
– year: 2015
  ident: bib0037
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  contributor:
    fullname: Anguelov
– year: 2016
  ident: bib0034
  article-title: Play and learn: Using video games to train computer vision models
  publication-title: Proceedings of the British machine vision conference
  contributor:
    fullname: Schmidt
– year: 2018
  ident: bib0013
  article-title: On pre-trained features and synthetic images for deep learning
  publication-title: Proceedings of the European conference on computer vision
  contributor:
    fullname: Konolige
– year: 2016
  ident: bib0019
  article-title: SSD: Single shot multibox detector
  publication-title: Proceedings of the European conference on computer vision
  contributor:
    fullname: Fu
– start-page: 3213
  year: 2016
  end-page: 3223
  ident: bib0004
  article-title: The Cityscapes Dataset for Semantic Urban Scene Understanding
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  contributor:
    fullname: Cordts
– year: 2020
  ident: bib0023
  article-title: Deep convolutional networks for construction object detection under different Visual conditions
  publication-title: Frontiers in Built Environment
  contributor:
    fullname: Behzadan
– volume: 39
  start-page: 1137
  year: 2017
  end-page: 1149
  ident: bib0030
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  contributor:
    fullname: Sun
– year: 2018
  ident: bib0039
  article-title: Falling things: A synthetic dataset for 3D object detection and pose estimation
  publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops
  contributor:
    fullname: Birchfield
– year: 2017
  ident: bib0016
  article-title: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks?
  publication-title: Proceedings of the IEEE international conference on robotics and automation
  contributor:
    fullname: Vasudevan
– year: 2009
  ident: bib0005
  article-title: ImageNet: A large-scale hierarchical image database
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  contributor:
    fullname: Fei-Fei
– volume: 30
  start-page: 88
  year: 2009
  end-page: 97
  ident: bib0003
  article-title: Semantic object classes in video: A high-definition ground truth database
  publication-title: Pattern Recognition Letters
  contributor:
    fullname: Cipolla
– volume: 62
  start-page: 14
  year: 2016
  end-page: 23
  ident: bib0036
  article-title: Automated annotation for visual recognition of construction resources using synthetic images
  publication-title: Automation in Construction
  contributor:
    fullname: Hammad
– year: 2017
  ident: bib0017
  article-title: Focal loss for dense object detection
  publication-title: Proceedings of the IEEE international conference on computer vision
  contributor:
    fullname: Dollár
– year: 2014
  ident: bib0018
  article-title: Microsoft COCO: Common objects in context
  publication-title: Proceedings of the European conference on computer vision
  contributor:
    fullname: Ramanan
– volume: 38
  start-page: 142
  year: 2015
  end-page: 158
  ident: bib0011
  article-title: Region-based convolutional networks for accurate object detection and segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  contributor:
    fullname: Malik
– start-page: 86
  year: 2019
  end-page: 93
  ident: bib0015
  article-title: Object detection for autonomous vehicle using tensorflow
  publication-title: Proceedings of the international conference on intelligent computing, information and control systems
  contributor:
    fullname: Shinde
– volume: 126
  start-page: 961
  year: 2018
  end-page: 972
  ident: bib0001
  article-title: Augmented reality meets computer vision: Efficient data generation for urban driving scenes
  publication-title: International Journal of Computer Vision
  contributor:
    fullname: Rother
– year: 2016
  ident: bib0033
  article-title: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  contributor:
    fullname: Lopez
– volume: 48
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib0038
  article-title: Image dataset development for measuring construction equipment recognition performance
  publication-title: Autoamtion in Construction
  contributor:
    fullname: Zhu
– year: 2019
  ident: bib0014
  article-title: An annotation saved is an annotation earned: Using fully synthetic training for object detection
  publication-title: Proceedings of the IEEE/CVF international conference on computer vision workshop
  contributor:
    fullname: Bokeloh
– volume: 131
  start-page: 662
  year: 2018
  end-page: 673
  ident: bib0020
  article-title: Use of unmanned aerial vehicles for efficient beach litter monitoring
  publication-title: Marine Pollution Bulletin
  contributor:
    fullname: Duarte
– volume: 26
  start-page: 1019
  year: 2015
  end-page: 1034
  ident: bib0035
  article-title: Transfer learning for visual categorization: A survey
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  contributor:
    fullname: Li
– year: 2017
  ident: bib0006
  article-title: Cut, paste and learn: Surprisingly easy synthesis for instance detection
  publication-title: Proceedings of the IEEE international conference on computer vision
  contributor:
    fullname: Hebert
– year: 2017
  ident: bib0009
  article-title: Synthesizing training data for object detection in indoor scenes
  publication-title: Robotics: Science and systems
  contributor:
    fullname: Kosecka
– year: 2009
  ident: bib0043
  article-title: Design of experiments via taguchi methods - orthogonal arrays
  publication-title: Chemical process dynamics and controls
  contributor:
    fullname: Zalewski
– year: 2017
  ident: bib0031
  article-title: Playing for Benchmarks
  publication-title: Proceedings of the international conference on computer vision
  contributor:
    fullname: Koltun
– volume: 32
  start-page: 1627
  year: 2010
  end-page: 1645
  ident: bib0008
  article-title: Object detection with discriminatively trained part-based models
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  contributor:
    fullname: Ramanan
– year: 2019
  ident: bib0042
  article-title: Synthetic dataset generation for object-to-model deep learning in industrial applications
  publication-title: PeerJ Computer Science
  contributor:
    fullname: Koller
– year: 2017
  ident: 10.1016/j.iswa.2022.200079_bib0028
  article-title: YOLO9000: Better, faster, stronger
  contributor:
    fullname: Redmon
– year: 2016
  ident: 10.1016/j.iswa.2022.200079_bib0012
  article-title: Deep residual learning for image recognition
  contributor:
    fullname: He
– year: 2016
  ident: 10.1016/j.iswa.2022.200079_bib0027
  article-title: You only look once: Unified, real-time object detection
  contributor:
    fullname: Redmon
– year: 2018
  ident: 10.1016/j.iswa.2022.200079_bib0039
  article-title: Falling things: A synthetic dataset for 3D object detection and pose estimation
  contributor:
    fullname: Tremblay
– year: 2015
  ident: 10.1016/j.iswa.2022.200079_bib0037
  article-title: Going deeper with convolutions
  contributor:
    fullname: Szegedy
– volume: 48
  start-page: 1
  year: 2014
  ident: 10.1016/j.iswa.2022.200079_bib0038
  article-title: Image dataset development for measuring construction equipment recognition performance
  publication-title: Autoamtion in Construction
  doi: 10.1016/j.autcon.2014.07.006
  contributor:
    fullname: Tajeen
– volume: 38
  start-page: 142
  issue: 1
  year: 2015
  ident: 10.1016/j.iswa.2022.200079_bib0011
  article-title: Region-based convolutional networks for accurate object detection and segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2015.2437384
  contributor:
    fullname: Girshick
– year: 2017
  ident: 10.1016/j.iswa.2022.200079_bib0016
  article-title: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks?
  contributor:
    fullname: Johnson-Roberson
– start-page: 3213
  year: 2016
  ident: 10.1016/j.iswa.2022.200079_bib0004
  article-title: The Cityscapes Dataset for Semantic Urban Scene Understanding
  contributor:
    fullname: Cordts
– year: 2019
  ident: 10.1016/j.iswa.2022.200079_bib0042
  article-title: Synthetic dataset generation for object-to-model deep learning in industrial applications
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.222
  contributor:
    fullname: Wong
– year: 2014
  ident: 10.1016/j.iswa.2022.200079_bib0018
  article-title: Microsoft COCO: Common objects in context
  contributor:
    fullname: Lin
– ident: 10.1016/j.iswa.2022.200079_bib0044
– ident: 10.1016/j.iswa.2022.200079_bib0025
– ident: 10.1016/j.iswa.2022.200079_bib0002
– ident: 10.1016/j.iswa.2022.200079_bib0021
– volume: 30
  start-page: 88
  issue: 2
  year: 2009
  ident: 10.1016/j.iswa.2022.200079_bib0003
  article-title: Semantic object classes in video: A high-definition ground truth database
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2008.04.005
  contributor:
    fullname: Brostow
– volume: 105
  year: 2019
  ident: 10.1016/j.iswa.2022.200079_bib0032
  article-title: End-to-end vision-based detection, tracking and activity analysis of earthmoving equipment filmed at ground level
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2019.04.006
  contributor:
    fullname: Roberts
– ident: 10.1016/j.iswa.2022.200079_bib0040
– ident: 10.1016/j.iswa.2022.200079_bib0029
– year: 2017
  ident: 10.1016/j.iswa.2022.200079_bib0031
  article-title: Playing for Benchmarks
  contributor:
    fullname: Richter
– volume: 15
  start-page: 15
  year: 2021
  ident: 10.1016/j.iswa.2022.200079_bib0024
  article-title: Developement of an optimised dataset for training a deep neural network
  publication-title: Advances in Transdisciplinary Engineering
  contributor:
    fullname: Newman
– volume: 26
  start-page: 1019
  issue: 5
  year: 2015
  ident: 10.1016/j.iswa.2022.200079_bib0035
  article-title: Transfer learning for visual categorization: A survey
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2014.2330900
  contributor:
    fullname: Shoa
– year: 2019
  ident: 10.1016/j.iswa.2022.200079_bib0014
  article-title: An annotation saved is an annotation earned: Using fully synthetic training for object detection
  contributor:
    fullname: Hinterstoisser
– year: 2017
  ident: 10.1016/j.iswa.2022.200079_bib0017
  article-title: Focal loss for dense object detection
  contributor:
    fullname: Lin
– year: 2018
  ident: 10.1016/j.iswa.2022.200079_bib0013
  article-title: On pre-trained features and synthetic images for deep learning
  contributor:
    fullname: Hinterstoisser
– volume: 131
  start-page: 662
  issue: Part A
  year: 2018
  ident: 10.1016/j.iswa.2022.200079_bib0020
  article-title: Use of unmanned aerial vehicles for efficient beach litter monitoring
  publication-title: Marine Pollution Bulletin
  doi: 10.1016/j.marpolbul.2018.04.045
  contributor:
    fullname: Martin
– volume: 111
  start-page: 98
  year: 2015
  ident: 10.1016/j.iswa.2022.200079_bib0007
  article-title: The PASCAL visual object classes challenge: A retrospective
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-014-0733-5
  contributor:
    fullname: Everingham
– volume: 32
  start-page: 1627
  issue: 9
  year: 2010
  ident: 10.1016/j.iswa.2022.200079_bib0008
  article-title: Object detection with discriminatively trained part-based models
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2009.167
  contributor:
    fullname: Felzenswalb
– year: 2009
  ident: 10.1016/j.iswa.2022.200079_bib0005
  article-title: ImageNet: A large-scale hierarchical image database
  contributor:
    fullname: Deng
– year: 2017
  ident: 10.1016/j.iswa.2022.200079_bib0009
  article-title: Synthesizing training data for object detection in indoor scenes
  contributor:
    fullname: Georgakis
– ident: 10.1016/j.iswa.2022.200079_bib0022
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 10.1016/j.iswa.2022.200079_bib0030
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2577031
  contributor:
    fullname: Ren
– year: 2016
  ident: 10.1016/j.iswa.2022.200079_bib0033
  article-title: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes
  contributor:
    fullname: Ros
– volume: 126
  start-page: 961
  year: 2018
  ident: 10.1016/j.iswa.2022.200079_bib0001
  article-title: Augmented reality meets computer vision: Efficient data generation for urban driving scenes
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-018-1070-x
  contributor:
    fullname: Alhaija
– volume: 62
  start-page: 14
  year: 2016
  ident: 10.1016/j.iswa.2022.200079_bib0036
  article-title: Automated annotation for visual recognition of construction resources using synthetic images
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2015.10.002
  contributor:
    fullname: Soltani
– year: 2015
  ident: 10.1016/j.iswa.2022.200079_bib0010
  article-title: Fast R-CNN
  contributor:
    fullname: Girshick
– ident: 10.1016/j.iswa.2022.200079_bib0041
– year: 2017
  ident: 10.1016/j.iswa.2022.200079_bib0006
  article-title: Cut, paste and learn: Surprisingly easy synthesis for instance detection
  contributor:
    fullname: Dwibedi
– start-page: 86
  year: 2019
  ident: 10.1016/j.iswa.2022.200079_bib0015
  article-title: Object detection for autonomous vehicle using tensorflow
  contributor:
    fullname: Howal
– ident: 10.1016/j.iswa.2022.200079_bib0026
– year: 2020
  ident: 10.1016/j.iswa.2022.200079_bib0023
  article-title: Deep convolutional networks for construction object detection under different Visual conditions
  publication-title: Frontiers in Built Environment
  doi: 10.3389/fbuil.2020.00097
  contributor:
    fullname: Nath
– year: 2009
  ident: 10.1016/j.iswa.2022.200079_bib0043
  article-title: Design of experiments via taguchi methods - orthogonal arrays
  contributor:
    fullname: Woolf
– year: 2016
  ident: 10.1016/j.iswa.2022.200079_bib0019
  article-title: SSD: Single shot multibox detector
  contributor:
    fullname: Liu
– year: 2016
  ident: 10.1016/j.iswa.2022.200079_bib0034
  article-title: Play and learn: Using video games to train computer vision models
  contributor:
    fullname: Shafaei
SSID ssj0002811344
Score 2.2426722
Snippet •Optimisation of a training dataset for training a deep neural network.•Identification of optimal factor levels using ANOVA and Taguchi.•Application of...
Computer vision is used for many industrial applications involving automation, especially those related to efficiency and safety. Computer vision techniques...
SourceID doaj
crossref
elsevier
SourceType Open Website
Aggregation Database
Publisher
StartPage 200079
SubjectTerms Autonomous detection
Computer vision
Machine learning
Object detection
Optimisation
Synthetic data
Title Investigating the optimisation of real-world and synthetic object detection training datasets through the consideration of environmental and simulation factors
URI https://dx.doi.org/10.1016/j.iswa.2022.200079
https://doaj.org/article/e5239b91ea6642938e7af040bb70a77c
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxa-EeVLHthQhJ04tjMCalUhlYlK3SLbcVArmiIShFj4K_xVzo5TZYKFJUNinaPc2ffsnN9D6EozFUvN3R_G1F90pErOI2kNgNtYypK4g8LTRz6ZsYd5Ou9JfbmasJYeuP1wNxZWSpnOqFUcoHKWSCtUCZGntSBKCONnX5L1FlNLv2VEaeKVXCEBwSiCUAsnZtrirkX94UiHYk9FSVwdVy8refL-XnLqJZzxHtoJSBHftm-4j7ZsdYB2OxUGHAblIfruUWVUzxgAHV7DPLAKdTp4XWIAhi-R50bFqipw_VlBKzCL19ptw-DCNr4iq8KdYgR2laO1bWochHy8XRPUPTeGe8fk4FW97cUqCILhIOVzhGbj0dP9JAqyC5FJOG0i6v4kklgXCS8k0yWssWxsRMmIYpmIiZLC0LSg8NgwSzNWJjQplOZMEXAVT47RoFpX9gRhao0UVqZWQbMEJkdRUpsx40lpALkM0XX32fPXll0j78rOlrlzUu6clLdOGqI755lNS8eM7W9AvOQhXvK_4mWI0s6veQAZLXgAU4tfOj_9j87P0LYz2RZMnqNB8_ZuLwDUNPrSxy9cp1-jHybE9rU
link.rule.ids 315,783,787,867,2109,27938,27939
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+optimisation+of+real-world+and+synthetic+object+detection+training+datasets+through+the+consideration+of+environmental+and+simulation+factors&rft.jtitle=Intelligent+systems+with+applications&rft.au=Callum+Newman&rft.au=Jon+Petzing&rft.au=Yee+Mey+Goh&rft.au=Laura+Justham&rft.date=2022-05-01&rft.pub=Elsevier&rft.issn=2667-3053&rft.eissn=2667-3053&rft.volume=14&rft.spage=200079&rft_id=info:doi/10.1016%2Fj.iswa.2022.200079&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e5239b91ea6642938e7af040bb70a77c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-3053&client=summon