A fast dissipative robust nonlinear model predictive control procedure via quasi‐linear parameter varying embedding and parameter extrapolation
In this article, a robust model predictive control (MPC) procedure for quasi‐linear parameter varying (qLPV) systems is proposed. The novelty resides in considering a recursive extrapolation algorithm to estimate the values of the scheduling parameters along the prediction horizon Np, which fastens...
Saved in:
Published in | International journal of robust and nonlinear control Vol. 31; no. 18; pp. 9619 - 9651 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.12.2021
Wiley |
Series | Special Issue: Adaptive and Learning‐based Model Predictive Control |
Subjects | |
Online Access | Get full text |
ISSN | 1049-8923 1099-1239 |
DOI | 10.1002/rnc.5788 |
Cover
Loading…
Abstract | In this article, a robust model predictive control (MPC) procedure for quasi‐linear parameter varying (qLPV) systems is proposed. The novelty resides in considering a recursive extrapolation algorithm to estimate the values of the scheduling parameters along the prediction horizon Np, which fastens the sluggish performances achieved with the robust qLPV MPCs from the literature. The bounds on the estimation errors of the scheduling parameters through Np are taken into account by the robust MPC, which solves an online min‐max problem: first, a constrained convex program is resolved in order to determine the worst‐case bound on the cost function and, subsequently, a second constrained quadratic program is solved to minimize this worst‐case cost function with respect to a control sequence vector. Since the bounds on the estimation error for the scheduling parameters are usually much smaller than the bounds on the actual scheduling parameter, the conservativeness of the solution is quite reduced. Recursive feasibility and stability of the proposed algorithm are demonstrated with dissipativity arguments given in the form of a linear matrix inequality remedy, which determines the zone of attraction for which input‐to‐state stability is ensured. The nonlinear temperature regulation problem of a flat solar collector is considered as a case study. Using a realistic simulation benchmark, the proposed technique is compared to other robust min‐max LPV MPC algorithms from the literature, proving itself efficient while achieving good performances. |
---|---|
AbstractList | In this article, a robust model predictive control (MPC) procedure for quasi-linear parameter varying (qLPV) systems is proposed. The novelty resides in considering a recursive extrapolation algorithm to estimate the values of the scheduling parameters along the prediction horizon N p , which fastens the sluggish performances achieved with the robust qLPV MPCs from the literature. In this article, a robust model predictive control (MPC) procedure for quasi‐linear parameter varying (qLPV) systems is proposed. The novelty resides in considering a recursive extrapolation algorithm to estimate the values of the scheduling parameters along the prediction horizon Np, which fastens the sluggish performances achieved with the robust qLPV MPCs from the literature. The bounds on the estimation errors of the scheduling parameters through Np are taken into account by the robust MPC, which solves an online min‐max problem: first, a constrained convex program is resolved in order to determine the worst‐case bound on the cost function and, subsequently, a second constrained quadratic program is solved to minimize this worst‐case cost function with respect to a control sequence vector. Since the bounds on the estimation error for the scheduling parameters are usually much smaller than the bounds on the actual scheduling parameter, the conservativeness of the solution is quite reduced. Recursive feasibility and stability of the proposed algorithm are demonstrated with dissipativity arguments given in the form of a linear matrix inequality remedy, which determines the zone of attraction for which input‐to‐state stability is ensured. The nonlinear temperature regulation problem of a flat solar collector is considered as a case study. Using a realistic simulation benchmark, the proposed technique is compared to other robust min‐max LPV MPC algorithms from the literature, proving itself efficient while achieving good performances. In this article, a robust model predictive control (MPC) procedure for quasi‐linear parameter varying (qLPV) systems is proposed. The novelty resides in considering a recursive extrapolation algorithm to estimate the values of the scheduling parameters along the prediction horizon , which fastens the sluggish performances achieved with the robust qLPV MPCs from the literature. The bounds on the estimation errors of the scheduling parameters through are taken into account by the robust MPC, which solves an online min‐max problem: first, a constrained convex program is resolved in order to determine the worst‐case bound on the cost function and, subsequently, a second constrained quadratic program is solved to minimize this worst‐case cost function with respect to a control sequence vector. Since the bounds on the estimation error for the scheduling parameters are usually much smaller than the bounds on the actual scheduling parameter, the conservativeness of the solution is quite reduced. Recursive feasibility and stability of the proposed algorithm are demonstrated with dissipativity arguments given in the form of a linear matrix inequality remedy, which determines the zone of attraction for which input‐to‐state stability is ensured. The nonlinear temperature regulation problem of a flat solar collector is considered as a case study. Using a realistic simulation benchmark, the proposed technique is compared to other robust min‐max LPV MPC algorithms from the literature, proving itself efficient while achieving good performances. |
Author | Morato, Marcelo Menezes Normey‐Rico, Julio E. Sename, Olivier |
Author_xml | – sequence: 1 givenname: Marcelo Menezes orcidid: 0000-0002-7137-0522 surname: Morato fullname: Morato, Marcelo Menezes email: marcelomnzm@gmail.com organization: CNRS, Grenoble INP (Institute of Engineering), GIPSA‐Lab – sequence: 2 givenname: Julio E. surname: Normey‐Rico fullname: Normey‐Rico, Julio E. organization: Universidade Federal de Santa Catarina – sequence: 3 givenname: Olivier surname: Sename fullname: Sename, Olivier organization: CNRS, Grenoble INP (Institute of Engineering), GIPSA‐Lab |
BackLink | https://hal.science/hal-03526931$$DView record in HAL |
BookMark | eNp1kc2KFDEQxxtZwd1V8BECXvTQYz4m3clxGNQVBgXRc6hOqjVLT9KbdM-6Nx9BX9EnMT2zgojmkqLq968P_hfVWYgBq-opoytGKX-Zgl3JVqkH1TmjWteMC322xGtdK83Fo-oi52tKS42vz6sfG9JDnojzOfsRJn9AkmI3l1RpPPiAkMg-OhzImNB5eyRsDFOKSypadHNCcvBAbmbI_ue37_eqERLsccJEDpDufPhMcN-hc0sEwf1Rx69TgjEOZXwMj6uHPQwZn9z_l9Wn168-bq_q3fs3b7ebXW1Fw1TNNaKztnPQguo7zhspFIBsJbS2b1iv10yA4rQDJToptAXKeWsROqmsbMRl9eLU9wsMZkx-X5Y0Eby52uzMkqNC8kYLdmCFfXZiy8E3M-bJXMc5hbKe4VKrpjxGC7U6UTbFnBP2xvrpeFM5zw-GUbNYZIpFZrGoCJ7_Jfi9xz_Q-oTe-gHv_suZD--2R_4Xsgmm1A |
CitedBy_id | crossref_primary_10_1016_j_jfranklin_2022_09_011 crossref_primary_10_1016_j_jfranklin_2024_106713 crossref_primary_10_1016_j_geoen_2024_212969 crossref_primary_10_1016_j_ifacol_2022_09_037 crossref_primary_10_1016_j_jprocont_2023_103021 |
Cites_doi | 10.1109/TAC.2006.880808 10.3182/20140824-6-ZA-1003.02506 10.1016/j.automatica.2017.07.046 10.1016/S0005-1098(99)00214-9 10.1109/TCST.2014.2327584 10.1016/j.automatica.2011.12.003 10.1109/CDC.2010.5717073 10.1016/j.automatica.2006.01.001 10.1016/S0005-1098(00)00176-X 10.1016/j.ifacol.2019.12.366 10.1109/TAC.2009.2037464 10.1109/CDC.2016.7798752 10.1016/j.automatica.2019.04.046 10.23919/ACC.2018.8431417 10.1155/2014/786351 10.1109/9.587335 10.1002/oca.2152 10.1137/1.9781611970777 10.1016/j.sysconle.2007.06.013 10.1016/j.ijepes.2019.105644 10.1016/S0005-1098(01)00028-0 10.3182/20090616-3-IL-2002.00002 10.1016/j.jprocont.2017.11.003 10.1109/TAC.2011.2109439 10.1007/978-1-4614-1833-7 10.1007/978-3-642-13812-6 10.1080/00207179.2010.536996 10.1016/j.arcontrol.2019.01.003 10.1016/j.arcontrol.2020.04.016 10.1016/j.automatica.2019.108622 10.1049/ip-cta:20041314 10.1007/978-0-8176-4606-6 10.1016/j.ifacol.2015.11.106 10.1007/978-1-4614-1833-7_1 10.1007/s11081-018-9417-2 10.1016/j.ifacol.2017.08.1650 10.1016/j.automatica.2014.10.128 10.1016/j.ifacol.2019.12.356 10.1007/978-3-642-36110-4 10.1109/CDC.2016.7798472 10.1016/j.jfranklin.2014.03.006 10.1016/j.solener.2013.09.024 10.1016/j.solener.2018.11.014 10.1002/rnc.4973 10.1016/j.solener.2020.09.005 10.1109/LCSYS.2019.2937921 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons Ltd. 2021 John Wiley & Sons, Ltd. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2021 John Wiley & Sons, Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 1XC VOOES |
DOI | 10.1002/rnc.5788 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1099-1239 |
EndPage | 9651 |
ExternalDocumentID | oai_HAL_hal_03526931v1 10_1002_rnc_5788 RNC5788 |
Genre | article |
GrantInformation_xml | – fundername: ITEA funderid: 15016 EMPHYSIS – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico funderid: 304032–2019−0 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WJL WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 L7M L~C L~D 1XC VOOES |
ID | FETCH-LOGICAL-c3618-29eedccbda7a8fb226538aa575a7cf61f9413a820ba83b539ca0227ceab58c563 |
IEDL.DBID | DR2 |
ISSN | 1049-8923 |
IngestDate | Fri May 09 12:06:38 EDT 2025 Fri Jul 25 12:15:29 EDT 2025 Tue Jul 01 01:03:08 EDT 2025 Thu Apr 24 23:05:22 EDT 2025 Wed Jan 22 16:26:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Solar Collector Robust Model Predictive Control Dissipativity Quadratic Programming Linear Parameter Varying Systems |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3618-29eedccbda7a8fb226538aa575a7cf61f9413a820ba83b539ca0227ceab58c563 |
Notes | Funding information Conselho Nacional de Desenvolvimento Científico e Tecnológico, 304032–2019−0; ITEA, 15016 EMPHYSIS ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7137-0522 0000-0001-9595-9000 |
OpenAccessLink | https://hal.science/hal-03526931 |
PQID | 2598666610 |
PQPubID | 1026344 |
PageCount | 33 |
ParticipantIDs | hal_primary_oai_HAL_hal_03526931v1 proquest_journals_2598666610 crossref_citationtrail_10_1002_rnc_5788 crossref_primary_10_1002_rnc_5788 wiley_primary_10_1002_rnc_5788_RNC5788 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 2021-12 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationSeriesTitle | Special Issue: Adaptive and Learning‐based Model Predictive Control |
PublicationTitle | International journal of robust and nonlinear control |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2010; 55 2017; 85 2015; 36 2005; 152 2009; 42 2006; 51 2012 2019; 52 2019; 74 1997; 42 2010; 403 2011; 84 2008 2007 2014; 47 2008; 57 2011; 56 2014; 2014 2019; 107 2014; 351 2014; 23 2020; 209 2017; 50 2015; 48 2006; 42 2019; 42 2000; 36 2019; 20 2020; 30 2013; 437 2013; 97 2019; 47 2020; 49 2020; 117 2020; 111 2001; 37 1994; 15 2013 2012; 26 2012; 48 2014; 50 2019; 177 e_1_2_14_31_1 e_1_2_14_50_1 e_1_2_14_10_1 e_1_2_14_35_1 e_1_2_14_12_1 e_1_2_14_33_1 e_1_2_14_14_1 e_1_2_14_39_1 e_1_2_14_16_1 e_1_2_14_37_1 Allgöwer F (e_1_2_14_3_1) 2012 e_1_2_14_6_1 e_1_2_14_8_1 e_1_2_14_41_1 e_1_2_14_20_1 e_1_2_14_45_1 e_1_2_14_24_1 e_1_2_14_22_1 e_1_2_14_28_1 e_1_2_14_49_1 e_1_2_14_26_1 e_1_2_14_47_1 e_1_2_14_19_1 Camacho EF (e_1_2_14_4_1) 2007 e_1_2_14_30_1 e_1_2_14_51_1 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_13_1 e_1_2_14_32_1 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_17_1 e_1_2_14_36_1 Camacho EF (e_1_2_14_2_1) 2013 e_1_2_14_29_1 e_1_2_14_5_1 e_1_2_14_7_1 e_1_2_14_9_1 Camacho EF (e_1_2_14_43_1) 2012 e_1_2_14_42_1 e_1_2_14_40_1 e_1_2_14_23_1 e_1_2_14_46_1 e_1_2_14_21_1 e_1_2_14_44_1 e_1_2_14_27_1 e_1_2_14_25_1 e_1_2_14_48_1 e_1_2_14_18_1 |
References_xml | – volume: 209 start-page: 214 year: 2020 end-page: 225 article-title: Nonlinear temperature regulation of solar collectors with a fast adaptive polytopic LPV MPC formulation publication-title: Sol Energy – volume: 49 start-page: 64 year: 2020 end-page: 80 article-title: Model predictive control design for linear parameter varying systems: a survey publication-title: Annu Rev Control – volume: 30 start-page: 3945 issue: 10 year: 2020 end-page: 3959 article-title: Nonlinear model predictive control for models in quasi‐linear parameter varying form publication-title: Int J Robust Nonlinear Control – volume: 117 start-page: 105644 year: 2020 article-title: LPV‐MPC fault‐tolerant energy management strategy for renewable microgrids publication-title: Int J Electr Power Energy Syst – volume: 15 year: 1994 – volume: 57 start-page: 39 issue: 1 year: 2008 end-page: 48 article-title: On input‐to‐state stability of min–max nonlinear model predictive control publication-title: Syst Control Lett – volume: 36 start-page: 685 issue: 5 year: 2015 end-page: 704 article-title: Autogenerating microsecond solvers for nonlinear MPC: a tutorial using ACADO integrators publication-title: Opt Control Appl Methods – volume: 52 start-page: 158 issue: 28 year: 2019 end-page: 163 article-title: Novel qLPV MPC design with least‐squares scheduling prediction publication-title: IFAC‐PapersOnLine – volume: 85 start-page: 137 year: 2017 end-page: 144 article-title: Stabilizing tube‐based model predictive control: terminal set and cost construction for LPV systems publication-title: Automatica – volume: 437 year: 2013 – volume: 152 start-page: 266 issue: 3 year: 2005 end-page: 272 article-title: Min‐max MPC algorithm for LPV systems subject to input saturation publication-title: IET Proc Control Theory Appl – volume: 42 start-page: 819 issue: 6 year: 1997 end-page: 830 article-title: System analysis via integral quadratic constraints publication-title: IEEE Trans Automat Contr – volume: 42 start-page: 7 issue: 6 year: 2009 end-page: 12 article-title: Explicit LPV‐MPC with bounded rate of parameter variation publication-title: IFAC Proc Vol – volume: 177 start-page: 241 year: 2019 end-page: 254 article-title: Apparent delay analysis for a flat‐plate solar field model designed for control purposes publication-title: Sol Energy – year: 2012 – volume: 37 start-page: 361 issue: 3 year: 2001 end-page: 375 article-title: LPV control and full block multipliers publication-title: Automatica – volume: 26 year: 2012 – volume: 74 start-page: 120 year: 2019 end-page: 132 article-title: Advanced chance‐constrained predictive control for the efficient energy management of renewable power systems publication-title: J Process Control – volume: 56 start-page: 2499 issue: 11 year: 2011 end-page: 2514 article-title: The behavioral approach to linear parameter‐varying systems publication-title: IEEE Trans Automat Contr – volume: 351 start-page: 3405 issue: 6 year: 2014 end-page: 3423 article-title: Quasi‐min–max MPC for constrained nonlinear systems with guaranteed input‐to‐state stability publication-title: J Frankl Inst – volume: 47 start-page: 71 year: 2019 end-page: 80 article-title: Near‐optimal control of nonlinear dynamical systems: a brief survey publication-title: Annu Rev Control – volume: 42 start-page: 402 issue: 2 year: 2019 end-page: 407 article-title: A stabilizing sub‐optimal model predictive control for quasi‐linear parameter varying systems publication-title: IEEE Control Syst Lett – volume: 50 start-page: 11601 issue: 1 year: 2017 end-page: 11606 article-title: Fast nonlinear MPC for reference tracking subject to nonlinear constraints via quasi‐LPV representations publication-title: IFAC‐PapersOnLine – volume: 50 start-page: 2967 issue: 12 year: 2014 end-page: 2986 article-title: Model predictive control: recent developments and future promise publication-title: Automatica – volume: 84 start-page: 24 issue: 1 year: 2011 end-page: 36 article-title: MPC for LPV systems with bounded parameter variations publication-title: Int J Control – volume: 107 start-page: 21 year: 2019 end-page: 28 article-title: Tube‐based model predictive control for linear parameter‐varying systems with bounded rate of parameter variation publication-title: Automatica – volume: 20 start-page: 769 issue: 3 year: 2019 end-page: 809 article-title: A software framework for embedded nonlinear model predictive control using a gradient‐based augmented Lagrangian approach (GRAMPC) publication-title: Optim Eng – volume: 97 start-page: 577 year: 2013 end-page: 590 article-title: Hybrid modeling of a solar‐thermal heating facility publication-title: Sol Energy – year: 2008 – volume: 51 start-page: 1548 issue: 9 year: 2006 end-page: 1553 article-title: Regional input‐to‐state stability for nonlinear model predictive control publication-title: IEEE Trans Automat Contr – volume: 403 year: 2010 – volume: 48 start-page: 13 issue: 26 year: 2015 end-page: 18 article-title: Toward nonlinear tracking and rejection using LPV control publication-title: IFAC‐PapersOnLine – volume: 55 start-page: 503 issue: 2 year: 2010 end-page: 507 article-title: The feedback robust MPC for LPV systems with bounded rates of parameter changes publication-title: IEEE Trans Automat Contr – volume: 42 start-page: 797 issue: 5 year: 2006 end-page: 803 article-title: Input to state stability of min–max MPC controllers for nonlinear systems with bounded uncertainties publication-title: Automatica – start-page: 1 year: 2007 end-page: 16 – volume: 111 start-page: 108622 year: 2020 article-title: Heterogeneously parameterized tube model predictive control for LPV systems publication-title: Automatica – volume: 47 start-page: 6907 issue: 3 year: 2014 end-page: 6913 article-title: Embedding of nonlinear systems in a linear parameter‐varying representation publication-title: IFAC Proc Vol – volume: 37 start-page: 857 issue: 6 year: 2001 end-page: 869 article-title: Input‐to‐state stability for discrete‐time nonlinear systems publication-title: Automatica – volume: 23 start-page: 416 issue: 2 year: 2014 end-page: 433 article-title: A survey of linear parameter‐varying control applications validated by experiments or high‐fidelity simulations publication-title: IEEE Trans Control Syst Technol – volume: 48 start-page: 550 issue: 3 year: 2012 end-page: 555 article-title: Oops! I cannot do it again: testing for recursive feasibility in MPC publication-title: Automatica – volume: 2014 year: 2014 article-title: An offline formulation of MPC for LPV systems using linear matrix inequalities publication-title: J Appl Math – volume: 52 start-page: 106 issue: 28 year: 2019 end-page: 113 article-title: LPV‐MPC control for autonomous vehicles publication-title: IFAC‐PapersOnLine – volume: 36 start-page: 789 issue: 6 year: 2000 end-page: 814 article-title: Constrained model predictive control: stability and optimality publication-title: Automatica – start-page: 25 year: 2012 end-page: 47 – year: 2013 – start-page: 3 year: 2012 end-page: 26 – ident: e_1_2_14_28_1 doi: 10.1109/TAC.2006.880808 – ident: e_1_2_14_10_1 doi: 10.3182/20140824-6-ZA-1003.02506 – ident: e_1_2_14_17_1 doi: 10.1016/j.automatica.2017.07.046 – ident: e_1_2_14_38_1 doi: 10.1016/S0005-1098(99)00214-9 – ident: e_1_2_14_8_1 doi: 10.1109/TCST.2014.2327584 – ident: e_1_2_14_40_1 doi: 10.1016/j.automatica.2011.12.003 – ident: e_1_2_14_39_1 doi: 10.1109/CDC.2010.5717073 – ident: e_1_2_14_35_1 doi: 10.1016/j.automatica.2006.01.001 – ident: e_1_2_14_42_1 doi: 10.1016/S0005-1098(00)00176-X – ident: e_1_2_14_24_1 doi: 10.1016/j.ifacol.2019.12.366 – ident: e_1_2_14_14_1 doi: 10.1109/TAC.2009.2037464 – ident: e_1_2_14_21_1 doi: 10.1109/CDC.2016.7798752 – ident: e_1_2_14_19_1 doi: 10.1016/j.automatica.2019.04.046 – ident: e_1_2_14_30_1 doi: 10.23919/ACC.2018.8431417 – ident: e_1_2_14_16_1 doi: 10.1155/2014/786351 – ident: e_1_2_14_41_1 doi: 10.1109/9.587335 – ident: e_1_2_14_49_1 doi: 10.1002/oca.2152 – start-page: 1 volume-title: Advanced Textbooks in Control and Signal Processing year: 2007 ident: e_1_2_14_4_1 – volume-title: Model Predictive Control year: 2013 ident: e_1_2_14_2_1 – ident: e_1_2_14_9_1 doi: 10.1137/1.9781611970777 – ident: e_1_2_14_36_1 doi: 10.1016/j.sysconle.2007.06.013 – ident: e_1_2_14_45_1 doi: 10.1016/j.ijepes.2019.105644 – start-page: 25 volume-title: Advances in Industrial Control year: 2012 ident: e_1_2_14_43_1 – ident: e_1_2_14_27_1 doi: 10.1016/S0005-1098(01)00028-0 – ident: e_1_2_14_13_1 doi: 10.3182/20090616-3-IL-2002.00002 – ident: e_1_2_14_48_1 doi: 10.1016/j.jprocont.2017.11.003 – ident: e_1_2_14_6_1 doi: 10.1109/TAC.2011.2109439 – ident: e_1_2_14_7_1 doi: 10.1007/978-1-4614-1833-7 – ident: e_1_2_14_5_1 doi: 10.1007/978-3-642-13812-6 – ident: e_1_2_14_15_1 doi: 10.1080/00207179.2010.536996 – ident: e_1_2_14_51_1 doi: 10.1016/j.arcontrol.2019.01.003 – ident: e_1_2_14_11_1 doi: 10.1016/j.arcontrol.2020.04.016 – ident: e_1_2_14_20_1 doi: 10.1016/j.automatica.2019.108622 – ident: e_1_2_14_12_1 doi: 10.1049/ip-cta:20041314 – ident: e_1_2_14_29_1 doi: 10.1007/978-0-8176-4606-6 – ident: e_1_2_14_33_1 doi: 10.1016/j.ifacol.2015.11.106 – ident: e_1_2_14_31_1 doi: 10.1007/978-1-4614-1833-7_1 – ident: e_1_2_14_50_1 doi: 10.1007/s11081-018-9417-2 – ident: e_1_2_14_22_1 doi: 10.1016/j.ifacol.2017.08.1650 – ident: e_1_2_14_34_1 doi: 10.1016/j.automatica.2014.10.128 – ident: e_1_2_14_25_1 doi: 10.1016/j.ifacol.2019.12.356 – ident: e_1_2_14_32_1 doi: 10.1007/978-3-642-36110-4 – volume-title: Nonlinear Model Predictive Control year: 2012 ident: e_1_2_14_3_1 – ident: e_1_2_14_18_1 doi: 10.1109/CDC.2016.7798472 – ident: e_1_2_14_37_1 doi: 10.1016/j.jfranklin.2014.03.006 – ident: e_1_2_14_44_1 doi: 10.1016/j.solener.2013.09.024 – ident: e_1_2_14_46_1 doi: 10.1016/j.solener.2018.11.014 – ident: e_1_2_14_26_1 doi: 10.1002/rnc.4973 – ident: e_1_2_14_47_1 doi: 10.1016/j.solener.2020.09.005 – ident: e_1_2_14_23_1 doi: 10.1109/LCSYS.2019.2937921 |
SSID | ssj0009924 |
Score | 2.3628435 |
Snippet | In this article, a robust model predictive control (MPC) procedure for quasi‐linear parameter varying (qLPV) systems is proposed. The novelty resides in... In this article, a robust model predictive control (MPC) procedure for quasi-linear parameter varying (qLPV) systems is proposed. The novelty resides in... |
SourceID | hal proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9619 |
SubjectTerms | Algorithms Automatic Automatic Control Engineering Computer Science Cost function dissipativity Engineering Sciences Extrapolation Linear matrix inequalities linear parameter varying systems Mathematical models Nonlinear control Parameters Predictive control quadratic programming Robust control robust model predictive control Scheduling solar collectors Stability |
Title | A fast dissipative robust nonlinear model predictive control procedure via quasi‐linear parameter varying embedding and parameter extrapolation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.5788 https://www.proquest.com/docview/2598666610 https://hal.science/hal-03526931 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB20K134FqtVRhFdpW2SJk2WpViKSBfFQsFFmCeK9mHadOHKT9Bf9Eu8d5K0VRTEbAKZGeZ1Z-6ZzJkzhJwHjislwFoL0K-0ah6sWbntcKuqPFdzpRHiI9ui47d7teu-189YlXgWJtWHmP9ww5Fh5msc4IxPKgvR0BjGD5gbnvNFqhbioe5COSoM0_tsAQBbAYCYXHe26lTyhF880eo98iCXQOYyVDW-prVJ7vJSphSTx3Iy5WXx8k3A8X_V2CIbGQSljdRmtsmKGu6Q9SVhwl3y3qCaTaYUd-sN53qmaDziCXwappmymJpLdOg4xq0eEyOjvVPjFGUSKzp7YPQ5YZOHj9e3LBVqjQ-Qg0NnUGjIjaoBVxJdKGVDuRQObiNm41FK1tsjvdbVbbNtZZc3WML1bTzZAd5XCC5ZnQWaA8qDqZUxQIesLrRv6xDcJwP8wVngcs8NBUM1Q6EY9wLh-e4-KUCN1AGhvtZS2MqXdUfUtM1hTe0o6fmSu7irFxbJZd6RkciUzfGCjaco1WR2ImjkCBu5SE7nMcepmscPcc7AFubBKL_dbtxE-A21Y_3QtWd2kZRyU4myQT-JHNS6h8euFsmF6fNfM4m6nSa-D_8a8YisOcimMUSaEilM40QdAxya8hNj-J-DGgwp |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFL3isaAsCrRFTHnUrRBdBSbJJJOI1YiHBjqdBQKJRSXLT4EowzQzmQUrPgF-kS_hXicZpohKFdlEsh05dnx9j-PjcwE2kyDUGmGth-hXe40I16zSD6RXN1FopbEE8Ylt0Y3bZ43j8-h8CnarszCFPsT4hxtZhpuvycDph_TOs2pohgaE4y2ZhlkK6E3hC_ZPnrWj0rSIaIsQ2EsQxlTKs_Vgp3ryL180fUFMyAmYOQlWnbc5XIBf1XsWJJOr7Xwot9XtCwnHNzZkEd6XKJS1imGzBFOm9wHmJ7QJP8JDi1kxGDLasHe065Fh2Y3MMalX1Coy5uLosH5Guz2uRMl8Z84v6jwzbHQp2J9cDC4f7-7Lp0hu_JpoOGyEb421MXMtjSYvykRPT-Sj58hE_6bg632Cs8OD0722V8Zv8FQY-3S4Ax2wUlKLpkisRKCHs6sQCBBFU9nYtyl6UIEQRIoklFGYKkGChsoIGSUqisNlmMEWmRVgsbVa-SbWzUA1rC9xWR0YHcVahrSxl9bge_UluSrFzSnGxm9eyDIHHDuZUyfX4Ou4ZL8Q9HilzDccDONsUuButzqc0kg-Nk5Df-TXYK0aK7y0-wEPSO4eL79egy330f9ZCT_p7tH98_8W_AJz7dOfHd456v5YhXcBkWscr2YNZoZZbtYRHQ3lhrOCJxu-EEM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD7iIk3jYVy2iTJgHkLbU6BJGjd5rICqA1RNaEhIe7B81dBGKWnThz3tJ8Bf3C_ZOU5SCmLSRF4ixbZ8PT6f48-fAXbTKDYGYW2A6NcErQTXrCqMVNC0SeyUdQTxiW3R573z1vFFclGxKuksTKkPMf3hRpbh52sy8KFx-_eioTnaDw63dB4WWxxthQDR2b10VJaVF9oiAg5SRDG18Gwz2q9TPnBF89-JCDmDMmexqnc23WX4Vhez5Jj82CvGak__eqTg-Lx6rMCrCoOyTjloVmHODtZgaUaZ8DXcdZiTozGj7XpPup5Yll-rAj8NykxlzvwtOmyY016Pj1Hx3pn3iqbILZtcSnZTyNHln9-3VSoSG78iEg6bYKExN2avlDXkQ5kcmJlw9Bu5HF6XbL03cN49-nrQC6rbGwId85COdqD71VoZ2ZapUwjzcG6VEuGhbGvHQ5eh_5QIQJRMY5XEmZYkZ6itVEmqEx6_hQWskV0Hxp0zOrTctCPdcqHCRXVkTcKNimlbL2vAp7ojha6kzemGjZ-iFGWOBDayoEZuwIdpzGEp5_FEnB0cC9Ng0t_udU4FfSPxWJ7F4SRswGY9VERl9SMRkdg9PmGzAR99n_8zE3HWP6D3xv9GfA8vvhx2xenn_sk7eBkRs8aTajZhYZwXdguh0Vhtexv4Cw_7Dvs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+dissipative+robust+nonlinear+model+predictive+control+procedure+via+quasi%E2%80%90linear+parameter+varying+embedding+and+parameter+extrapolation&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Menezes+Morato%2C+Marcelo&rft.au=Normey-Rico%2C+Julio+E&rft.au=Sename%2C+Olivier&rft.series=Special+Issue%3A+Adaptive+and+Learning%E2%80%90based+Model+Predictive+Control&rft.date=2021-12-01&rft.pub=Wiley&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=31&rft.issue=18&rft.spage=9619&rft.epage=9651&rft_id=info:doi/10.1002%2Frnc.5788&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03526931v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon |