A fast dissipative robust nonlinear model predictive control procedure via quasi‐linear parameter varying embedding and parameter extrapolation

In this article, a robust model predictive control (MPC) procedure for quasi‐linear parameter varying (qLPV) systems is proposed. The novelty resides in considering a recursive extrapolation algorithm to estimate the values of the scheduling parameters along the prediction horizon Np, which fastens...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of robust and nonlinear control Vol. 31; no. 18; pp. 9619 - 9651
Main Authors Morato, Marcelo Menezes, Normey‐Rico, Julio E., Sename, Olivier
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.12.2021
Wiley
SeriesSpecial Issue: Adaptive and Learning‐based Model Predictive Control
Subjects
Online AccessGet full text
ISSN1049-8923
1099-1239
DOI10.1002/rnc.5788

Cover

Loading…
Abstract In this article, a robust model predictive control (MPC) procedure for quasi‐linear parameter varying (qLPV) systems is proposed. The novelty resides in considering a recursive extrapolation algorithm to estimate the values of the scheduling parameters along the prediction horizon Np, which fastens the sluggish performances achieved with the robust qLPV MPCs from the literature. The bounds on the estimation errors of the scheduling parameters through Np are taken into account by the robust MPC, which solves an online min‐max problem: first, a constrained convex program is resolved in order to determine the worst‐case bound on the cost function and, subsequently, a second constrained quadratic program is solved to minimize this worst‐case cost function with respect to a control sequence vector. Since the bounds on the estimation error for the scheduling parameters are usually much smaller than the bounds on the actual scheduling parameter, the conservativeness of the solution is quite reduced. Recursive feasibility and stability of the proposed algorithm are demonstrated with dissipativity arguments given in the form of a linear matrix inequality remedy, which determines the zone of attraction for which input‐to‐state stability is ensured. The nonlinear temperature regulation problem of a flat solar collector is considered as a case study. Using a realistic simulation benchmark, the proposed technique is compared to other robust min‐max LPV MPC algorithms from the literature, proving itself efficient while achieving good performances.
AbstractList In this article, a robust model predictive control (MPC) procedure for quasi-linear parameter varying (qLPV) systems is proposed. The novelty resides in considering a recursive extrapolation algorithm to estimate the values of the scheduling parameters along the prediction horizon N p , which fastens the sluggish performances achieved with the robust qLPV MPCs from the literature.
In this article, a robust model predictive control (MPC) procedure for quasi‐linear parameter varying (qLPV) systems is proposed. The novelty resides in considering a recursive extrapolation algorithm to estimate the values of the scheduling parameters along the prediction horizon Np, which fastens the sluggish performances achieved with the robust qLPV MPCs from the literature. The bounds on the estimation errors of the scheduling parameters through Np are taken into account by the robust MPC, which solves an online min‐max problem: first, a constrained convex program is resolved in order to determine the worst‐case bound on the cost function and, subsequently, a second constrained quadratic program is solved to minimize this worst‐case cost function with respect to a control sequence vector. Since the bounds on the estimation error for the scheduling parameters are usually much smaller than the bounds on the actual scheduling parameter, the conservativeness of the solution is quite reduced. Recursive feasibility and stability of the proposed algorithm are demonstrated with dissipativity arguments given in the form of a linear matrix inequality remedy, which determines the zone of attraction for which input‐to‐state stability is ensured. The nonlinear temperature regulation problem of a flat solar collector is considered as a case study. Using a realistic simulation benchmark, the proposed technique is compared to other robust min‐max LPV MPC algorithms from the literature, proving itself efficient while achieving good performances.
In this article, a robust model predictive control (MPC) procedure for quasi‐linear parameter varying (qLPV) systems is proposed. The novelty resides in considering a recursive extrapolation algorithm to estimate the values of the scheduling parameters along the prediction horizon , which fastens the sluggish performances achieved with the robust qLPV MPCs from the literature. The bounds on the estimation errors of the scheduling parameters through are taken into account by the robust MPC, which solves an online min‐max problem: first, a constrained convex program is resolved in order to determine the worst‐case bound on the cost function and, subsequently, a second constrained quadratic program is solved to minimize this worst‐case cost function with respect to a control sequence vector. Since the bounds on the estimation error for the scheduling parameters are usually much smaller than the bounds on the actual scheduling parameter, the conservativeness of the solution is quite reduced. Recursive feasibility and stability of the proposed algorithm are demonstrated with dissipativity arguments given in the form of a linear matrix inequality remedy, which determines the zone of attraction for which input‐to‐state stability is ensured. The nonlinear temperature regulation problem of a flat solar collector is considered as a case study. Using a realistic simulation benchmark, the proposed technique is compared to other robust min‐max LPV MPC algorithms from the literature, proving itself efficient while achieving good performances.
Author Morato, Marcelo Menezes
Normey‐Rico, Julio E.
Sename, Olivier
Author_xml – sequence: 1
  givenname: Marcelo Menezes
  orcidid: 0000-0002-7137-0522
  surname: Morato
  fullname: Morato, Marcelo Menezes
  email: marcelomnzm@gmail.com
  organization: CNRS, Grenoble INP (Institute of Engineering), GIPSA‐Lab
– sequence: 2
  givenname: Julio E.
  surname: Normey‐Rico
  fullname: Normey‐Rico, Julio E.
  organization: Universidade Federal de Santa Catarina
– sequence: 3
  givenname: Olivier
  surname: Sename
  fullname: Sename, Olivier
  organization: CNRS, Grenoble INP (Institute of Engineering), GIPSA‐Lab
BackLink https://hal.science/hal-03526931$$DView record in HAL
BookMark eNp1kc2KFDEQxxtZwd1V8BECXvTQYz4m3clxGNQVBgXRc6hOqjVLT9KbdM-6Nx9BX9EnMT2zgojmkqLq968P_hfVWYgBq-opoytGKX-Zgl3JVqkH1TmjWteMC322xGtdK83Fo-oi52tKS42vz6sfG9JDnojzOfsRJn9AkmI3l1RpPPiAkMg-OhzImNB5eyRsDFOKSypadHNCcvBAbmbI_ue37_eqERLsccJEDpDufPhMcN-hc0sEwf1Rx69TgjEOZXwMj6uHPQwZn9z_l9Wn168-bq_q3fs3b7ebXW1Fw1TNNaKztnPQguo7zhspFIBsJbS2b1iv10yA4rQDJToptAXKeWsROqmsbMRl9eLU9wsMZkx-X5Y0Eby52uzMkqNC8kYLdmCFfXZiy8E3M-bJXMc5hbKe4VKrpjxGC7U6UTbFnBP2xvrpeFM5zw-GUbNYZIpFZrGoCJ7_Jfi9xz_Q-oTe-gHv_suZD--2R_4Xsgmm1A
CitedBy_id crossref_primary_10_1016_j_jfranklin_2022_09_011
crossref_primary_10_1016_j_jfranklin_2024_106713
crossref_primary_10_1016_j_geoen_2024_212969
crossref_primary_10_1016_j_ifacol_2022_09_037
crossref_primary_10_1016_j_jprocont_2023_103021
Cites_doi 10.1109/TAC.2006.880808
10.3182/20140824-6-ZA-1003.02506
10.1016/j.automatica.2017.07.046
10.1016/S0005-1098(99)00214-9
10.1109/TCST.2014.2327584
10.1016/j.automatica.2011.12.003
10.1109/CDC.2010.5717073
10.1016/j.automatica.2006.01.001
10.1016/S0005-1098(00)00176-X
10.1016/j.ifacol.2019.12.366
10.1109/TAC.2009.2037464
10.1109/CDC.2016.7798752
10.1016/j.automatica.2019.04.046
10.23919/ACC.2018.8431417
10.1155/2014/786351
10.1109/9.587335
10.1002/oca.2152
10.1137/1.9781611970777
10.1016/j.sysconle.2007.06.013
10.1016/j.ijepes.2019.105644
10.1016/S0005-1098(01)00028-0
10.3182/20090616-3-IL-2002.00002
10.1016/j.jprocont.2017.11.003
10.1109/TAC.2011.2109439
10.1007/978-1-4614-1833-7
10.1007/978-3-642-13812-6
10.1080/00207179.2010.536996
10.1016/j.arcontrol.2019.01.003
10.1016/j.arcontrol.2020.04.016
10.1016/j.automatica.2019.108622
10.1049/ip-cta:20041314
10.1007/978-0-8176-4606-6
10.1016/j.ifacol.2015.11.106
10.1007/978-1-4614-1833-7_1
10.1007/s11081-018-9417-2
10.1016/j.ifacol.2017.08.1650
10.1016/j.automatica.2014.10.128
10.1016/j.ifacol.2019.12.356
10.1007/978-3-642-36110-4
10.1109/CDC.2016.7798472
10.1016/j.jfranklin.2014.03.006
10.1016/j.solener.2013.09.024
10.1016/j.solener.2018.11.014
10.1002/rnc.4973
10.1016/j.solener.2020.09.005
10.1109/LCSYS.2019.2937921
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2021 John Wiley & Sons, Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1002/rnc.5788
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1099-1239
EndPage 9651
ExternalDocumentID oai_HAL_hal_03526931v1
10_1002_rnc_5788
RNC5788
Genre article
GrantInformation_xml – fundername: ITEA
  funderid: 15016 EMPHYSIS
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  funderid: 304032–2019−0
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
7SC
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c3618-29eedccbda7a8fb226538aa575a7cf61f9413a820ba83b539ca0227ceab58c563
IEDL.DBID DR2
ISSN 1049-8923
IngestDate Fri May 09 12:06:38 EDT 2025
Fri Jul 25 12:15:29 EDT 2025
Tue Jul 01 01:03:08 EDT 2025
Thu Apr 24 23:05:22 EDT 2025
Wed Jan 22 16:26:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Solar Collector
Robust Model Predictive Control
Dissipativity
Quadratic Programming
Linear Parameter Varying Systems
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3618-29eedccbda7a8fb226538aa575a7cf61f9413a820ba83b539ca0227ceab58c563
Notes Funding information
Conselho Nacional de Desenvolvimento Científico e Tecnológico, 304032–2019−0; ITEA, 15016 EMPHYSIS
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7137-0522
0000-0001-9595-9000
OpenAccessLink https://hal.science/hal-03526931
PQID 2598666610
PQPubID 1026344
PageCount 33
ParticipantIDs hal_primary_oai_HAL_hal_03526931v1
proquest_journals_2598666610
crossref_citationtrail_10_1002_rnc_5788
crossref_primary_10_1002_rnc_5788
wiley_primary_10_1002_rnc_5788_RNC5788
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
2021-12
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationSeriesTitle Special Issue: Adaptive and Learning‐based Model Predictive Control
PublicationTitle International journal of robust and nonlinear control
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2010; 55
2017; 85
2015; 36
2005; 152
2009; 42
2006; 51
2012
2019; 52
2019; 74
1997; 42
2010; 403
2011; 84
2008
2007
2014; 47
2008; 57
2011; 56
2014; 2014
2019; 107
2014; 351
2014; 23
2020; 209
2017; 50
2015; 48
2006; 42
2019; 42
2000; 36
2019; 20
2020; 30
2013; 437
2013; 97
2019; 47
2020; 49
2020; 117
2020; 111
2001; 37
1994; 15
2013
2012; 26
2012; 48
2014; 50
2019; 177
e_1_2_14_31_1
e_1_2_14_50_1
e_1_2_14_10_1
e_1_2_14_35_1
e_1_2_14_12_1
e_1_2_14_33_1
e_1_2_14_14_1
e_1_2_14_39_1
e_1_2_14_16_1
e_1_2_14_37_1
Allgöwer F (e_1_2_14_3_1) 2012
e_1_2_14_6_1
e_1_2_14_8_1
e_1_2_14_41_1
e_1_2_14_20_1
e_1_2_14_45_1
e_1_2_14_24_1
e_1_2_14_22_1
e_1_2_14_28_1
e_1_2_14_49_1
e_1_2_14_26_1
e_1_2_14_47_1
e_1_2_14_19_1
Camacho EF (e_1_2_14_4_1) 2007
e_1_2_14_30_1
e_1_2_14_51_1
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_13_1
e_1_2_14_32_1
e_1_2_14_15_1
e_1_2_14_38_1
e_1_2_14_17_1
e_1_2_14_36_1
Camacho EF (e_1_2_14_2_1) 2013
e_1_2_14_29_1
e_1_2_14_5_1
e_1_2_14_7_1
e_1_2_14_9_1
Camacho EF (e_1_2_14_43_1) 2012
e_1_2_14_42_1
e_1_2_14_40_1
e_1_2_14_23_1
e_1_2_14_46_1
e_1_2_14_21_1
e_1_2_14_44_1
e_1_2_14_27_1
e_1_2_14_25_1
e_1_2_14_48_1
e_1_2_14_18_1
References_xml – volume: 209
  start-page: 214
  year: 2020
  end-page: 225
  article-title: Nonlinear temperature regulation of solar collectors with a fast adaptive polytopic LPV MPC formulation
  publication-title: Sol Energy
– volume: 49
  start-page: 64
  year: 2020
  end-page: 80
  article-title: Model predictive control design for linear parameter varying systems: a survey
  publication-title: Annu Rev Control
– volume: 30
  start-page: 3945
  issue: 10
  year: 2020
  end-page: 3959
  article-title: Nonlinear model predictive control for models in quasi‐linear parameter varying form
  publication-title: Int J Robust Nonlinear Control
– volume: 117
  start-page: 105644
  year: 2020
  article-title: LPV‐MPC fault‐tolerant energy management strategy for renewable microgrids
  publication-title: Int J Electr Power Energy Syst
– volume: 15
  year: 1994
– volume: 57
  start-page: 39
  issue: 1
  year: 2008
  end-page: 48
  article-title: On input‐to‐state stability of min–max nonlinear model predictive control
  publication-title: Syst Control Lett
– volume: 36
  start-page: 685
  issue: 5
  year: 2015
  end-page: 704
  article-title: Autogenerating microsecond solvers for nonlinear MPC: a tutorial using ACADO integrators
  publication-title: Opt Control Appl Methods
– volume: 52
  start-page: 158
  issue: 28
  year: 2019
  end-page: 163
  article-title: Novel qLPV MPC design with least‐squares scheduling prediction
  publication-title: IFAC‐PapersOnLine
– volume: 85
  start-page: 137
  year: 2017
  end-page: 144
  article-title: Stabilizing tube‐based model predictive control: terminal set and cost construction for LPV systems
  publication-title: Automatica
– volume: 437
  year: 2013
– volume: 152
  start-page: 266
  issue: 3
  year: 2005
  end-page: 272
  article-title: Min‐max MPC algorithm for LPV systems subject to input saturation
  publication-title: IET Proc Control Theory Appl
– volume: 42
  start-page: 819
  issue: 6
  year: 1997
  end-page: 830
  article-title: System analysis via integral quadratic constraints
  publication-title: IEEE Trans Automat Contr
– volume: 42
  start-page: 7
  issue: 6
  year: 2009
  end-page: 12
  article-title: Explicit LPV‐MPC with bounded rate of parameter variation
  publication-title: IFAC Proc Vol
– volume: 177
  start-page: 241
  year: 2019
  end-page: 254
  article-title: Apparent delay analysis for a flat‐plate solar field model designed for control purposes
  publication-title: Sol Energy
– year: 2012
– volume: 37
  start-page: 361
  issue: 3
  year: 2001
  end-page: 375
  article-title: LPV control and full block multipliers
  publication-title: Automatica
– volume: 26
  year: 2012
– volume: 74
  start-page: 120
  year: 2019
  end-page: 132
  article-title: Advanced chance‐constrained predictive control for the efficient energy management of renewable power systems
  publication-title: J Process Control
– volume: 56
  start-page: 2499
  issue: 11
  year: 2011
  end-page: 2514
  article-title: The behavioral approach to linear parameter‐varying systems
  publication-title: IEEE Trans Automat Contr
– volume: 351
  start-page: 3405
  issue: 6
  year: 2014
  end-page: 3423
  article-title: Quasi‐min–max MPC for constrained nonlinear systems with guaranteed input‐to‐state stability
  publication-title: J Frankl Inst
– volume: 47
  start-page: 71
  year: 2019
  end-page: 80
  article-title: Near‐optimal control of nonlinear dynamical systems: a brief survey
  publication-title: Annu Rev Control
– volume: 42
  start-page: 402
  issue: 2
  year: 2019
  end-page: 407
  article-title: A stabilizing sub‐optimal model predictive control for quasi‐linear parameter varying systems
  publication-title: IEEE Control Syst Lett
– volume: 50
  start-page: 11601
  issue: 1
  year: 2017
  end-page: 11606
  article-title: Fast nonlinear MPC for reference tracking subject to nonlinear constraints via quasi‐LPV representations
  publication-title: IFAC‐PapersOnLine
– volume: 50
  start-page: 2967
  issue: 12
  year: 2014
  end-page: 2986
  article-title: Model predictive control: recent developments and future promise
  publication-title: Automatica
– volume: 84
  start-page: 24
  issue: 1
  year: 2011
  end-page: 36
  article-title: MPC for LPV systems with bounded parameter variations
  publication-title: Int J Control
– volume: 107
  start-page: 21
  year: 2019
  end-page: 28
  article-title: Tube‐based model predictive control for linear parameter‐varying systems with bounded rate of parameter variation
  publication-title: Automatica
– volume: 20
  start-page: 769
  issue: 3
  year: 2019
  end-page: 809
  article-title: A software framework for embedded nonlinear model predictive control using a gradient‐based augmented Lagrangian approach (GRAMPC)
  publication-title: Optim Eng
– volume: 97
  start-page: 577
  year: 2013
  end-page: 590
  article-title: Hybrid modeling of a solar‐thermal heating facility
  publication-title: Sol Energy
– year: 2008
– volume: 51
  start-page: 1548
  issue: 9
  year: 2006
  end-page: 1553
  article-title: Regional input‐to‐state stability for nonlinear model predictive control
  publication-title: IEEE Trans Automat Contr
– volume: 403
  year: 2010
– volume: 48
  start-page: 13
  issue: 26
  year: 2015
  end-page: 18
  article-title: Toward nonlinear tracking and rejection using LPV control
  publication-title: IFAC‐PapersOnLine
– volume: 55
  start-page: 503
  issue: 2
  year: 2010
  end-page: 507
  article-title: The feedback robust MPC for LPV systems with bounded rates of parameter changes
  publication-title: IEEE Trans Automat Contr
– volume: 42
  start-page: 797
  issue: 5
  year: 2006
  end-page: 803
  article-title: Input to state stability of min–max MPC controllers for nonlinear systems with bounded uncertainties
  publication-title: Automatica
– start-page: 1
  year: 2007
  end-page: 16
– volume: 111
  start-page: 108622
  year: 2020
  article-title: Heterogeneously parameterized tube model predictive control for LPV systems
  publication-title: Automatica
– volume: 47
  start-page: 6907
  issue: 3
  year: 2014
  end-page: 6913
  article-title: Embedding of nonlinear systems in a linear parameter‐varying representation
  publication-title: IFAC Proc Vol
– volume: 37
  start-page: 857
  issue: 6
  year: 2001
  end-page: 869
  article-title: Input‐to‐state stability for discrete‐time nonlinear systems
  publication-title: Automatica
– volume: 23
  start-page: 416
  issue: 2
  year: 2014
  end-page: 433
  article-title: A survey of linear parameter‐varying control applications validated by experiments or high‐fidelity simulations
  publication-title: IEEE Trans Control Syst Technol
– volume: 48
  start-page: 550
  issue: 3
  year: 2012
  end-page: 555
  article-title: Oops! I cannot do it again: testing for recursive feasibility in MPC
  publication-title: Automatica
– volume: 2014
  year: 2014
  article-title: An offline formulation of MPC for LPV systems using linear matrix inequalities
  publication-title: J Appl Math
– volume: 52
  start-page: 106
  issue: 28
  year: 2019
  end-page: 113
  article-title: LPV‐MPC control for autonomous vehicles
  publication-title: IFAC‐PapersOnLine
– volume: 36
  start-page: 789
  issue: 6
  year: 2000
  end-page: 814
  article-title: Constrained model predictive control: stability and optimality
  publication-title: Automatica
– start-page: 25
  year: 2012
  end-page: 47
– year: 2013
– start-page: 3
  year: 2012
  end-page: 26
– ident: e_1_2_14_28_1
  doi: 10.1109/TAC.2006.880808
– ident: e_1_2_14_10_1
  doi: 10.3182/20140824-6-ZA-1003.02506
– ident: e_1_2_14_17_1
  doi: 10.1016/j.automatica.2017.07.046
– ident: e_1_2_14_38_1
  doi: 10.1016/S0005-1098(99)00214-9
– ident: e_1_2_14_8_1
  doi: 10.1109/TCST.2014.2327584
– ident: e_1_2_14_40_1
  doi: 10.1016/j.automatica.2011.12.003
– ident: e_1_2_14_39_1
  doi: 10.1109/CDC.2010.5717073
– ident: e_1_2_14_35_1
  doi: 10.1016/j.automatica.2006.01.001
– ident: e_1_2_14_42_1
  doi: 10.1016/S0005-1098(00)00176-X
– ident: e_1_2_14_24_1
  doi: 10.1016/j.ifacol.2019.12.366
– ident: e_1_2_14_14_1
  doi: 10.1109/TAC.2009.2037464
– ident: e_1_2_14_21_1
  doi: 10.1109/CDC.2016.7798752
– ident: e_1_2_14_19_1
  doi: 10.1016/j.automatica.2019.04.046
– ident: e_1_2_14_30_1
  doi: 10.23919/ACC.2018.8431417
– ident: e_1_2_14_16_1
  doi: 10.1155/2014/786351
– ident: e_1_2_14_41_1
  doi: 10.1109/9.587335
– ident: e_1_2_14_49_1
  doi: 10.1002/oca.2152
– start-page: 1
  volume-title: Advanced Textbooks in Control and Signal Processing
  year: 2007
  ident: e_1_2_14_4_1
– volume-title: Model Predictive Control
  year: 2013
  ident: e_1_2_14_2_1
– ident: e_1_2_14_9_1
  doi: 10.1137/1.9781611970777
– ident: e_1_2_14_36_1
  doi: 10.1016/j.sysconle.2007.06.013
– ident: e_1_2_14_45_1
  doi: 10.1016/j.ijepes.2019.105644
– start-page: 25
  volume-title: Advances in Industrial Control
  year: 2012
  ident: e_1_2_14_43_1
– ident: e_1_2_14_27_1
  doi: 10.1016/S0005-1098(01)00028-0
– ident: e_1_2_14_13_1
  doi: 10.3182/20090616-3-IL-2002.00002
– ident: e_1_2_14_48_1
  doi: 10.1016/j.jprocont.2017.11.003
– ident: e_1_2_14_6_1
  doi: 10.1109/TAC.2011.2109439
– ident: e_1_2_14_7_1
  doi: 10.1007/978-1-4614-1833-7
– ident: e_1_2_14_5_1
  doi: 10.1007/978-3-642-13812-6
– ident: e_1_2_14_15_1
  doi: 10.1080/00207179.2010.536996
– ident: e_1_2_14_51_1
  doi: 10.1016/j.arcontrol.2019.01.003
– ident: e_1_2_14_11_1
  doi: 10.1016/j.arcontrol.2020.04.016
– ident: e_1_2_14_20_1
  doi: 10.1016/j.automatica.2019.108622
– ident: e_1_2_14_12_1
  doi: 10.1049/ip-cta:20041314
– ident: e_1_2_14_29_1
  doi: 10.1007/978-0-8176-4606-6
– ident: e_1_2_14_33_1
  doi: 10.1016/j.ifacol.2015.11.106
– ident: e_1_2_14_31_1
  doi: 10.1007/978-1-4614-1833-7_1
– ident: e_1_2_14_50_1
  doi: 10.1007/s11081-018-9417-2
– ident: e_1_2_14_22_1
  doi: 10.1016/j.ifacol.2017.08.1650
– ident: e_1_2_14_34_1
  doi: 10.1016/j.automatica.2014.10.128
– ident: e_1_2_14_25_1
  doi: 10.1016/j.ifacol.2019.12.356
– ident: e_1_2_14_32_1
  doi: 10.1007/978-3-642-36110-4
– volume-title: Nonlinear Model Predictive Control
  year: 2012
  ident: e_1_2_14_3_1
– ident: e_1_2_14_18_1
  doi: 10.1109/CDC.2016.7798472
– ident: e_1_2_14_37_1
  doi: 10.1016/j.jfranklin.2014.03.006
– ident: e_1_2_14_44_1
  doi: 10.1016/j.solener.2013.09.024
– ident: e_1_2_14_46_1
  doi: 10.1016/j.solener.2018.11.014
– ident: e_1_2_14_26_1
  doi: 10.1002/rnc.4973
– ident: e_1_2_14_47_1
  doi: 10.1016/j.solener.2020.09.005
– ident: e_1_2_14_23_1
  doi: 10.1109/LCSYS.2019.2937921
SSID ssj0009924
Score 2.3628435
Snippet In this article, a robust model predictive control (MPC) procedure for quasi‐linear parameter varying (qLPV) systems is proposed. The novelty resides in...
In this article, a robust model predictive control (MPC) procedure for quasi-linear parameter varying (qLPV) systems is proposed. The novelty resides in...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9619
SubjectTerms Algorithms
Automatic
Automatic Control Engineering
Computer Science
Cost function
dissipativity
Engineering Sciences
Extrapolation
Linear matrix inequalities
linear parameter varying systems
Mathematical models
Nonlinear control
Parameters
Predictive control
quadratic programming
Robust control
robust model predictive control
Scheduling
solar collectors
Stability
Title A fast dissipative robust nonlinear model predictive control procedure via quasi‐linear parameter varying embedding and parameter extrapolation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.5788
https://www.proquest.com/docview/2598666610
https://hal.science/hal-03526931
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB20K134FqtVRhFdpW2SJk2WpViKSBfFQsFFmCeK9mHadOHKT9Bf9Eu8d5K0VRTEbAKZGeZ1Z-6ZzJkzhJwHjislwFoL0K-0ah6sWbntcKuqPFdzpRHiI9ui47d7teu-189YlXgWJtWHmP9ww5Fh5msc4IxPKgvR0BjGD5gbnvNFqhbioe5COSoM0_tsAQBbAYCYXHe26lTyhF880eo98iCXQOYyVDW-prVJ7vJSphSTx3Iy5WXx8k3A8X_V2CIbGQSljdRmtsmKGu6Q9SVhwl3y3qCaTaYUd-sN53qmaDziCXwappmymJpLdOg4xq0eEyOjvVPjFGUSKzp7YPQ5YZOHj9e3LBVqjQ-Qg0NnUGjIjaoBVxJdKGVDuRQObiNm41FK1tsjvdbVbbNtZZc3WML1bTzZAd5XCC5ZnQWaA8qDqZUxQIesLrRv6xDcJwP8wVngcs8NBUM1Q6EY9wLh-e4-KUCN1AGhvtZS2MqXdUfUtM1hTe0o6fmSu7irFxbJZd6RkciUzfGCjaco1WR2ImjkCBu5SE7nMcepmscPcc7AFubBKL_dbtxE-A21Y_3QtWd2kZRyU4myQT-JHNS6h8euFsmF6fNfM4m6nSa-D_8a8YisOcimMUSaEilM40QdAxya8hNj-J-DGgwp
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFL3isaAsCrRFTHnUrRBdBSbJJJOI1YiHBjqdBQKJRSXLT4EowzQzmQUrPgF-kS_hXicZpohKFdlEsh05dnx9j-PjcwE2kyDUGmGth-hXe40I16zSD6RXN1FopbEE8Ylt0Y3bZ43j8-h8CnarszCFPsT4hxtZhpuvycDph_TOs2pohgaE4y2ZhlkK6E3hC_ZPnrWj0rSIaIsQ2EsQxlTKs_Vgp3ryL180fUFMyAmYOQlWnbc5XIBf1XsWJJOr7Xwot9XtCwnHNzZkEd6XKJS1imGzBFOm9wHmJ7QJP8JDi1kxGDLasHe065Fh2Y3MMalX1Coy5uLosH5Guz2uRMl8Z84v6jwzbHQp2J9cDC4f7-7Lp0hu_JpoOGyEb421MXMtjSYvykRPT-Sj58hE_6bg632Cs8OD0722V8Zv8FQY-3S4Ax2wUlKLpkisRKCHs6sQCBBFU9nYtyl6UIEQRIoklFGYKkGChsoIGSUqisNlmMEWmRVgsbVa-SbWzUA1rC9xWR0YHcVahrSxl9bge_UluSrFzSnGxm9eyDIHHDuZUyfX4Ou4ZL8Q9HilzDccDONsUuButzqc0kg-Nk5Df-TXYK0aK7y0-wEPSO4eL79egy330f9ZCT_p7tH98_8W_AJz7dOfHd456v5YhXcBkWscr2YNZoZZbtYRHQ3lhrOCJxu-EEM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD7iIk3jYVy2iTJgHkLbU6BJGjd5rICqA1RNaEhIe7B81dBGKWnThz3tJ8Bf3C_ZOU5SCmLSRF4ixbZ8PT6f48-fAXbTKDYGYW2A6NcErQTXrCqMVNC0SeyUdQTxiW3R573z1vFFclGxKuksTKkPMf3hRpbh52sy8KFx-_eioTnaDw63dB4WWxxthQDR2b10VJaVF9oiAg5SRDG18Gwz2q9TPnBF89-JCDmDMmexqnc23WX4Vhez5Jj82CvGak__eqTg-Lx6rMCrCoOyTjloVmHODtZgaUaZ8DXcdZiTozGj7XpPup5Yll-rAj8NykxlzvwtOmyY016Pj1Hx3pn3iqbILZtcSnZTyNHln9-3VSoSG78iEg6bYKExN2avlDXkQ5kcmJlw9Bu5HF6XbL03cN49-nrQC6rbGwId85COdqD71VoZ2ZapUwjzcG6VEuGhbGvHQ5eh_5QIQJRMY5XEmZYkZ6itVEmqEx6_hQWskV0Hxp0zOrTctCPdcqHCRXVkTcKNimlbL2vAp7ojha6kzemGjZ-iFGWOBDayoEZuwIdpzGEp5_FEnB0cC9Ng0t_udU4FfSPxWJ7F4SRswGY9VERl9SMRkdg9PmGzAR99n_8zE3HWP6D3xv9GfA8vvhx2xenn_sk7eBkRs8aTajZhYZwXdguh0Vhtexv4Cw_7Dvs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+dissipative+robust+nonlinear+model+predictive+control+procedure+via+quasi%E2%80%90linear+parameter+varying+embedding+and+parameter+extrapolation&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Menezes+Morato%2C+Marcelo&rft.au=Normey-Rico%2C+Julio+E&rft.au=Sename%2C+Olivier&rft.series=Special+Issue%3A+Adaptive+and+Learning%E2%80%90based+Model+Predictive+Control&rft.date=2021-12-01&rft.pub=Wiley&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=31&rft.issue=18&rft.spage=9619&rft.epage=9651&rft_id=info:doi/10.1002%2Frnc.5788&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03526931v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon