Calibrations of Low-Cost Air Pollution Monitoring Sensors for CO, NO2, O3, and SO2
Pollutant gases, such as CO, NO2, O3, and SO2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in pollutant monitoring. Previous studies focused on one or several species, while comprehensive assessments of multiple sensors remain limited. We cond...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 1; p. 256 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
02.01.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pollutant gases, such as CO, NO2, O3, and SO2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in pollutant monitoring. Previous studies focused on one or several species, while comprehensive assessments of multiple sensors remain limited. We conducted a 12-month field evaluation of four Alphasense sensors in Beijing and used single linear regression (SLR), multiple linear regression (MLR), random forest regressor (RFR), and neural network (long short-term memory (LSTM)) methods to calibrate and validate the measurements with nearby reference measurements from national monitoring stations. For performances, CO > O3 > NO2 > SO2 for the coefficient of determination (R2) and root mean square error (RMSE). The MLR did not increase the R2 after considering the temperature and relative humidity influences compared with the SLR (with R2 remaining at approximately 0.6 for O3 and 0.4 for NO2). However, the RFR and LSTM models significantly increased the O3, NO2, and SO2 performances, with the R2 increasing from 0.3–0.5 to >0.7 for O3 and NO2, and the RMSE decreasing from 20.4 to 13.2 ppb for NO2. For the SLR, there were relatively larger biases, while the LSTMs maintained a close mean relative bias of approximately zero (e.g., <5% for O3 and NO2), indicating that these sensors combined with the LSTMs are suitable for hot spot detection. We highlight that the performance of LSTM is better than that of random forest and linear methods. This study assessed four electrochemical air quality sensors and different calibration models, and the methodology and results can benefit assessments of other low-cost sensors. |
---|---|
AbstractList | Pollutant gases, such as CO, NO2, O3, and SO2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in pollutant monitoring. Previous studies focused on one or several species, while comprehensive assessments of multiple sensors remain limited. We conducted a 12-month field evaluation of four Alphasense sensors in Beijing and used single linear regression (SLR), multiple linear regression (MLR), random forest regressor (RFR), and neural network (long short-term memory (LSTM)) methods to calibrate and validate the measurements with nearby reference measurements from national monitoring stations. For performances, CO > O3 > NO2 > SO2 for the coefficient of determination (R2) and root mean square error (RMSE). The MLR did not increase the R2 after considering the temperature and relative humidity influences compared with the SLR (with R2 remaining at approximately 0.6 for O3 and 0.4 for NO2). However, the RFR and LSTM models significantly increased the O3, NO2, and SO2 performances, with the R2 increasing from 0.3-0.5 to >0.7 for O3 and NO2, and the RMSE decreasing from 20.4 to 13.2 ppb for NO2. For the SLR, there were relatively larger biases, while the LSTMs maintained a close mean relative bias of approximately zero (e.g., <5% for O3 and NO2), indicating that these sensors combined with the LSTMs are suitable for hot spot detection. We highlight that the performance of LSTM is better than that of random forest and linear methods. This study assessed four electrochemical air quality sensors and different calibration models, and the methodology and results can benefit assessments of other low-cost sensors.Pollutant gases, such as CO, NO2, O3, and SO2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in pollutant monitoring. Previous studies focused on one or several species, while comprehensive assessments of multiple sensors remain limited. We conducted a 12-month field evaluation of four Alphasense sensors in Beijing and used single linear regression (SLR), multiple linear regression (MLR), random forest regressor (RFR), and neural network (long short-term memory (LSTM)) methods to calibrate and validate the measurements with nearby reference measurements from national monitoring stations. For performances, CO > O3 > NO2 > SO2 for the coefficient of determination (R2) and root mean square error (RMSE). The MLR did not increase the R2 after considering the temperature and relative humidity influences compared with the SLR (with R2 remaining at approximately 0.6 for O3 and 0.4 for NO2). However, the RFR and LSTM models significantly increased the O3, NO2, and SO2 performances, with the R2 increasing from 0.3-0.5 to >0.7 for O3 and NO2, and the RMSE decreasing from 20.4 to 13.2 ppb for NO2. For the SLR, there were relatively larger biases, while the LSTMs maintained a close mean relative bias of approximately zero (e.g., <5% for O3 and NO2), indicating that these sensors combined with the LSTMs are suitable for hot spot detection. We highlight that the performance of LSTM is better than that of random forest and linear methods. This study assessed four electrochemical air quality sensors and different calibration models, and the methodology and results can benefit assessments of other low-cost sensors. Pollutant gases, such as CO, NO2, O3, and SO2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in pollutant monitoring. Previous studies focused on one or several species, while comprehensive assessments of multiple sensors remain limited. We conducted a 12-month field evaluation of four Alphasense sensors in Beijing and used single linear regression (SLR), multiple linear regression (MLR), random forest regressor (RFR), and neural network (long short-term memory (LSTM)) methods to calibrate and validate the measurements with nearby reference measurements from national monitoring stations. For performances, CO > O3 > NO2 > SO2 for the coefficient of determination (R2) and root mean square error (RMSE). The MLR did not increase the R2 after considering the temperature and relative humidity influences compared with the SLR (with R2 remaining at approximately 0.6 for O3 and 0.4 for NO2). However, the RFR and LSTM models significantly increased the O3, NO2, and SO2 performances, with the R2 increasing from 0.3–0.5 to >0.7 for O3 and NO2, and the RMSE decreasing from 20.4 to 13.2 ppb for NO2. For the SLR, there were relatively larger biases, while the LSTMs maintained a close mean relative bias of approximately zero (e.g., <5% for O3 and NO2), indicating that these sensors combined with the LSTMs are suitable for hot spot detection. We highlight that the performance of LSTM is better than that of random forest and linear methods. This study assessed four electrochemical air quality sensors and different calibration models, and the methodology and results can benefit assessments of other low-cost sensors. Pollutant gases, such as CO, NO 2 , O 3 , and SO 2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in pollutant monitoring. Previous studies focused on one or several species, while comprehensive assessments of multiple sensors remain limited. We conducted a 12-month field evaluation of four Alphasense sensors in Beijing and used single linear regression (SLR), multiple linear regression (MLR), random forest regressor (RFR), and neural network (long short-term memory (LSTM)) methods to calibrate and validate the measurements with nearby reference measurements from national monitoring stations. For performances, CO > O 3 > NO 2 > SO 2 for the coefficient of determination (R 2 ) and root mean square error (RMSE). The MLR did not increase the R 2 after considering the temperature and relative humidity influences compared with the SLR (with R 2 remaining at approximately 0.6 for O 3 and 0.4 for NO 2 ). However, the RFR and LSTM models significantly increased the O 3 , NO 2 , and SO 2 performances, with the R 2 increasing from 0.3–0.5 to >0.7 for O 3 and NO 2 , and the RMSE decreasing from 20.4 to 13.2 ppb for NO 2 . For the SLR, there were relatively larger biases, while the LSTMs maintained a close mean relative bias of approximately zero (e.g., <5% for O 3 and NO 2 ), indicating that these sensors combined with the LSTMs are suitable for hot spot detection. We highlight that the performance of LSTM is better than that of random forest and linear methods. This study assessed four electrochemical air quality sensors and different calibration models, and the methodology and results can benefit assessments of other low-cost sensors. |
Author | Wang, Yinghong Tang, Xiao Mei, Han Liu, Di Han, Pengfei Zeng, Ning Pan, Yuepeng |
AuthorAffiliation | 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; pfhan@mail.iap.ac.cn (P.H.); meihan@mail.iap.ac.cn (H.M.) 3 Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA; zeng@umd.edu 2 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; tangxiao@mail.iap.ac.cn (X.T.); panyuepeng@mail.iap.ac.cn (Y.P.) |
AuthorAffiliation_xml | – name: 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; pfhan@mail.iap.ac.cn (P.H.); meihan@mail.iap.ac.cn (H.M.) – name: 2 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; tangxiao@mail.iap.ac.cn (X.T.); panyuepeng@mail.iap.ac.cn (Y.P.) – name: 3 Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA; zeng@umd.edu |
Author_xml | – sequence: 1 givenname: Pengfei orcidid: 0000-0002-2546-8190 surname: Han fullname: Han, Pengfei – sequence: 2 givenname: Han surname: Mei fullname: Mei, Han – sequence: 3 givenname: Di surname: Liu fullname: Liu, Di – sequence: 4 givenname: Ning surname: Zeng fullname: Zeng, Ning – sequence: 5 givenname: Xiao surname: Tang fullname: Tang, Xiao – sequence: 6 givenname: Yinghong surname: Wang fullname: Wang, Yinghong – sequence: 7 givenname: Yuepeng surname: Pan fullname: Pan, Yuepeng |
BookMark | eNplkV1vFCEUholpYz_0wn9A4o0mO5bPAW5MmkmrTbaOsXpNGAZWNrPQwoxN_72zu9XYegXhPOfhwHsCDmKKDoA3GH2gVKGzQjDCiPD6BTjGjLBKEoIO_tkfgZNS1ggRSql8CY4oZQgLKo7Bt8YMoctmDCkWmDxcpvuqSWWE5yHDr2kYpm0JXqcYxpRDXMEbF0vKBfqUYdMu4JeWLGBLF9DEHt605BU49GYo7vXjegp-XF58bz5Xy_bTVXO-rCytcV31jgvGvEc17iWnzHTSGqwwM7jDnXQdQUoKK72ljhKpPBXG1Z4b4qXDuKOn4Grv7ZNZ69scNiY_6GSC3h2kvNImj8EOTktBFO2tMtyI-eVM-Z5zZKzZTqBwP7s-7l23U7dxvXVxzGZ4In1aieGnXqVfWgjFFcez4N2jIKe7yZVRb0KxbhhMdGkqmjDBOUWMqRl9-wxdpynH-at2lEAM1WimzvaUzamU7Ly2YdzFNN8fBo2R3mav_2Y_d7x_1vFn_P_Z32NRq3Y |
CitedBy_id | crossref_primary_10_1016_j_snb_2022_132052 crossref_primary_10_3390_atmos15040471 crossref_primary_10_3390_su16156686 crossref_primary_10_3233_AIS_210458 crossref_primary_10_3390_s24092930 crossref_primary_10_3390_s23177412 crossref_primary_10_3390_s22103619 crossref_primary_10_1109_JSEN_2024_3472291 crossref_primary_10_1109_LSENS_2022_3168291 crossref_primary_10_3390_app14083282 crossref_primary_10_3390_mi16020118 crossref_primary_10_3390_s22031272 crossref_primary_10_1109_JSEN_2023_3339202 crossref_primary_10_5194_amt_17_6425_2024 crossref_primary_10_3390_atmos15121523 crossref_primary_10_3390_s21124214 crossref_primary_10_1038_s41598_024_77214_y crossref_primary_10_3390_gases4030016 crossref_primary_10_1109_JSEN_2024_3362962 crossref_primary_10_3390_atmos14020368 crossref_primary_10_3390_bios13010098 crossref_primary_10_3390_bios14020067 crossref_primary_10_3390_electronics13010025 crossref_primary_10_1109_JSEN_2023_3304366 crossref_primary_10_1007_s10489_023_05109_y crossref_primary_10_1016_j_buildenv_2024_112344 crossref_primary_10_1109_TIM_2023_3239626 crossref_primary_10_3390_s21093190 crossref_primary_10_3390_jmse12071197 crossref_primary_10_3390_s22103830 crossref_primary_10_1007_s11356_024_33717_9 crossref_primary_10_1016_j_envint_2024_108430 crossref_primary_10_1016_j_jestch_2024_101729 crossref_primary_10_1063_5_0063820 crossref_primary_10_5194_amt_16_4723_2023 crossref_primary_10_1016_j_ssc_2023_115196 crossref_primary_10_1108_IJPCC_07_2022_0271 crossref_primary_10_1021_acssensors_4c02272 crossref_primary_10_1149_2162_8777_ac7255 crossref_primary_10_1109_JSEN_2023_3277493 crossref_primary_10_3390_s24134110 crossref_primary_10_1016_j_atmosenv_2022_119304 crossref_primary_10_3390_toxics9110281 crossref_primary_10_1109_JFLEX_2024_3361804 crossref_primary_10_1186_s12940_023_01044_0 crossref_primary_10_3390_s22103964 crossref_primary_10_3390_atmos15111326 crossref_primary_10_3389_fenvs_2021_751267 crossref_primary_10_1109_ACCESS_2023_3297874 crossref_primary_10_3390_atmos15111365 crossref_primary_10_1038_s41597_024_04111_4 crossref_primary_10_1021_acsomega_2c07734 crossref_primary_10_1038_s41598_024_59993_6 crossref_primary_10_3390_app15020935 crossref_primary_10_3390_signals5010004 crossref_primary_10_5194_amt_16_373_2023 crossref_primary_10_1016_j_snb_2022_131815 crossref_primary_10_3390_app132011251 |
Cites_doi | 10.1016/j.envint.2016.12.007 10.5194/acp-18-14095-2018 10.1016/j.atmosenv.2019.06.032 10.1021/es5009399 10.1016/j.neucom.2018.08.067 10.3390/s18020059 10.5194/acp-17-935-2017 10.1016/j.atmosenv.2020.117509 10.5194/amt-10-2383-2017 10.5194/amt-11-315-2018 10.1016/j.atmosenv.2018.02.045 10.5194/amt-13-1671-2020 10.1016/j.envint.2014.11.019 10.1016/j.scitotenv.2009.02.016 10.1016/j.atmosenv.2007.09.003 10.5194/acp-17-1227-2017 10.5194/amt-11-3717-2018 10.5194/amt-11-291-2018 10.1016/j.scitotenv.2016.11.188 10.1056/NEJMoa040610 10.1021/acs.estlett.9b00393 10.1080/16742834.2020.1746627 10.1001/jama.292.19.2372 10.1021/acs.est.9b06046 10.1016/S1352-2310(00)00330-7 10.3390/s20164381 10.1023/A:1010933404324 10.1109/ACCESS.2018.2825538 10.1038/nature14677 10.1073/pnas.1904182116 10.5194/acp-16-13449-2016 10.1016/j.envres.2020.109438 10.1109/LGRS.2017.2780843 10.5194/amt-11-2683-2018 10.3390/s17112671 10.1109/ICSENS.2014.6984922 10.1016/j.inffus.2018.09.001 10.5194/amt-2019-408 10.3390/atmos10090506 10.1038/s41597-020-00665-1 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s21010256 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_87293dc9a5a740149fd550aca744f91d PMC7795951 10_3390_s21010256 |
GeographicLocations | Beijing China China |
GeographicLocations_xml | – name: China – name: Beijing China |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c3616-de5744ff061d8534ab8ca1914a1b1b8eb20987c8fc3e3289f37ae6f5a2f8e11b3 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:32:20 EDT 2025 Thu Aug 21 14:32:30 EDT 2025 Fri Jul 11 13:56:13 EDT 2025 Fri Jul 25 20:22:26 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 Tue Jul 01 03:56:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3616-de5744ff061d8534ab8ca1914a1b1b8eb20987c8fc3e3289f37ae6f5a2f8e11b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work and should be considered co-first authors. |
ORCID | 0000-0002-2546-8190 |
OpenAccessLink | https://doaj.org/article/87293dc9a5a740149fd550aca744f91d |
PMID | 33401737 |
PQID | 2475704060 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_87293dc9a5a740149fd550aca744f91d pubmedcentral_primary_oai_pubmedcentral_nih_gov_7795951 proquest_miscellaneous_2475530449 proquest_journals_2475704060 crossref_citationtrail_10_3390_s21010256 crossref_primary_10_3390_s21010256 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210102 |
PublicationDateYYYYMMDD | 2021-01-02 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210102 day: 2 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Castell (ref_18) 2017; 99 ref_13 ref_54 ref_53 Li (ref_2) 2017; 17 Liu (ref_6) 2015; 524 Liu (ref_14) 2004; 20 Meng (ref_50) 2019; 116 ref_16 Andersen (ref_22) 2018; 11 ref_15 Zheng (ref_51) 2018; 18 Monn (ref_11) 2001; 35 Gauderman (ref_10) 2004; 351 Breiman (ref_41) 2001; 45 Shusterman (ref_21) 2016; 16 Kunz (ref_23) 2020; 13 Liu (ref_39) 2020; 185 Peng (ref_43) 2020; 230 ref_25 Ma (ref_4) 2014; 48 Bi (ref_17) 2020; 54 Tang (ref_49) 2020; 7 Zhang (ref_46) 2018; 6 Chan (ref_9) 2008; 42 ref_20 Hong (ref_1) 2017; 17 Bigi (ref_30) 2018; 11 Wang (ref_12) 2017; 580 ref_28 Bell (ref_8) 2004; 292 ref_26 Bao (ref_24) 2020; 13 Hagan (ref_52) 2018; 11 Martin (ref_27) 2017; 10 ref_36 ref_35 ref_34 ref_33 ref_31 Kumar (ref_29) 2015; 75 ref_38 ref_37 Lin (ref_3) 2018; 180 Brown (ref_7) 2009; 407 Pinder (ref_19) 2019; 215 Zimmerman (ref_42) 2018; 11 Kanjo (ref_45) 2019; 49 Tian (ref_44) 2018; 318 Yang (ref_47) 2018; 15 ref_40 ref_48 ref_5 Hagan (ref_32) 2019; 6 |
References_xml | – volume: 99 start-page: 293 year: 2017 ident: ref_18 article-title: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? publication-title: Environ. Int. doi: 10.1016/j.envint.2016.12.007 – volume: 18 start-page: 14095 year: 2018 ident: ref_51 article-title: Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-18-14095-2018 – ident: ref_5 – volume: 215 start-page: 116794 year: 2019 ident: ref_19 article-title: Opportunities and challenges for filling the air quality data gap in low- and middle-income countries publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2019.06.032 – volume: 48 start-page: 7436 year: 2014 ident: ref_4 article-title: Estimating Ground-Level PM2.5 in China Using Satellite Remote Sensing publication-title: Environ. Sci. Technol. doi: 10.1021/es5009399 – volume: 318 start-page: 297 year: 2018 ident: ref_44 article-title: LSTM-based traffic flow prediction with missing data publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.08.067 – ident: ref_16 – ident: ref_54 doi: 10.3390/s18020059 – ident: ref_35 – volume: 17 start-page: 935 year: 2017 ident: ref_2 article-title: MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP publication-title: Atmos. Chem. Phys. Discuss. doi: 10.5194/acp-17-935-2017 – volume: 230 start-page: 117509 year: 2020 ident: ref_43 article-title: Development and evaluation of a robust temperature sensitive algorithm for long term NO2 gas sensor network data correction publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2020.117509 – volume: 10 start-page: 2383 year: 2017 ident: ref_27 article-title: Evaluation and environmental correction of ambient CO2 measurements from a low-cost NDIR sensor publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-10-2383-2017 – volume: 11 start-page: 315 year: 2018 ident: ref_52 article-title: Calibration and assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-11-315-2018 – volume: 180 start-page: 110 year: 2018 ident: ref_3 article-title: High-resolution satellite remote sensing of provincial PM2.5 trends in China from 2001 to 2015 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2018.02.045 – volume: 13 start-page: 1671 year: 2020 ident: ref_23 article-title: Surface flux estimates derived from UAS-based mole fraction measurements by means of a nocturnal boundary layer budget approach publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-13-1671-2020 – ident: ref_48 – volume: 75 start-page: 199 year: 2015 ident: ref_29 article-title: The rise of low-cost sensing for managing air pollution in cities publication-title: Environ. Int. doi: 10.1016/j.envint.2014.11.019 – volume: 407 start-page: 3754 year: 2009 ident: ref_7 article-title: Factors influencing relationships between personal and ambient concentrations of gaseous and particulate pollutants publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2009.02.016 – ident: ref_13 – volume: 42 start-page: 1 year: 2008 ident: ref_9 article-title: Air pollution in mega cities in China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2007.09.003 – volume: 17 start-page: 1227 year: 2017 ident: ref_1 article-title: Variations of China’s emission estimates: Response to uncertainties in energy statistics publication-title: Atmos. Chem. Phys. Discuss. doi: 10.5194/acp-17-1227-2017 – volume: 11 start-page: 3717 year: 2018 ident: ref_30 article-title: Performance of NO, NO2 low cost sensors and three calibration approaches within a real world application publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-11-3717-2018 – volume: 11 start-page: 291 year: 2018 ident: ref_42 article-title: A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-11-291-2018 – ident: ref_53 – volume: 580 start-page: 197 year: 2017 ident: ref_12 article-title: The impact of the “Air Pollution Prevention and Control Action Plan” on PM2.5 concentrations in Jing-Jin-Ji region during 2012–2020 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.11.188 – volume: 351 start-page: 1057 year: 2004 ident: ref_10 article-title: The Effect of Air Pollution on Lung Development from 10 to 18 Years of Age publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa040610 – ident: ref_34 – volume: 6 start-page: 467 year: 2019 ident: ref_32 article-title: Inferring Aerosol Sources from Low-Cost Air Quality Sensor Measurements: A Case Study in Delhi, India publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.9b00393 – volume: 13 start-page: 371 year: 2020 ident: ref_24 article-title: Observation and modeling of vertical carbon dioxide distribution in a heavily polluted suburban environment publication-title: Atmos. Ocean. Sci. Lett. doi: 10.1080/16742834.2020.1746627 – volume: 292 start-page: 2372 year: 2004 ident: ref_8 article-title: Ozone and short-term mortality in 95 US urban communities, 1987–2000 publication-title: JAMA J. Am. Med Assoc. doi: 10.1001/jama.292.19.2372 – ident: ref_40 – volume: 54 start-page: 2152 year: 2020 ident: ref_17 article-title: Incorporating Low-Cost Sensor Measurements into High-Resolution PM2.5 Modeling at a Large Spatial Scale publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b06046 – ident: ref_37 – volume: 35 start-page: 1 year: 2001 ident: ref_11 article-title: Exposure assessment of air pollutants: A review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(00)00330-7 – ident: ref_38 doi: 10.3390/s20164381 – volume: 45 start-page: 5 year: 2001 ident: ref_41 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 20 start-page: 8 year: 2004 ident: ref_14 article-title: Development and trend of air automatic monitoring system publication-title: Environ. Monit. China – volume: 6 start-page: 23551 year: 2018 ident: ref_46 article-title: LSTM-Based Analysis of Industrial IoT Equipment publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2825538 – ident: ref_25 – volume: 524 start-page: 335 year: 2015 ident: ref_6 article-title: Reduced carbon emission estimates from fossil fuel combustion and cement production in China publication-title: Nature doi: 10.1038/nature14677 – ident: ref_33 – volume: 116 start-page: 16773 year: 2019 ident: ref_50 article-title: Energy and air pollution benefits of household fuel policies in northern China publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1904182116 – volume: 16 start-page: 13449 year: 2016 ident: ref_21 article-title: The BErkeley Atmospheric CO2 Observation Network: Initial evaluation publication-title: Atmos. Chem. Phys. Discuss. doi: 10.5194/acp-16-13449-2016 – volume: 185 start-page: 109438 year: 2020 ident: ref_39 article-title: Low-cost sensors as an alternative for long-term air quality monitoring publication-title: Environ. Res. doi: 10.1016/j.envres.2020.109438 – volume: 15 start-page: 207 year: 2018 ident: ref_47 article-title: A CFCC-LSTM Model for Sea Surface Temperature Prediction publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2780843 – ident: ref_15 – volume: 11 start-page: 2683 year: 2018 ident: ref_22 article-title: A UAV-based active AirCore system for measurements of greenhouse gases publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-11-2683-2018 – ident: ref_36 – ident: ref_26 doi: 10.3390/s17112671 – ident: ref_31 doi: 10.1109/ICSENS.2014.6984922 – volume: 49 start-page: 46 year: 2019 ident: ref_45 article-title: Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.09.001 – ident: ref_20 doi: 10.5194/amt-2019-408 – ident: ref_28 doi: 10.3390/atmos10090506 – volume: 7 start-page: 1 year: 2020 ident: ref_49 article-title: Air pollution emissions from Chinese power plants based on the continuous emission monitoring systems network publication-title: Sci. Data doi: 10.1038/s41597-020-00665-1 |
SSID | ssj0023338 |
Score | 2.5513904 |
Snippet | Pollutant gases, such as CO, NO2, O3, and SO2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in... Pollutant gases, such as CO, NO 2 , O 3 , and SO 2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 256 |
SubjectTerms | Air pollution electrochemical air quality sensors Electrodes field evaluation Greenhouse gases Internet of Things low-cost gas sensors LSTMs Microprocessors Neural networks Nitrogen dioxide Pollutants Quality control random forest Regression analysis Sensors single and multiple linear regression |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucCh4ikCBRnEgcNGXceO7ZxQWVFVCLqIUmlvkZ9QCSXtZiv-PjNJdttIiNsq4yibeXjms51vAN4lbbjmFp1Xcp_LQqvcpIC_cDKMKPJVv3v-9VSdnMvPq3I1Lrh147HK7ZzYT9Sh9bRGflhIXWr0ODX_cHmVU9co2l0dW2jchXtEXUZHuvTqBnAJxF8Dm5BAaH_YIbzhlOMnOain6p_Ul9PTkbfSzfFD2B_rRHY0GPYR3InNY3hwiz3wCXyn76rcYMGOtYl9af_ki7bbsKOLNftGPYxJxIawpXvYGYLWdt0xrFTZYjljp8tixpZixmwT2NmyeArnx59-LE7ysUVC7oXiKg-x1FKmhFk5YOKV1hlvibLNcsedQdg8r4z2JnkRBWKrJLSNKpW2SCZy7sQz2GvaJj4H5p1RkbuAoiijMhiPrkw2KBMcj0Jl8H6rtNqP_OHUxuJ3jTiC9Fvv9JvB293Qy4E041-DPpLmdwOI57q_0K5_1mPY1AZrfxF8ZUtLrQNllQJCKustvXXFQwYHW7vVY_B19Y2rZPBmJ8awob0Q28T2ehhTirmUVQZ6Yu_JH5pKmotfPQG3pgbtJX_x_4e_hPsFHYCh9ZriAPY26-v4CiuYjXvdu-lfhlLv-Q priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKucCh4ilSCjKIA4cNrGPHdg4VKiuqCtEuoqzUW-QnVKqSNtkK-u-ZSbJRI_XILcpMpHjG45kvdr4h5F1UmilmYPIK5lKRKZnq6OEKFsMAIld0u-fHJ_JoJb6e5WdbZNNjczBgeye0w35Sq-biw9-rm08Q8PuIOAGyf2wBtjDM3ffIfUhICuPzWIybCRkHGNaTCk3VJ6moY-yflJnTQ5K3ss7hI7IzlIv0oPfvY7IVqifk4S0SwafkB_5eZXtHtrSO9Fv9J13U7ZoenDf0O7YyRhHtoxefoaeAXeumpVCw0sVyRk-W2Ywu-YyaytPTZfaMrA6__FwcpUOnhNRxyWTqQ66EiBGSs4f8K4zVziBzm2GWWQ3oeV5o5XR0PHCAWJErE2TMTRZ1YMzy52S7qqvwglBntQzMehAFEaSGsLR5NF5qb1ngMiHvN0Yr3UAjjt0sLkqAE2jfcrRvQt6Oqpc9d8ZdSp_R8qMC0l13N-rmVzlET6kBAnDvCpMb7CAoiugBWRlncNQF8wnZ2_it3EyhMhMqV7BGyXlC3oxiiB7cEjFVqK97nZzPhSgSoib-nrzQVFKd_-54uBX2ac_Z7v8YwUvyIMPTMvhxJ9sj2-vmOryCcmdtX3eT-R9Cq_5G priority: 102 providerName: Scholars Portal |
Title | Calibrations of Low-Cost Air Pollution Monitoring Sensors for CO, NO2, O3, and SO2 |
URI | https://www.proquest.com/docview/2475704060 https://www.proquest.com/docview/2475530449 https://pubmed.ncbi.nlm.nih.gov/PMC7795951 https://doaj.org/article/87293dc9a5a740149fd550aca744f91d |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBZb97I9jK7bmLc2qGUPe4hpZMmS_NiGZmW0SWlXyJvRT1YY9ohT9u_vznZCDIW-7MXYvjPId5LuPkv-jpCvUWmmmIHOK5hLRaZkqqOHM5gMA4hc0a6eX8_l5b34scyXO6W-cE9YRw_cGe5UQ_bHvStMbrB4nCiih6TaOLgSsWAeZ1-IeRsw1UMtDsir4xHiAOpPGwA2DKP7IPq0JP2DzHK4L3In0Mz2yds-Q6RnXcvekRehOiBvdngD35Nb_KPKdr5raB3pVf03ndbNmp49rOgNVi9GEe0GLD5D7wCu1quGQo5Kp4sxnS-yMV3wMTWVp3eL7AO5n138nF6mfXGE1HHJZOpDjhaIEI89hFxhrHYGydoMs8xqAMyTQiuno-OBA6qKXJkgY26yqANjln8ke1VdhU-EOqtlYNaDKIggNYxEm0fjpfaWBS4T8m1jtNL1zOFYwOJ3CQgC7Vtu7ZuQk63qn44u4ymlc7T8VgEZrtsb4Pey93v5nN8TcrjxW9kPu6bMhMoVTEtykpDjrRgGDK6CmCrUj51OzidCFAlRA38PGjSUVA-_WupthaXZc_b5f7zBF_I6ww0y-D0nOyR769VjOIIMZ21H5KVaKjjq2fcReXV-Mb-5HbUdHI7XQv8DNOz8iw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMEChgEEoeNGseOkxwQKgvVlm53EW2lvaV-QiWUlM1WFX-K38hMHttGQtx6izKT13hen-3MEPLGpxlLmQLlFcyEIk5lmHkLR-AMHZBM3qyeH8zk5Fh8WSSLDfKn_xcGt1X2PrFx1LYyOEe-HYs0SUHjZPTh7FeIXaNwdbVvodGqxb77fQGQrX6_9wnG920c734-Gk_CrqtAaLhkMrQuSYXwHgKZhVgllM6MwipnimmmM0CaEeBwk3nDHQc44nmqnPSJin3mGNMc7nuD3ITAG6FFpYtLgMcB77XVizjPo-0a4BTDnGIQ85rWAIN8drgb80p4271H7nZ5Kd1pFek-2XDlA3LnSrXCh-Qb_selW42paeXptLoIx1W9ojunS_oVeyYjibZuAq-hhwCSq2VNITOm4_mIzubxiM75iKrS0sN5_IgcX4vwHpPNsirdE0KNzqRj2gLJCSczsH-deGVlZjVzXAbkXS-0wnT1yrFtxs8CcAvKt1jLNyCv16xnbZGOfzF9RMmvGbCudnOiWn4vOjMtMsAa3JpcJQpbFYrcW4Bwyij86pzZgGz141Z0xl4Xl6oZkFdrMpgprr2o0lXnLU_CIyHygKSD8R680JBSnv5oCn6n2BA-YU____CX5Nbk6GBaTPdm-8_I7Rg33-BcUbxFNlfLc_ccsqeVftGoLCUn120jfwH03izv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF9qBdEH8ROjVVdR8OHC3WY3u8mDSL16tLbeFWvh3tL91IIk9XKl-K_51zmT5K4NiG99C5nJ1-zM7Px2JzOEvAkqY4ppUF7BbCwSJeMsODgCZ-iBZPNm9_zLVO4ei8_zdL5B_qz-hcG0ypVPbBy1qyyukQ8ToVIFGidHw9ClRRzuTD6c_YqxgxTutK7aabQqsu9_XwB8q9_v7cBYv02Syadv49246zAQWy6ZjJ1PlRAhwKTmYN4S2mRWY8UzzQwzGaDOEWBymwXLPQdoErjSXoZUJyHzjBkO971BbiqeMrQxNb8EexywX1vJiPN8NKwBWjGML3rzX9MmoBfb9jMzr0x1k3vkbhej0u1Wqe6TDV8-IHeuVC58SL7iP12m1Z6aVoEeVBfxuKqXdPt0QQ-xfzKSaOsy8Bp6BIC5WtQUomQ6ng3odJYM6IwPqC4dPZolj8jxtQjvMdksq9I_IdSaTHpmHJC88DIDX2DSoJ3MnGGey4i8WwmtsF3tcmyh8bMADIPyLdbyjcjrNetZW7DjX0wfUfJrBqyx3ZyoFt-LzmSLDHAHdzbXqca2hSIPDuCcthq_OmcuIlurcSs6w6-LSzWNyKs1GUwW92F06avzliflIyHyiKjeePdeqE8pT380xb8VNodP2dP_P_wluQXWURzsTfefkdsJ5uHgslGyRTaXi3P_HAKppXnRaCwlJ9dtIn8ByUoxJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calibrations+of+Low-Cost+Air+Pollution+Monitoring+Sensors+for+CO%2C+NO2%2C+O3%2C+and+SO2&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Pengfei+Han&rft.au=Han+Mei&rft.au=Di+Liu&rft.au=Ning+Zeng&rft.date=2021-01-02&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=1&rft.spage=256&rft_id=info:doi/10.3390%2Fs21010256&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_87293dc9a5a740149fd550aca744f91d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |