Calibrations of Low-Cost Air Pollution Monitoring Sensors for CO, NO2, O3, and SO2

Pollutant gases, such as CO, NO2, O3, and SO2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in pollutant monitoring. Previous studies focused on one or several species, while comprehensive assessments of multiple sensors remain limited. We cond...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 1; p. 256
Main Authors Han, Pengfei, Mei, Han, Liu, Di, Zeng, Ning, Tang, Xiao, Wang, Yinghong, Pan, Yuepeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 02.01.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pollutant gases, such as CO, NO2, O3, and SO2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in pollutant monitoring. Previous studies focused on one or several species, while comprehensive assessments of multiple sensors remain limited. We conducted a 12-month field evaluation of four Alphasense sensors in Beijing and used single linear regression (SLR), multiple linear regression (MLR), random forest regressor (RFR), and neural network (long short-term memory (LSTM)) methods to calibrate and validate the measurements with nearby reference measurements from national monitoring stations. For performances, CO > O3 > NO2 > SO2 for the coefficient of determination (R2) and root mean square error (RMSE). The MLR did not increase the R2 after considering the temperature and relative humidity influences compared with the SLR (with R2 remaining at approximately 0.6 for O3 and 0.4 for NO2). However, the RFR and LSTM models significantly increased the O3, NO2, and SO2 performances, with the R2 increasing from 0.3–0.5 to >0.7 for O3 and NO2, and the RMSE decreasing from 20.4 to 13.2 ppb for NO2. For the SLR, there were relatively larger biases, while the LSTMs maintained a close mean relative bias of approximately zero (e.g., <5% for O3 and NO2), indicating that these sensors combined with the LSTMs are suitable for hot spot detection. We highlight that the performance of LSTM is better than that of random forest and linear methods. This study assessed four electrochemical air quality sensors and different calibration models, and the methodology and results can benefit assessments of other low-cost sensors.
AbstractList Pollutant gases, such as CO, NO2, O3, and SO2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in pollutant monitoring. Previous studies focused on one or several species, while comprehensive assessments of multiple sensors remain limited. We conducted a 12-month field evaluation of four Alphasense sensors in Beijing and used single linear regression (SLR), multiple linear regression (MLR), random forest regressor (RFR), and neural network (long short-term memory (LSTM)) methods to calibrate and validate the measurements with nearby reference measurements from national monitoring stations. For performances, CO > O3 > NO2 > SO2 for the coefficient of determination (R2) and root mean square error (RMSE). The MLR did not increase the R2 after considering the temperature and relative humidity influences compared with the SLR (with R2 remaining at approximately 0.6 for O3 and 0.4 for NO2). However, the RFR and LSTM models significantly increased the O3, NO2, and SO2 performances, with the R2 increasing from 0.3-0.5 to >0.7 for O3 and NO2, and the RMSE decreasing from 20.4 to 13.2 ppb for NO2. For the SLR, there were relatively larger biases, while the LSTMs maintained a close mean relative bias of approximately zero (e.g., <5% for O3 and NO2), indicating that these sensors combined with the LSTMs are suitable for hot spot detection. We highlight that the performance of LSTM is better than that of random forest and linear methods. This study assessed four electrochemical air quality sensors and different calibration models, and the methodology and results can benefit assessments of other low-cost sensors.Pollutant gases, such as CO, NO2, O3, and SO2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in pollutant monitoring. Previous studies focused on one or several species, while comprehensive assessments of multiple sensors remain limited. We conducted a 12-month field evaluation of four Alphasense sensors in Beijing and used single linear regression (SLR), multiple linear regression (MLR), random forest regressor (RFR), and neural network (long short-term memory (LSTM)) methods to calibrate and validate the measurements with nearby reference measurements from national monitoring stations. For performances, CO > O3 > NO2 > SO2 for the coefficient of determination (R2) and root mean square error (RMSE). The MLR did not increase the R2 after considering the temperature and relative humidity influences compared with the SLR (with R2 remaining at approximately 0.6 for O3 and 0.4 for NO2). However, the RFR and LSTM models significantly increased the O3, NO2, and SO2 performances, with the R2 increasing from 0.3-0.5 to >0.7 for O3 and NO2, and the RMSE decreasing from 20.4 to 13.2 ppb for NO2. For the SLR, there were relatively larger biases, while the LSTMs maintained a close mean relative bias of approximately zero (e.g., <5% for O3 and NO2), indicating that these sensors combined with the LSTMs are suitable for hot spot detection. We highlight that the performance of LSTM is better than that of random forest and linear methods. This study assessed four electrochemical air quality sensors and different calibration models, and the methodology and results can benefit assessments of other low-cost sensors.
Pollutant gases, such as CO, NO2, O3, and SO2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in pollutant monitoring. Previous studies focused on one or several species, while comprehensive assessments of multiple sensors remain limited. We conducted a 12-month field evaluation of four Alphasense sensors in Beijing and used single linear regression (SLR), multiple linear regression (MLR), random forest regressor (RFR), and neural network (long short-term memory (LSTM)) methods to calibrate and validate the measurements with nearby reference measurements from national monitoring stations. For performances, CO > O3 > NO2 > SO2 for the coefficient of determination (R2) and root mean square error (RMSE). The MLR did not increase the R2 after considering the temperature and relative humidity influences compared with the SLR (with R2 remaining at approximately 0.6 for O3 and 0.4 for NO2). However, the RFR and LSTM models significantly increased the O3, NO2, and SO2 performances, with the R2 increasing from 0.3–0.5 to >0.7 for O3 and NO2, and the RMSE decreasing from 20.4 to 13.2 ppb for NO2. For the SLR, there were relatively larger biases, while the LSTMs maintained a close mean relative bias of approximately zero (e.g., <5% for O3 and NO2), indicating that these sensors combined with the LSTMs are suitable for hot spot detection. We highlight that the performance of LSTM is better than that of random forest and linear methods. This study assessed four electrochemical air quality sensors and different calibration models, and the methodology and results can benefit assessments of other low-cost sensors.
Pollutant gases, such as CO, NO 2 , O 3 , and SO 2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in pollutant monitoring. Previous studies focused on one or several species, while comprehensive assessments of multiple sensors remain limited. We conducted a 12-month field evaluation of four Alphasense sensors in Beijing and used single linear regression (SLR), multiple linear regression (MLR), random forest regressor (RFR), and neural network (long short-term memory (LSTM)) methods to calibrate and validate the measurements with nearby reference measurements from national monitoring stations. For performances, CO > O 3 > NO 2 > SO 2 for the coefficient of determination (R 2 ) and root mean square error (RMSE). The MLR did not increase the R 2 after considering the temperature and relative humidity influences compared with the SLR (with R 2 remaining at approximately 0.6 for O 3 and 0.4 for NO 2 ). However, the RFR and LSTM models significantly increased the O 3 , NO 2 , and SO 2 performances, with the R 2 increasing from 0.3–0.5 to >0.7 for O 3 and NO 2 , and the RMSE decreasing from 20.4 to 13.2 ppb for NO 2 . For the SLR, there were relatively larger biases, while the LSTMs maintained a close mean relative bias of approximately zero (e.g., <5% for O 3 and NO 2 ), indicating that these sensors combined with the LSTMs are suitable for hot spot detection. We highlight that the performance of LSTM is better than that of random forest and linear methods. This study assessed four electrochemical air quality sensors and different calibration models, and the methodology and results can benefit assessments of other low-cost sensors.
Author Wang, Yinghong
Tang, Xiao
Mei, Han
Liu, Di
Han, Pengfei
Zeng, Ning
Pan, Yuepeng
AuthorAffiliation 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; pfhan@mail.iap.ac.cn (P.H.); meihan@mail.iap.ac.cn (H.M.)
3 Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA; zeng@umd.edu
2 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; tangxiao@mail.iap.ac.cn (X.T.); panyuepeng@mail.iap.ac.cn (Y.P.)
AuthorAffiliation_xml – name: 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; pfhan@mail.iap.ac.cn (P.H.); meihan@mail.iap.ac.cn (H.M.)
– name: 2 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; tangxiao@mail.iap.ac.cn (X.T.); panyuepeng@mail.iap.ac.cn (Y.P.)
– name: 3 Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA; zeng@umd.edu
Author_xml – sequence: 1
  givenname: Pengfei
  orcidid: 0000-0002-2546-8190
  surname: Han
  fullname: Han, Pengfei
– sequence: 2
  givenname: Han
  surname: Mei
  fullname: Mei, Han
– sequence: 3
  givenname: Di
  surname: Liu
  fullname: Liu, Di
– sequence: 4
  givenname: Ning
  surname: Zeng
  fullname: Zeng, Ning
– sequence: 5
  givenname: Xiao
  surname: Tang
  fullname: Tang, Xiao
– sequence: 6
  givenname: Yinghong
  surname: Wang
  fullname: Wang, Yinghong
– sequence: 7
  givenname: Yuepeng
  surname: Pan
  fullname: Pan, Yuepeng
BookMark eNplkV1vFCEUholpYz_0wn9A4o0mO5bPAW5MmkmrTbaOsXpNGAZWNrPQwoxN_72zu9XYegXhPOfhwHsCDmKKDoA3GH2gVKGzQjDCiPD6BTjGjLBKEoIO_tkfgZNS1ggRSql8CY4oZQgLKo7Bt8YMoctmDCkWmDxcpvuqSWWE5yHDr2kYpm0JXqcYxpRDXMEbF0vKBfqUYdMu4JeWLGBLF9DEHt605BU49GYo7vXjegp-XF58bz5Xy_bTVXO-rCytcV31jgvGvEc17iWnzHTSGqwwM7jDnXQdQUoKK72ljhKpPBXG1Z4b4qXDuKOn4Grv7ZNZ69scNiY_6GSC3h2kvNImj8EOTktBFO2tMtyI-eVM-Z5zZKzZTqBwP7s-7l23U7dxvXVxzGZ4In1aieGnXqVfWgjFFcez4N2jIKe7yZVRb0KxbhhMdGkqmjDBOUWMqRl9-wxdpynH-at2lEAM1WimzvaUzamU7Ly2YdzFNN8fBo2R3mav_2Y_d7x_1vFn_P_Z32NRq3Y
CitedBy_id crossref_primary_10_1016_j_snb_2022_132052
crossref_primary_10_3390_atmos15040471
crossref_primary_10_3390_su16156686
crossref_primary_10_3233_AIS_210458
crossref_primary_10_3390_s24092930
crossref_primary_10_3390_s23177412
crossref_primary_10_3390_s22103619
crossref_primary_10_1109_JSEN_2024_3472291
crossref_primary_10_1109_LSENS_2022_3168291
crossref_primary_10_3390_app14083282
crossref_primary_10_3390_mi16020118
crossref_primary_10_3390_s22031272
crossref_primary_10_1109_JSEN_2023_3339202
crossref_primary_10_5194_amt_17_6425_2024
crossref_primary_10_3390_atmos15121523
crossref_primary_10_3390_s21124214
crossref_primary_10_1038_s41598_024_77214_y
crossref_primary_10_3390_gases4030016
crossref_primary_10_1109_JSEN_2024_3362962
crossref_primary_10_3390_atmos14020368
crossref_primary_10_3390_bios13010098
crossref_primary_10_3390_bios14020067
crossref_primary_10_3390_electronics13010025
crossref_primary_10_1109_JSEN_2023_3304366
crossref_primary_10_1007_s10489_023_05109_y
crossref_primary_10_1016_j_buildenv_2024_112344
crossref_primary_10_1109_TIM_2023_3239626
crossref_primary_10_3390_s21093190
crossref_primary_10_3390_jmse12071197
crossref_primary_10_3390_s22103830
crossref_primary_10_1007_s11356_024_33717_9
crossref_primary_10_1016_j_envint_2024_108430
crossref_primary_10_1016_j_jestch_2024_101729
crossref_primary_10_1063_5_0063820
crossref_primary_10_5194_amt_16_4723_2023
crossref_primary_10_1016_j_ssc_2023_115196
crossref_primary_10_1108_IJPCC_07_2022_0271
crossref_primary_10_1021_acssensors_4c02272
crossref_primary_10_1149_2162_8777_ac7255
crossref_primary_10_1109_JSEN_2023_3277493
crossref_primary_10_3390_s24134110
crossref_primary_10_1016_j_atmosenv_2022_119304
crossref_primary_10_3390_toxics9110281
crossref_primary_10_1109_JFLEX_2024_3361804
crossref_primary_10_1186_s12940_023_01044_0
crossref_primary_10_3390_s22103964
crossref_primary_10_3390_atmos15111326
crossref_primary_10_3389_fenvs_2021_751267
crossref_primary_10_1109_ACCESS_2023_3297874
crossref_primary_10_3390_atmos15111365
crossref_primary_10_1038_s41597_024_04111_4
crossref_primary_10_1021_acsomega_2c07734
crossref_primary_10_1038_s41598_024_59993_6
crossref_primary_10_3390_app15020935
crossref_primary_10_3390_signals5010004
crossref_primary_10_5194_amt_16_373_2023
crossref_primary_10_1016_j_snb_2022_131815
crossref_primary_10_3390_app132011251
Cites_doi 10.1016/j.envint.2016.12.007
10.5194/acp-18-14095-2018
10.1016/j.atmosenv.2019.06.032
10.1021/es5009399
10.1016/j.neucom.2018.08.067
10.3390/s18020059
10.5194/acp-17-935-2017
10.1016/j.atmosenv.2020.117509
10.5194/amt-10-2383-2017
10.5194/amt-11-315-2018
10.1016/j.atmosenv.2018.02.045
10.5194/amt-13-1671-2020
10.1016/j.envint.2014.11.019
10.1016/j.scitotenv.2009.02.016
10.1016/j.atmosenv.2007.09.003
10.5194/acp-17-1227-2017
10.5194/amt-11-3717-2018
10.5194/amt-11-291-2018
10.1016/j.scitotenv.2016.11.188
10.1056/NEJMoa040610
10.1021/acs.estlett.9b00393
10.1080/16742834.2020.1746627
10.1001/jama.292.19.2372
10.1021/acs.est.9b06046
10.1016/S1352-2310(00)00330-7
10.3390/s20164381
10.1023/A:1010933404324
10.1109/ACCESS.2018.2825538
10.1038/nature14677
10.1073/pnas.1904182116
10.5194/acp-16-13449-2016
10.1016/j.envres.2020.109438
10.1109/LGRS.2017.2780843
10.5194/amt-11-2683-2018
10.3390/s17112671
10.1109/ICSENS.2014.6984922
10.1016/j.inffus.2018.09.001
10.5194/amt-2019-408
10.3390/atmos10090506
10.1038/s41597-020-00665-1
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21010256
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_87293dc9a5a740149fd550aca744f91d
PMC7795951
10_3390_s21010256
GeographicLocations Beijing China
China
GeographicLocations_xml – name: China
– name: Beijing China
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c3616-de5744ff061d8534ab8ca1914a1b1b8eb20987c8fc3e3289f37ae6f5a2f8e11b3
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 01:32:20 EDT 2025
Thu Aug 21 14:32:30 EDT 2025
Fri Jul 11 13:56:13 EDT 2025
Fri Jul 25 20:22:26 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Tue Jul 01 03:56:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3616-de5744ff061d8534ab8ca1914a1b1b8eb20987c8fc3e3289f37ae6f5a2f8e11b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work and should be considered co-first authors.
ORCID 0000-0002-2546-8190
OpenAccessLink https://doaj.org/article/87293dc9a5a740149fd550aca744f91d
PMID 33401737
PQID 2475704060
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_87293dc9a5a740149fd550aca744f91d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7795951
proquest_miscellaneous_2475530449
proquest_journals_2475704060
crossref_citationtrail_10_3390_s21010256
crossref_primary_10_3390_s21010256
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210102
PublicationDateYYYYMMDD 2021-01-02
PublicationDate_xml – month: 1
  year: 2021
  text: 20210102
  day: 2
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Castell (ref_18) 2017; 99
ref_13
ref_54
ref_53
Li (ref_2) 2017; 17
Liu (ref_6) 2015; 524
Liu (ref_14) 2004; 20
Meng (ref_50) 2019; 116
ref_16
Andersen (ref_22) 2018; 11
ref_15
Zheng (ref_51) 2018; 18
Monn (ref_11) 2001; 35
Gauderman (ref_10) 2004; 351
Breiman (ref_41) 2001; 45
Shusterman (ref_21) 2016; 16
Kunz (ref_23) 2020; 13
Liu (ref_39) 2020; 185
Peng (ref_43) 2020; 230
ref_25
Ma (ref_4) 2014; 48
Bi (ref_17) 2020; 54
Tang (ref_49) 2020; 7
Zhang (ref_46) 2018; 6
Chan (ref_9) 2008; 42
ref_20
Hong (ref_1) 2017; 17
Bigi (ref_30) 2018; 11
Wang (ref_12) 2017; 580
ref_28
Bell (ref_8) 2004; 292
ref_26
Bao (ref_24) 2020; 13
Hagan (ref_52) 2018; 11
Martin (ref_27) 2017; 10
ref_36
ref_35
ref_34
ref_33
ref_31
Kumar (ref_29) 2015; 75
ref_38
ref_37
Lin (ref_3) 2018; 180
Brown (ref_7) 2009; 407
Pinder (ref_19) 2019; 215
Zimmerman (ref_42) 2018; 11
Kanjo (ref_45) 2019; 49
Tian (ref_44) 2018; 318
Yang (ref_47) 2018; 15
ref_40
ref_48
ref_5
Hagan (ref_32) 2019; 6
References_xml – volume: 99
  start-page: 293
  year: 2017
  ident: ref_18
  article-title: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2016.12.007
– volume: 18
  start-page: 14095
  year: 2018
  ident: ref_51
  article-title: Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-18-14095-2018
– ident: ref_5
– volume: 215
  start-page: 116794
  year: 2019
  ident: ref_19
  article-title: Opportunities and challenges for filling the air quality data gap in low- and middle-income countries
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2019.06.032
– volume: 48
  start-page: 7436
  year: 2014
  ident: ref_4
  article-title: Estimating Ground-Level PM2.5 in China Using Satellite Remote Sensing
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5009399
– volume: 318
  start-page: 297
  year: 2018
  ident: ref_44
  article-title: LSTM-based traffic flow prediction with missing data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.08.067
– ident: ref_16
– ident: ref_54
  doi: 10.3390/s18020059
– ident: ref_35
– volume: 17
  start-page: 935
  year: 2017
  ident: ref_2
  article-title: MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP
  publication-title: Atmos. Chem. Phys. Discuss.
  doi: 10.5194/acp-17-935-2017
– volume: 230
  start-page: 117509
  year: 2020
  ident: ref_43
  article-title: Development and evaluation of a robust temperature sensitive algorithm for long term NO2 gas sensor network data correction
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2020.117509
– volume: 10
  start-page: 2383
  year: 2017
  ident: ref_27
  article-title: Evaluation and environmental correction of ambient CO2 measurements from a low-cost NDIR sensor
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-10-2383-2017
– volume: 11
  start-page: 315
  year: 2018
  ident: ref_52
  article-title: Calibration and assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-11-315-2018
– volume: 180
  start-page: 110
  year: 2018
  ident: ref_3
  article-title: High-resolution satellite remote sensing of provincial PM2.5 trends in China from 2001 to 2015
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.02.045
– volume: 13
  start-page: 1671
  year: 2020
  ident: ref_23
  article-title: Surface flux estimates derived from UAS-based mole fraction measurements by means of a nocturnal boundary layer budget approach
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-13-1671-2020
– ident: ref_48
– volume: 75
  start-page: 199
  year: 2015
  ident: ref_29
  article-title: The rise of low-cost sensing for managing air pollution in cities
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2014.11.019
– volume: 407
  start-page: 3754
  year: 2009
  ident: ref_7
  article-title: Factors influencing relationships between personal and ambient concentrations of gaseous and particulate pollutants
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2009.02.016
– ident: ref_13
– volume: 42
  start-page: 1
  year: 2008
  ident: ref_9
  article-title: Air pollution in mega cities in China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2007.09.003
– volume: 17
  start-page: 1227
  year: 2017
  ident: ref_1
  article-title: Variations of China’s emission estimates: Response to uncertainties in energy statistics
  publication-title: Atmos. Chem. Phys. Discuss.
  doi: 10.5194/acp-17-1227-2017
– volume: 11
  start-page: 3717
  year: 2018
  ident: ref_30
  article-title: Performance of NO, NO2 low cost sensors and three calibration approaches within a real world application
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-11-3717-2018
– volume: 11
  start-page: 291
  year: 2018
  ident: ref_42
  article-title: A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-11-291-2018
– ident: ref_53
– volume: 580
  start-page: 197
  year: 2017
  ident: ref_12
  article-title: The impact of the “Air Pollution Prevention and Control Action Plan” on PM2.5 concentrations in Jing-Jin-Ji region during 2012–2020
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.11.188
– volume: 351
  start-page: 1057
  year: 2004
  ident: ref_10
  article-title: The Effect of Air Pollution on Lung Development from 10 to 18 Years of Age
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa040610
– ident: ref_34
– volume: 6
  start-page: 467
  year: 2019
  ident: ref_32
  article-title: Inferring Aerosol Sources from Low-Cost Air Quality Sensor Measurements: A Case Study in Delhi, India
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.9b00393
– volume: 13
  start-page: 371
  year: 2020
  ident: ref_24
  article-title: Observation and modeling of vertical carbon dioxide distribution in a heavily polluted suburban environment
  publication-title: Atmos. Ocean. Sci. Lett.
  doi: 10.1080/16742834.2020.1746627
– volume: 292
  start-page: 2372
  year: 2004
  ident: ref_8
  article-title: Ozone and short-term mortality in 95 US urban communities, 1987–2000
  publication-title: JAMA J. Am. Med Assoc.
  doi: 10.1001/jama.292.19.2372
– ident: ref_40
– volume: 54
  start-page: 2152
  year: 2020
  ident: ref_17
  article-title: Incorporating Low-Cost Sensor Measurements into High-Resolution PM2.5 Modeling at a Large Spatial Scale
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b06046
– ident: ref_37
– volume: 35
  start-page: 1
  year: 2001
  ident: ref_11
  article-title: Exposure assessment of air pollutants: A review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(00)00330-7
– ident: ref_38
  doi: 10.3390/s20164381
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_41
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 20
  start-page: 8
  year: 2004
  ident: ref_14
  article-title: Development and trend of air automatic monitoring system
  publication-title: Environ. Monit. China
– volume: 6
  start-page: 23551
  year: 2018
  ident: ref_46
  article-title: LSTM-Based Analysis of Industrial IoT Equipment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2825538
– ident: ref_25
– volume: 524
  start-page: 335
  year: 2015
  ident: ref_6
  article-title: Reduced carbon emission estimates from fossil fuel combustion and cement production in China
  publication-title: Nature
  doi: 10.1038/nature14677
– ident: ref_33
– volume: 116
  start-page: 16773
  year: 2019
  ident: ref_50
  article-title: Energy and air pollution benefits of household fuel policies in northern China
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1904182116
– volume: 16
  start-page: 13449
  year: 2016
  ident: ref_21
  article-title: The BErkeley Atmospheric CO2 Observation Network: Initial evaluation
  publication-title: Atmos. Chem. Phys. Discuss.
  doi: 10.5194/acp-16-13449-2016
– volume: 185
  start-page: 109438
  year: 2020
  ident: ref_39
  article-title: Low-cost sensors as an alternative for long-term air quality monitoring
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.109438
– volume: 15
  start-page: 207
  year: 2018
  ident: ref_47
  article-title: A CFCC-LSTM Model for Sea Surface Temperature Prediction
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2780843
– ident: ref_15
– volume: 11
  start-page: 2683
  year: 2018
  ident: ref_22
  article-title: A UAV-based active AirCore system for measurements of greenhouse gases
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-11-2683-2018
– ident: ref_36
– ident: ref_26
  doi: 10.3390/s17112671
– ident: ref_31
  doi: 10.1109/ICSENS.2014.6984922
– volume: 49
  start-page: 46
  year: 2019
  ident: ref_45
  article-title: Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.09.001
– ident: ref_20
  doi: 10.5194/amt-2019-408
– ident: ref_28
  doi: 10.3390/atmos10090506
– volume: 7
  start-page: 1
  year: 2020
  ident: ref_49
  article-title: Air pollution emissions from Chinese power plants based on the continuous emission monitoring systems network
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-00665-1
SSID ssj0023338
Score 2.5513904
Snippet Pollutant gases, such as CO, NO2, O3, and SO2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in...
Pollutant gases, such as CO, NO 2 , O 3 , and SO 2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 256
SubjectTerms Air pollution
electrochemical air quality sensors
Electrodes
field evaluation
Greenhouse gases
Internet of Things
low-cost gas sensors
LSTMs
Microprocessors
Neural networks
Nitrogen dioxide
Pollutants
Quality control
random forest
Regression analysis
Sensors
single and multiple linear regression
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucCh4ikCBRnEgcNGXceO7ZxQWVFVCLqIUmlvkZ9QCSXtZiv-PjNJdttIiNsq4yibeXjms51vAN4lbbjmFp1Xcp_LQqvcpIC_cDKMKPJVv3v-9VSdnMvPq3I1Lrh147HK7ZzYT9Sh9bRGflhIXWr0ODX_cHmVU9co2l0dW2jchXtEXUZHuvTqBnAJxF8Dm5BAaH_YIbzhlOMnOain6p_Ul9PTkbfSzfFD2B_rRHY0GPYR3InNY3hwiz3wCXyn76rcYMGOtYl9af_ki7bbsKOLNftGPYxJxIawpXvYGYLWdt0xrFTZYjljp8tixpZixmwT2NmyeArnx59-LE7ysUVC7oXiKg-x1FKmhFk5YOKV1hlvibLNcsedQdg8r4z2JnkRBWKrJLSNKpW2SCZy7sQz2GvaJj4H5p1RkbuAoiijMhiPrkw2KBMcj0Jl8H6rtNqP_OHUxuJ3jTiC9Fvv9JvB293Qy4E041-DPpLmdwOI57q_0K5_1mPY1AZrfxF8ZUtLrQNllQJCKustvXXFQwYHW7vVY_B19Y2rZPBmJ8awob0Q28T2ehhTirmUVQZ6Yu_JH5pKmotfPQG3pgbtJX_x_4e_hPsFHYCh9ZriAPY26-v4CiuYjXvdu-lfhlLv-Q
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKucCh4ilSCjKIA4cNrGPHdg4VKiuqCtEuoqzUW-QnVKqSNtkK-u-ZSbJRI_XILcpMpHjG45kvdr4h5F1UmilmYPIK5lKRKZnq6OEKFsMAIld0u-fHJ_JoJb6e5WdbZNNjczBgeye0w35Sq-biw9-rm08Q8PuIOAGyf2wBtjDM3ffIfUhICuPzWIybCRkHGNaTCk3VJ6moY-yflJnTQ5K3ss7hI7IzlIv0oPfvY7IVqifk4S0SwafkB_5eZXtHtrSO9Fv9J13U7ZoenDf0O7YyRhHtoxefoaeAXeumpVCw0sVyRk-W2Ywu-YyaytPTZfaMrA6__FwcpUOnhNRxyWTqQ66EiBGSs4f8K4zVziBzm2GWWQ3oeV5o5XR0PHCAWJErE2TMTRZ1YMzy52S7qqvwglBntQzMehAFEaSGsLR5NF5qb1ngMiHvN0Yr3UAjjt0sLkqAE2jfcrRvQt6Oqpc9d8ZdSp_R8qMC0l13N-rmVzlET6kBAnDvCpMb7CAoiugBWRlncNQF8wnZ2_it3EyhMhMqV7BGyXlC3oxiiB7cEjFVqK97nZzPhSgSoib-nrzQVFKd_-54uBX2ac_Z7v8YwUvyIMPTMvhxJ9sj2-vmOryCcmdtX3eT-R9Cq_5G
  priority: 102
  providerName: Scholars Portal
Title Calibrations of Low-Cost Air Pollution Monitoring Sensors for CO, NO2, O3, and SO2
URI https://www.proquest.com/docview/2475704060
https://www.proquest.com/docview/2475530449
https://pubmed.ncbi.nlm.nih.gov/PMC7795951
https://doaj.org/article/87293dc9a5a740149fd550aca744f91d
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBZb97I9jK7bmLc2qGUPe4hpZMmS_NiGZmW0SWlXyJvRT1YY9ohT9u_vznZCDIW-7MXYvjPId5LuPkv-jpCvUWmmmIHOK5hLRaZkqqOHM5gMA4hc0a6eX8_l5b34scyXO6W-cE9YRw_cGe5UQ_bHvStMbrB4nCiih6TaOLgSsWAeZ1-IeRsw1UMtDsir4xHiAOpPGwA2DKP7IPq0JP2DzHK4L3In0Mz2yds-Q6RnXcvekRehOiBvdngD35Nb_KPKdr5raB3pVf03ndbNmp49rOgNVi9GEe0GLD5D7wCu1quGQo5Kp4sxnS-yMV3wMTWVp3eL7AO5n138nF6mfXGE1HHJZOpDjhaIEI89hFxhrHYGydoMs8xqAMyTQiuno-OBA6qKXJkgY26yqANjln8ke1VdhU-EOqtlYNaDKIggNYxEm0fjpfaWBS4T8m1jtNL1zOFYwOJ3CQgC7Vtu7ZuQk63qn44u4ymlc7T8VgEZrtsb4Pey93v5nN8TcrjxW9kPu6bMhMoVTEtykpDjrRgGDK6CmCrUj51OzidCFAlRA38PGjSUVA-_WupthaXZc_b5f7zBF_I6ww0y-D0nOyR769VjOIIMZ21H5KVaKjjq2fcReXV-Mb-5HbUdHI7XQv8DNOz8iw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMEChgEEoeNGseOkxwQKgvVlm53EW2lvaV-QiWUlM1WFX-K38hMHttGQtx6izKT13hen-3MEPLGpxlLmQLlFcyEIk5lmHkLR-AMHZBM3qyeH8zk5Fh8WSSLDfKn_xcGt1X2PrFx1LYyOEe-HYs0SUHjZPTh7FeIXaNwdbVvodGqxb77fQGQrX6_9wnG920c734-Gk_CrqtAaLhkMrQuSYXwHgKZhVgllM6MwipnimmmM0CaEeBwk3nDHQc44nmqnPSJin3mGNMc7nuD3ITAG6FFpYtLgMcB77XVizjPo-0a4BTDnGIQ85rWAIN8drgb80p4271H7nZ5Kd1pFek-2XDlA3LnSrXCh-Qb_selW42paeXptLoIx1W9ojunS_oVeyYjibZuAq-hhwCSq2VNITOm4_mIzubxiM75iKrS0sN5_IgcX4vwHpPNsirdE0KNzqRj2gLJCSczsH-deGVlZjVzXAbkXS-0wnT1yrFtxs8CcAvKt1jLNyCv16xnbZGOfzF9RMmvGbCudnOiWn4vOjMtMsAa3JpcJQpbFYrcW4Bwyij86pzZgGz141Z0xl4Xl6oZkFdrMpgprr2o0lXnLU_CIyHygKSD8R680JBSnv5oCn6n2BA-YU____CX5Nbk6GBaTPdm-8_I7Rg33-BcUbxFNlfLc_ccsqeVftGoLCUn120jfwH03izv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF9qBdEH8ROjVVdR8OHC3WY3u8mDSL16tLbeFWvh3tL91IIk9XKl-K_51zmT5K4NiG99C5nJ1-zM7Px2JzOEvAkqY4ppUF7BbCwSJeMsODgCZ-iBZPNm9_zLVO4ei8_zdL5B_qz-hcG0ypVPbBy1qyyukQ8ToVIFGidHw9ClRRzuTD6c_YqxgxTutK7aabQqsu9_XwB8q9_v7cBYv02Syadv49246zAQWy6ZjJ1PlRAhwKTmYN4S2mRWY8UzzQwzGaDOEWBymwXLPQdoErjSXoZUJyHzjBkO971BbiqeMrQxNb8EexywX1vJiPN8NKwBWjGML3rzX9MmoBfb9jMzr0x1k3vkbhej0u1Wqe6TDV8-IHeuVC58SL7iP12m1Z6aVoEeVBfxuKqXdPt0QQ-xfzKSaOsy8Bp6BIC5WtQUomQ6ng3odJYM6IwPqC4dPZolj8jxtQjvMdksq9I_IdSaTHpmHJC88DIDX2DSoJ3MnGGey4i8WwmtsF3tcmyh8bMADIPyLdbyjcjrNetZW7DjX0wfUfJrBqyx3ZyoFt-LzmSLDHAHdzbXqca2hSIPDuCcthq_OmcuIlurcSs6w6-LSzWNyKs1GUwW92F06avzliflIyHyiKjeePdeqE8pT380xb8VNodP2dP_P_wluQXWURzsTfefkdsJ5uHgslGyRTaXi3P_HAKppXnRaCwlJ9dtIn8ByUoxJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calibrations+of+Low-Cost+Air+Pollution+Monitoring+Sensors+for+CO%2C+NO2%2C+O3%2C+and+SO2&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Pengfei+Han&rft.au=Han+Mei&rft.au=Di+Liu&rft.au=Ning+Zeng&rft.date=2021-01-02&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=1&rft.spage=256&rft_id=info:doi/10.3390%2Fs21010256&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_87293dc9a5a740149fd550aca744f91d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon