A k‐means clustering machine learning‐based multiscale method for anelastic heterogeneous structures with internal variables
A new machine‐learning based multiscale method, called k‐means FE2, is introduced to solve general nonlinear multiscale problems with internal variables and loading history‐dependent behaviors, without use of surrogate models. The macro scale problem is reduced by constructing clusters of Gauss poin...
Saved in:
Published in | International journal for numerical methods in engineering Vol. 123; no. 9; pp. 2012 - 2041 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
15.05.2022
Wiley Subscription Services, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new machine‐learning based multiscale method, called k‐means FE2, is introduced to solve general nonlinear multiscale problems with internal variables and loading history‐dependent behaviors, without use of surrogate models. The macro scale problem is reduced by constructing clusters of Gauss points in a structure which are estimated to be in the same mechanical state. A k‐means clustering—machine learning technique is employed to select the Gauss points based on their strain state and sets of internal variables. Then, for all Gauss points in a cluster, only one micro nonlinear problem is solved, and its response is transferred to all integration points of the cluster in terms of mechanical properties. The solution converges with respect to the number of clusters, which is weakly depends on the number of macro mesh elements. Accelerations of FE2 calculations up to a factor 50 are observed in typical applications. Arbitrary nonlinear behaviors including internal variables can be considered at the micro level. The method is applied to heterogeneous structures with local quasi‐brittle and elastoplastic behaviors and, in particular, to a nuclear waste package structure subject to internal expansions. |
---|---|
AbstractList | A new machine‐learning based multiscale method, called k‐means FE2, is introduced to solve general nonlinear multiscale problems with internal variables and loading history‐dependent behaviors, without use of surrogate models. The macro scale problem is reduced by constructing clusters of Gauss points in a structure which are estimated to be in the same mechanical state. A k‐means clustering—machine learning technique is employed to select the Gauss points based on their strain state and sets of internal variables. Then, for all Gauss points in a cluster, only one micro nonlinear problem is solved, and its response is transferred to all integration points of the cluster in terms of mechanical properties. The solution converges with respect to the number of clusters, which is weakly depends on the number of macro mesh elements. Accelerations of FE2 calculations up to a factor 50 are observed in typical applications. Arbitrary nonlinear behaviors including internal variables can be considered at the micro level. The method is applied to heterogeneous structures with local quasi‐brittle and elastoplastic behaviors and, in particular, to a nuclear waste package structure subject to internal expansions. A new machine-learning based multiscale method, called k-means FE 2 , is introduced to solve general nonlinear multiscale problems with internal variables and loading history-dependent behaviors, without use of surrogate models. The macro scale problem is reduced by constructing clusters of Gauss points in a structure which are estimated to be in the same mechanical state. A k-means clustering-machine learning technique is employed to select the Gauss points based on their strain state and sets of internal variables. Then, for all Gauss points in a cluster, only one micro nonlinear problem is solved, and its response is transferred to all integration points of the cluster in terms of mechanical properties. The solution converges with respect to the number of clusters, which is weakly depends on the number of macro mesh elements. Accelerations of FE 2 calculations up to a factor 50 are observed in typical applications. Arbitrary nonlinear behaviors including internal variables can be considered at the micro level. The method is applied to heterogeneous structures with local quasi-brittle and elastoplastic behaviors and, in particular, to a nuclear waste package structure subject to internal expansions. A new machine‐learning based multiscale method, called k‐means FE, is introduced to solve general nonlinear multiscale problems with internal variables and loading history‐dependent behaviors, without use of surrogate models. The macro scale problem is reduced by constructing clusters of Gauss points in a structure which are estimated to be in the same mechanical state. A k‐means clustering—machine learning technique is employed to select the Gauss points based on their strain state and sets of internal variables. Then, for all Gauss points in a cluster, only one micro nonlinear problem is solved, and its response is transferred to all integration points of the cluster in terms of mechanical properties. The solution converges with respect to the number of clusters, which is weakly depends on the number of macro mesh elements. Accelerations of FE calculations up to a factor 50 are observed in typical applications. Arbitrary nonlinear behaviors including internal variables can be considered at the micro level. The method is applied to heterogeneous structures with local quasi‐brittle and elastoplastic behaviors and, in particular, to a nuclear waste package structure subject to internal expansions. |
Author | He, Qi‐Chang Yvonnet, Julien Benaimeche, Mohamed Amine Bary, Benoit |
Author_xml | – sequence: 1 givenname: Mohamed Amine surname: Benaimeche fullname: Benaimeche, Mohamed Amine organization: MSME, CNRS UMR 8208 – sequence: 2 givenname: Julien surname: Yvonnet fullname: Yvonnet, Julien email: julien.yvonnet@univ-eiffel.fr organization: MSME, CNRS UMR 8208 – sequence: 3 givenname: Benoit surname: Bary fullname: Bary, Benoit organization: Université Paris‐Saclay, CEA, Service d'Étude du Comportement des Radionucléides – sequence: 4 givenname: Qi‐Chang surname: He fullname: He, Qi‐Chang organization: MSME, CNRS UMR 8208 |
BackLink | https://hal.science/hal-03621332$$DView record in HAL |
BookMark | eNp1kU1uFDEQhS0UJCYBiSNYYgOLHvzTv8tRlBCkATawtqrd5bSD2w62O1F2OQJn5CR4GNggWJX03lelp3qn5MQHj4S85GzLGRNv_YLbdhDNE7LhbOgqJlh3QjbFGqpm6PkzcprSDWOcN0xuyOOOfv3x-H1B8Ilqt6aM0fpruoCerUfqEKIvQmFGSDjRZXXZJg0O6YJ5DhM1IVLw6CBlq-mM5UK4Ro9hTTTluOq8Rkz03uaZWl9cD47eQbQwOkzPyVMDLuGL3_OMfLm8-Hx-Ve0_vXt_vttXWra8qdA0vZQj8Lab2qYRw8SlRmZkP7B-HGsjteEaTcd7PchaTHwCUU9Q9waLrOUZeXO8O4NTt9EuEB9UAKuudnt10JhsBZdS3PHCvjqytzF8WzFldRPWQ-ykRFt3Q1c-3RZqe6R0DClFNErbDNkGnyNYpzhTh0ZUaUQdGikLr_9a-JPjH2h1RO-tw4f_curjh4tf_E9C06EE |
CitedBy_id | crossref_primary_10_1002_nme_7419 crossref_primary_10_1007_s42405_022_00547_3 crossref_primary_10_1016_j_eml_2024_102260 crossref_primary_10_1007_s42102_024_00122_2 crossref_primary_10_1016_j_cma_2024_117525 crossref_primary_10_1016_j_cma_2025_117854 crossref_primary_10_1016_j_euromechsol_2024_105242 crossref_primary_10_1016_j_mechmat_2023_104726 crossref_primary_10_1007_s00466_023_02324_9 crossref_primary_10_1007_s00466_023_02326_7 crossref_primary_10_1016_j_cma_2024_117278 crossref_primary_10_1186_s40323_024_00280_4 crossref_primary_10_1016_j_finel_2023_104069 crossref_primary_10_1016_j_engappai_2023_106209 crossref_primary_10_1088_1402_4896_ad1c1e crossref_primary_10_1016_j_pmatsci_2024_101336 crossref_primary_10_1007_s00466_022_02183_w crossref_primary_10_1016_j_jmps_2023_105245 crossref_primary_10_1142_S0219649224500771 crossref_primary_10_3390_computers13060149 crossref_primary_10_1007_s42102_023_00113_9 crossref_primary_10_1016_j_cma_2025_117747 |
Cites_doi | 10.1016/j.commatsci.2020.109850 10.1038/s41598-018-27636-2 10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D 10.1016/j.cma.2017.11.005 10.1016/j.cma.2018.01.036 10.1016/S0045-7949(01)00083-9 10.1051/snamc/201402107 10.1061/(ASCE)0733-9399(1987)113:10(1512) 10.1016/j.cam.2009.08.077 10.1007/s11012-016-0538-4 10.1016/S0925-8388(98)00639-2 10.5802/crmeca.51 10.1016/j.corsci.2019.02.016 10.1016/j.cma.2010.06.018 10.1016/j.cma.2016.02.001 10.1557/mrs.2016.165 10.1016/j.cma.2010.04.011 10.1002/nme.6493 10.1016/S0022-5096(98)00034-9 10.1007/s11709-020-0691-7 10.1016/S0045-7825(01)00179-7 10.1016/j.advengsoft.2017.06.006 10.1023/A:1007545213010 10.1016/j.cma.2009.03.017 10.1016/j.jrmge.2014.04.008 10.1016/j.crme.2010.03.009 10.1002/nme.4953 10.1016/j.jmps.2009.04.011 10.1007/978-1-4020-6395-4 10.1073/pnas.1911815116 10.1016/j.cma.2020.113390 10.1016/j.cma.2019.112693 10.3390/ma9070536 10.1016/j.cma.2016.04.004 10.1016/S0045-7825(01)00314-0 10.1016/j.jcp.2020.109982 10.1115/1.4042217 10.1007/s00466-018-1643-0 10.1007/978-3-030-18383-7 10.1016/j.jcp.2016.01.040 10.1002/nme.2068 10.1016/S0020-7683(00)00167-0 10.1016/j.engfracmech.2015.03.045 10.1016/j.strusafe.2014.09.002 10.1016/j.ijmecsci.2019.105318 10.1016/j.cma.2019.112594 10.1002/nme.6463 10.2307/2346830 10.1038/s41598-017-08601-x 10.1016/S0045-7825(99)00224-8 10.1016/j.cma.2020.113482 10.1016/S0022-5096(99)00028-9 10.1016/j.cma.2020.113234 10.1016/j.euromechsol.2020.103995 10.1002/nme.541 10.1016/j.engstruct.2017.09.016 10.1002/nme.6565 10.1002/nme.6634 10.1016/S0927-0256(99)00077-4 10.1016/j.cma.2019.112657 10.1016/j.euromechsol.2017.11.007 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 1XC VOOES |
DOI | 10.1002/nme.6925 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1097-0207 |
EndPage | 2041 |
ExternalDocumentID | oai_HAL_hal_03621332v1 10_1002_nme_6925 NME6925 |
Genre | article |
GrantInformation_xml | – fundername: Commissariat à l'Energie Atomique et aux Energies Alternatives |
GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SC 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 KR7 L7M L~C L~D .Y3 1XC 31~ 6TJ AANHP AASGY AAYOK ABDPE ABEML ACBWZ ACKIV ACRPL ACSCC ACYXJ ADNMO AGQPQ AI. ASPBG AVWKF AZFZN BDRZF EJD FEDTE GBZZK HF~ HVGLF M6O PALCI RIWAO RNS SAMSI VH1 VOH VOOES ZY4 ~A~ |
ID | FETCH-LOGICAL-c3615-ef5833ba167d65529d13ce0f38908bb4f3cf1cef718c9342d1da24da48fecefc3 |
IEDL.DBID | DR2 |
ISSN | 0029-5981 |
IngestDate | Fri May 09 12:15:14 EDT 2025 Fri Jul 25 12:12:16 EDT 2025 Tue Jul 01 04:32:09 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Wed Jan 22 16:25:26 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Homogenization FE2 k-means clustering Nonlinear Multiscale Machine learning |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3615-ef5833ba167d65529d13ce0f38908bb4f3cf1cef718c9342d1da24da48fecefc3 |
Notes | Funding information Commissariat à l'Energie Atomique et aux Energies Alternatives ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2311-1929 0000-0002-9365-6601 |
OpenAccessLink | https://hal.science/hal-03621332 |
PQID | 2647971006 |
PQPubID | 996376 |
PageCount | 30 |
ParticipantIDs | hal_primary_oai_HAL_hal_03621332v1 proquest_journals_2647971006 crossref_citationtrail_10_1002_nme_6925 crossref_primary_10_1002_nme_6925 wiley_primary_10_1002_nme_6925_NME6925 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 May 2022 |
PublicationDateYYYYMMDD | 2022-05-15 |
PublicationDate_xml | – month: 05 year: 2022 text: 15 May 2022 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Bognor Regis |
PublicationTitle | International journal for numerical methods in engineering |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2017; 7 1996; 39 2015; 104 2020; 360 2000; 48 2016; 306 2020; 121 2002; 54 2009; 198 2020; 369 2020; 14 1973 2016; 304 2017; 152 2021; 122 2020; 169 2008; 73 2017; 112 1998; 278 1998; 46 1979; 28 2018; 330 2018; 8 2009; 57 1987; 113 2020; 372 2019; 64 2019; 24 1999; 16 2018; 334 2010; 234 2019; 357 2019; 116 2010; 199 2016; 41 1999; 52 2016; 313 2015; 139 2019; 152 2014; 6 2021; 428 2020; 184 2012 2017; 69 2020; 82 2015; 52 2008 1996 2020; 348 2016; 51 2001; 191 2010; 338 2019; 86 2001; 190 2020 2000; 183 2019 2020; 359 2021; 373 2001; 38 2001; 79 2016; 9 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Lißner J (e_1_2_8_8_1) 2019; 24 Bart F (e_1_2_8_57_1) 2012 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 Fayyad U (e_1_2_8_37_1) 1996 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 Duda R (e_1_2_8_39_1) 1973 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 Rocha I (e_1_2_8_27_1) 2020 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 Gersho A (e_1_2_8_38_1) 2012 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 190 start-page: 5427 year: 2001 end-page: 5464 article-title: A class of general algorithms for multi‐scale analysis of heterogeneous media publication-title: Comput Methods Appl Mech Eng – volume: 73 start-page: 185 issue: 2 year: 2008 end-page: 204 article-title: Computational homogenization for heat conduction in heterogeneous solids publication-title: Int J Numer Methods Eng – volume: 41 start-page: 610 issue: 08 year: 2016 end-page: 616 article-title: Multiscale modeling of microstructure‐property relations publication-title: MRS Bull – volume: 52 start-page: 201 year: 1999 end-page: 238 article-title: Energy minimizing brittle crack propagation publication-title: J Elast – volume: 52 start-page: 78 year: 2015 end-page: 89 article-title: Review and application of artificial neural networks models in reliability analysis of steel structures publication-title: Struct Saf – volume: 38 start-page: 2335 year: 2001 end-page: 2385 article-title: A multilevel computational model for multi‐scale damage analysis in composite and porous media publication-title: Int J Solids Struct – volume: 183 start-page: 309 issue: 3–4 year: 2000 end-page: 330 article-title: FE multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials publication-title: Comput Methods Appl Mech Eng – volume: 191 start-page: 989 issue: 8–10 year: 2001 end-page: 1012 article-title: Total solution for structural mechanics problems publication-title: Comput Methods Appl Mech Eng – volume: 169 year: 2020 article-title: Analytical and numerical prediction of mechanical properties of heterogeneous materials with expansive inclusions: application to waste cementation publication-title: Int J Mech Sci – volume: 121 start-page: 4717 issue: 21 year: 2020 end-page: 4733 article-title: Implementation of a new strain split to model unilateral contact within the phase field method publication-title: Int J Numer Methods Eng – volume: 428 year: 2021 article-title: Learning non‐Markovian physics from data publication-title: J Comput Phys – volume: 7 start-page: 1 issue: 1 year: 2017 end-page: 9 article-title: In‐situ, time resolved monitoring of uranium in BFS: OPC grout. Part 1: corrosion in water vapour publication-title: Sci Rep – volume: 152 start-page: 261 year: 2019 end-page: 270 article-title: Corrosion of uranium in liquid water under contained conditions with a headspace deuterium overpressure. Part 2: the ternary U+ H2O (l)+ D2 system publication-title: Corros Sci – volume: 338 start-page: 191 year: 2010 end-page: 198 article-title: The variational approach to damage: I. The foundations publication-title: C R Mecanique – volume: 198 start-page: 2723 year: 2009 end-page: 2737 article-title: Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials publication-title: Comput Methods Appl Mech Eng – volume: 46 start-page: 1319 issue: 8 year: 1998 end-page: 1342 article-title: Revisiting brittle fracture as an energy minimization problem publication-title: J Mech Phys Solids – volume: 104 start-page: 1061 issue: 12 year: 2015 end-page: 1084 article-title: Computational homogenization of nonlinear elastic materials using neural networks publication-title: Int J Numer Methods Eng – volume: 359 year: 2020 article-title: A nonlinear data‐driven reduced order model for computational homogenization with physics/pattern‐guided sampling publication-title: Comput Methods Appl Mech Eng – volume: 112 start-page: 16 year: 2017 end-page: 30 article-title: Analytical and 3D numerical analysis of the thermoviscoelastic behavior of concrete‐like materials including interfaces publication-title: Adv Eng Softw – year: 2008 – volume: 304 start-page: 81 year: 2016 end-page: 101 article-title: Data‐driven computational mechanics publication-title: Comput Methods Appl Mech Eng – volume: 122 start-page: 2598 issue: 10 year: 2021 end-page: 2625 article-title: A computationally tractable framework for nonlinear dynamic multiscale modeling of membrane woven fabrics publication-title: Int J Numer Methods Eng – volume: 199 start-page: 3028 issue: 45–48 year: 2010 end-page: 3038 article-title: On the existence of representative volumes for softening quasi‐brittle materials–A failure zone averaging scheme publication-title: Comput Methods Appl Mech Eng – volume: 82 year: 2020 article-title: Micromechanics‐based surrogate models for the response of composites: a critical comparison between a classical mesoscale constitutive model, hyper‐reduction and neural networks publication-title: Eur J Mech A/Solids – volume: 334 start-page: 337 year: 2018 end-page: 380 article-title: A multiscale multi‐permeability poroplasticity model linked by recursive homogenizations and deep learning publication-title: Comput Methods Appl Mech Eng – volume: 372 year: 2020 article-title: Data‐driven fracture mechanics publication-title: Comput Methods Appl Mech Eng – year: 2019 – volume: 122 start-page: 866 issue: 3 year: 2021 end-page: 897 article-title: A Fourier‐based machine learning technique with application in engineering publication-title: Int J Numer Methods Eng – volume: 16 start-page: 433 issue: 1–4 year: 1999 end-page: 454 article-title: Multiscale FE elastoviscoplastic analysis of composite structure publication-title: Comput Mater Sci – volume: 24 start-page: 57 issue: 2 year: 2019 article-title: Data‐driven microstructure property relations publication-title: Math Comput Appl – volume: 199 start-page: 2776 year: 2010 end-page: 2778 article-title: A phase field model for rate‐independent crack propagation: robust algorithmic implementation based on operator splits publication-title: Comput Methods Appl Mech Eng – volume: 234 start-page: 2175 issue: 7 year: 2010 end-page: 2182 article-title: Multi‐scale computational homogenization: trends and challenges publication-title: J Comput Appl Math – volume: 79 start-page: 2261 issue: 22–25 year: 2001 end-page: 2276 article-title: Neural networks in mechanics of structures and materials–new results and prospects of applications publication-title: Comput Struct – volume: 6 start-page: 338 issue: 4 year: 2014 end-page: 347 article-title: New artificial neural networks for true triaxial stress state analysis and demonstration of intermediate principal stress effects on intact rock strength publication-title: J Rock Mech Geotech Eng – volume: 8 start-page: 1 issue: 1 year: 2018 end-page: 12 article-title: In‐situ, time resolved monitoring of uranium in BFS: OPC grout. Part 2: corrosion in water publication-title: Sci Rep – volume: 14 start-page: 1285 issue: 6 year: 2020 end-page: 1298 article-title: Multiscale computation on feedforward neural network and recurrent neural network publication-title: Front Struct Civil Eng – volume: 48 start-page: 797 year: 2000 end-page: 826 article-title: Numerical experiments in revisited brittle fracture publication-title: J Mech Phys Solids – volume: 278 start-page: 149 issue: 1–2 year: 1998 end-page: 160 article-title: Corrosion of uranium in air and water vapor: consequences for environmental dispersal publication-title: J Alloys Compd – volume: 139 start-page: 18 year: 2015 end-page: 39 article-title: A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure publication-title: Eng Fract Mech – year: 1973 – year: 1996 – volume: 39 start-page: 3391 issue: 39 year: 1996 end-page: 3403 article-title: Gradient‐enhanced damage for quasi‐brittle materials publication-title: Int J Numer Methods Eng – volume: 348 start-page: 911 issue: 10–11 year: 2020 end-page: 935 article-title: Mechanical dissimilarity of defects in welded joints via Grassmann manifold and machine learning publication-title: Comptes Rendus Mécanique – volume: 69 start-page: 201 year: 2017 end-page: 220 article-title: Two‐stage data‐driven homogenization for nonlinear solids using a reduced order model publication-title: Eur J Mech A/Solids – volume: 9 start-page: 536 issue: 7 year: 2016 article-title: Modeling the effects of Cu content and deformation variables on the high‐temperature flow behavior of dilute Al‐Fe‐Si alloys using an artificial neural network publication-title: Materials – volume: 306 start-page: 319 year: 2016 end-page: 341 article-title: Self‐consistent clustering analysis: an efficient multi‐scale scheme for inelastic heterogeneous materials publication-title: Comput Methods Appl Mech Eng – volume: 357 year: 2019 article-title: Accelerating multiscale finite element simulations of history‐dependent materials using a recurrent neural network publication-title: Comput Methods Appl Mech Eng – year: 2012 – volume: 184 year: 2020 article-title: Three‐dimensional convolutional neural network (3D‐CNN) for heterogeneous material homogenization publication-title: Comput Mater Sci – volume: 54 start-page: 1235 year: 2002 end-page: 1260 article-title: Multi‐scale constitutive modeling of heterogeneous materials with gradient enhanced computational homogenization scheme publication-title: Int J Numer Methods Eng – volume: 51 start-page: 3107 issue: 12 year: 2016 end-page: 3128 article-title: An overview of the modelling of fracture by gradient damage models publication-title: Meccanica – volume: 313 start-page: 635 year: 2016 end-page: 653 article-title: A nonlinear manifold‐based reduced order model for multiscale analysis of heterogeneous hyperelastic materials publication-title: J Comput Phys – volume: 121 start-page: 4811 issue: 21 year: 2020 end-page: 4842 article-title: A surrogate model for computational homogenization of elastostatics at finite strain using high‐dimensional model representation‐based neural network publication-title: Int J Numer Methods Eng – volume: 64 start-page: 307 year: 2019 end-page: 321 article-title: A data‐driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites publication-title: Comput Mech – volume: 152 start-page: 843 year: 2017 end-page: 855 article-title: Artificial neural network prediction of buckling load of thin cylindrical shells under axial compression publication-title: Eng Struct – volume: 57 start-page: 1209 issue: 8 year: 2009 end-page: 1229 article-title: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments publication-title: J Mech Phys Solids – year: 2020 article-title: On‐the‐fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning publication-title: J Comput Phys X – volume: 86 issue: 3 year: 2019 article-title: Closed‐form coordinate‐free decompositions of the two‐dimensional strain and stress for modeling tension–compression dissymmetry publication-title: J Appl Mech – volume: 369 year: 2020 article-title: A recurrent neural network‐accelerated multi‐scale model for elasto‐plastic heterogeneous materials subjected to random cyclic and non‐proportional loading paths publication-title: Comput Methods Appl Mech Eng – volume: 116 start-page: 26414 issue: 52 year: 2019 end-page: 26420 article-title: Deep learning predicts path‐dependent plasticity publication-title: Proc Natl Acad Sci – volume: 373 year: 2021 article-title: Smart constitutive laws: inelastic homogenization through machine learning publication-title: Comput Methods Appl Mech Eng – volume: 330 start-page: 547 year: 2018 end-page: 577 article-title: Microstructural material database for self‐consistent clustering analysis of elastoplastic strain softening materials publication-title: Comput Methods Appl Mech Eng – volume: 360 year: 2020 article-title: Bayesian inference of non‐linear multiscale model parameters accelerated by a deep neural network publication-title: Comput Methods Appl Mech Eng – volume: 113 start-page: 1512 year: 1987 end-page: 1533 article-title: Nonlocal damage theory publication-title: J Eng Mech – volume: 28 start-page: 100 issue: 1 year: 1979 end-page: 108 article-title: AK‐means clustering algorithm publication-title: J Royal Stat Soc Ser C (Appl Stat) – ident: e_1_2_8_7_1 doi: 10.1016/j.commatsci.2020.109850 – ident: e_1_2_8_60_1 doi: 10.1038/s41598-018-27636-2 – ident: e_1_2_8_54_1 doi: 10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D – ident: e_1_2_8_29_1 doi: 10.1016/j.cma.2017.11.005 – ident: e_1_2_8_23_1 doi: 10.1016/j.cma.2018.01.036 – year: 2020 ident: e_1_2_8_27_1 article-title: On‐the‐fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning publication-title: J Comput Phys X – ident: e_1_2_8_5_1 doi: 10.1016/S0045-7949(01)00083-9 – ident: e_1_2_8_49_1 doi: 10.1051/snamc/201402107 – ident: e_1_2_8_53_1 doi: 10.1061/(ASCE)0733-9399(1987)113:10(1512) – ident: e_1_2_8_42_1 doi: 10.1016/j.cam.2009.08.077 – ident: e_1_2_8_55_1 doi: 10.1007/s11012-016-0538-4 – ident: e_1_2_8_59_1 doi: 10.1016/S0925-8388(98)00639-2 – ident: e_1_2_8_36_1 – volume-title: Pattern Classification and Scene Analysis year: 1973 ident: e_1_2_8_39_1 – ident: e_1_2_8_9_1 doi: 10.5802/crmeca.51 – volume-title: Cement‐Based Materials for Nuclear Waste Storage year: 2012 ident: e_1_2_8_57_1 – ident: e_1_2_8_58_1 doi: 10.1016/j.corsci.2019.02.016 – ident: e_1_2_8_56_1 doi: 10.1016/j.cma.2010.06.018 – ident: e_1_2_8_10_1 doi: 10.1016/j.cma.2016.02.001 – ident: e_1_2_8_46_1 doi: 10.1557/mrs.2016.165 – ident: e_1_2_8_68_1 doi: 10.1016/j.cma.2010.04.011 – ident: e_1_2_8_22_1 doi: 10.1002/nme.6493 – ident: e_1_2_8_62_1 doi: 10.1016/S0022-5096(98)00034-9 – ident: e_1_2_8_20_1 doi: 10.1007/s11709-020-0691-7 – ident: e_1_2_8_43_1 doi: 10.1016/S0045-7825(01)00179-7 – ident: e_1_2_8_52_1 doi: 10.1016/j.advengsoft.2017.06.006 – ident: e_1_2_8_66_1 doi: 10.1023/A:1007545213010 – ident: e_1_2_8_16_1 doi: 10.1016/j.cma.2009.03.017 – ident: e_1_2_8_35_1 doi: 10.1016/j.jrmge.2014.04.008 – ident: e_1_2_8_64_1 doi: 10.1016/j.crme.2010.03.009 – ident: e_1_2_8_17_1 doi: 10.1002/nme.4953 – ident: e_1_2_8_67_1 doi: 10.1016/j.jmps.2009.04.011 – ident: e_1_2_8_63_1 doi: 10.1007/978-1-4020-6395-4 – ident: e_1_2_8_50_1 – ident: e_1_2_8_48_1 – ident: e_1_2_8_12_1 doi: 10.1073/pnas.1911815116 – ident: e_1_2_8_11_1 doi: 10.1016/j.cma.2020.113390 – volume-title: Vector Quantization and Signal Compression year: 2012 ident: e_1_2_8_38_1 – ident: e_1_2_8_25_1 doi: 10.1016/j.cma.2019.112693 – ident: e_1_2_8_2_1 doi: 10.3390/ma9070536 – volume-title: Advances in Knowledge Discovery and Data Mining year: 1996 ident: e_1_2_8_37_1 – ident: e_1_2_8_28_1 doi: 10.1016/j.cma.2016.04.004 – ident: e_1_2_8_4_1 doi: 10.1016/S0045-7825(01)00314-0 – ident: e_1_2_8_13_1 doi: 10.1016/j.jcp.2020.109982 – ident: e_1_2_8_69_1 doi: 10.1115/1.4042217 – ident: e_1_2_8_19_1 doi: 10.1007/s00466-018-1643-0 – ident: e_1_2_8_47_1 doi: 10.1007/978-3-030-18383-7 – ident: e_1_2_8_33_1 doi: 10.1016/j.jcp.2016.01.040 – ident: e_1_2_8_41_1 doi: 10.1002/nme.2068 – ident: e_1_2_8_45_1 doi: 10.1016/S0020-7683(00)00167-0 – ident: e_1_2_8_71_1 doi: 10.1016/j.engfracmech.2015.03.045 – ident: e_1_2_8_3_1 doi: 10.1016/j.strusafe.2014.09.002 – ident: e_1_2_8_51_1 doi: 10.1016/j.ijmecsci.2019.105318 – ident: e_1_2_8_24_1 doi: 10.1016/j.cma.2019.112594 – ident: e_1_2_8_70_1 doi: 10.1002/nme.6463 – ident: e_1_2_8_40_1 doi: 10.2307/2346830 – ident: e_1_2_8_61_1 doi: 10.1038/s41598-017-08601-x – ident: e_1_2_8_15_1 doi: 10.1016/S0045-7825(99)00224-8 – ident: e_1_2_8_21_1 doi: 10.1016/j.cma.2020.113482 – ident: e_1_2_8_65_1 doi: 10.1016/S0022-5096(99)00028-9 – ident: e_1_2_8_32_1 doi: 10.1016/j.cma.2020.113234 – ident: e_1_2_8_30_1 doi: 10.1016/j.euromechsol.2020.103995 – ident: e_1_2_8_44_1 doi: 10.1002/nme.541 – volume: 24 start-page: 57 issue: 2 year: 2019 ident: e_1_2_8_8_1 article-title: Data‐driven microstructure property relations publication-title: Math Comput Appl – ident: e_1_2_8_6_1 doi: 10.1016/j.engstruct.2017.09.016 – ident: e_1_2_8_26_1 doi: 10.1002/nme.6565 – ident: e_1_2_8_31_1 doi: 10.1002/nme.6634 – ident: e_1_2_8_14_1 doi: 10.1016/S0927-0256(99)00077-4 – ident: e_1_2_8_34_1 doi: 10.1016/j.cma.2019.112657 – ident: e_1_2_8_18_1 doi: 10.1016/j.euromechsol.2017.11.007 |
SSID | ssj0011503 |
Score | 2.5157175 |
Snippet | A new machine‐learning based multiscale method, called k‐means FE2, is introduced to solve general nonlinear multiscale problems with internal variables and... A new machine‐learning based multiscale method, called k‐means FE, is introduced to solve general nonlinear multiscale problems with internal variables and... A new machine-learning based multiscale method, called k-means FE 2 , is introduced to solve general nonlinear multiscale problems with internal variables and... |
SourceID | hal proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2012 |
SubjectTerms | Anelasticity Clustering Dependent variables Elastoplasticity Engineering Sciences FE2 Finite element method homogenization k‐means clustering Load history Machine learning Mechanical properties multiscale Multiscale analysis nonlinear Radioactive wastes |
Title | A k‐means clustering machine learning‐based multiscale method for anelastic heterogeneous structures with internal variables |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6925 https://www.proquest.com/docview/2647971006 https://hal.science/hal-03621332 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9wwEMdHlBM9lEJbdQtFBlXtKcsmdrLxcVWBVojlUBUJqYfIj3Gp2EfVsBw48RH6GftJOpOXFkSlilOUZKI4yTjztzXzM8AHK8MwT0McaZQ-Uir4SHtPA9dA0VlbbaTmauTJWTY-VycX6UWTVcm1MDUfoptw455R_a-5gxtbHq5AQ2fYz3TC9eWcqsV66EtHjmKdI9vsjlTnccudHSSH7YX3ItGzS86DXBGZq1K1ijXHm_CtbWWdYnLVX17bvrt9AHB82mO8hBeNBBWj2me2YA3n27DZyFHRdPZyG56vsAppb9IBXstXcDcSV3_ufs-QIp1w0yXjFshMzKrcTBTNYhTfyYbjpBdV4mJJDoGiXrRakFoWhlpvmBQtLjktZ0HejItlKWqq7fIXloInisWPet5yKm5oaM_FXuVrOD8--vp5HDWLOUROkmqKMHB9lzVxNvRZmibax9LhIJBgGuTWqiBdiB0GipVOS5X42JtEeaPygHTYyTewPl_M8S2I3CiDA7oUVVBGoomZiZMr64ZZQJv24FP7YQvXkM55wY1pUTOak4JeesEvvQf7neXPmu7xiM0B-UZ3mnHc49Fpwcc4-tMYP7mJe7Dbuk7R_ATKgrTmUDM9KevBx8oH_nmT4mxyxNt3_2u4AxsJF2IwRzbdhXX6LPie5NG13as6wl8ENhG- |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdHbTkABwoFRKDAghCcnMbeteMVpwi1CpDkgFqpByRrH7MUNQ-Emx449SPwGfkkzPilgEBCnKw4Y_k16_nvauY3AC-sDMM8DXGkUfpIqeAj7T1NXANFZ221kZqrkaezbHyi3p2mp1vwuq2FqfkQ3YIbj4zqe80DnBekDzaooQvsZzpJt-EaN_Su5lMfOnYUKx3Z5nekOo9b8uwgOWiP_CUWbZ9xJuSGzNwUq1W0OdqFj-111kkm5_31he27b78hHP_zRm7DrUaFilHtNndgC5d7sNsoUtGM93IPbm7gCunXtGO8lnfhaiTOf1x9XyAFO-HmayYukJlYVOmZKJp-FJ_IhkOlF1XuYkk-gaLuWy1IMAtDl28YFi3OODNnRQ6Nq3UparDt-iuWgteKxed66XIuLml2z_Ve5T04OTo8fjOOmn4OkZMknCIMXOJlTZwNfZamifaxdDgIpJkGubUqSBdih4HCpdNSJT72JlHeqDwg7XbyPuwsV0t8ACI3yuCADkUVlJFoYsbi5Mq6YRbQpj141b7ZwjWwc-65MS9qTHNS0EMv-KH34Fln-aUGfPzB5jk5R_c3E7nHo0nB-1gA0DQ_uYx7sN_6TtF8B8qC5OZQM0Ap68HLygn-epJiNj3k7cN_NXwK18fH00kxeTt7_whuJFyXwVjZdB926BXhY1JLF_ZJNSp-AvczFdk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ba9RAFMcPtoLoQ6vV4mrVUUSfsk0yk2zmcbFdVu0uIhYKPgxztdK9FNPtQ5_6EfyMfhLPyY1VFMSnkOSETJIzOf8ZzvkNwEvDw6DIQhJJz10kRHCRdA4HrgGjszRSc0nVyJNpPj4W706ykyarkmphaj5EN-FGPaP6X1MHP3dhfw0aOvf9XKbZBtwUeVyQRx987NBRJHR4m96RySJpwbNxut9e-Uso2jilRMg1lbmuVatgM9qGz20z6xyTs_7qwvTt1W8Ex_97jruw1WhQNqyd5h7c8Isd2G70KGt6e7kDd9Zghbg36Qiv5X24HrKzH9ff5x5DHbOzFfEW0IzNq-RMz5rVKL6gDQVKx6rMxRI9wrN61WqGcplpbL0mVDQ7pbycJbqzX65KVmNtV998yWimmH2tJy5n7BLH9lTtVT6A49HhpzfjqFnNIbIcZVPkAxV4GZ3kA5dnWSpdwq2PAyqmuDBGBG5DYn3AYGklF6lLnE6F06IIHg9bvgubi-XCPwRWaKF9jJd6EYTmXicExSmEsYM8eJP14HX7YZVtUOe04sZM1ZDmVOFLV_TSe_C8szyv8R5_sHmBvtGdJh73eHik6BiFfxzkp5dJD_Za11HNX6BUKDYHkvBJeQ9eVT7w15uo6eSQto_-1fAZ3PpwMFJHb6fvH8PtlIoyiCmb7cEmfiH_BKXShXla9Ymf1gcUkQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+k%E2%80%90means+clustering+machine+learning%E2%80%90based+multiscale+method+for+anelastic+heterogeneous+structures+with+internal+variables&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Benaimeche%2C+Mohamed+Amine&rft.au=Yvonnet%2C+Julien&rft.au=Bary%2C+Benoit&rft.au=Qi%E2%80%90Chang+He&rft.date=2022-05-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=123&rft.issue=9&rft.spage=2012&rft.epage=2041&rft_id=info:doi/10.1002%2Fnme.6925&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |