A k‐means clustering machine learning‐based multiscale method for anelastic heterogeneous structures with internal variables

A new machine‐learning based multiscale method, called k‐means FE2, is introduced to solve general nonlinear multiscale problems with internal variables and loading history‐dependent behaviors, without use of surrogate models. The macro scale problem is reduced by constructing clusters of Gauss poin...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in engineering Vol. 123; no. 9; pp. 2012 - 2041
Main Authors Benaimeche, Mohamed Amine, Yvonnet, Julien, Bary, Benoit, He, Qi‐Chang
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.05.2022
Wiley Subscription Services, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new machine‐learning based multiscale method, called k‐means FE2, is introduced to solve general nonlinear multiscale problems with internal variables and loading history‐dependent behaviors, without use of surrogate models. The macro scale problem is reduced by constructing clusters of Gauss points in a structure which are estimated to be in the same mechanical state. A k‐means clustering—machine learning technique is employed to select the Gauss points based on their strain state and sets of internal variables. Then, for all Gauss points in a cluster, only one micro nonlinear problem is solved, and its response is transferred to all integration points of the cluster in terms of mechanical properties. The solution converges with respect to the number of clusters, which is weakly depends on the number of macro mesh elements. Accelerations of FE2 calculations up to a factor 50 are observed in typical applications. Arbitrary nonlinear behaviors including internal variables can be considered at the micro level. The method is applied to heterogeneous structures with local quasi‐brittle and elastoplastic behaviors and, in particular, to a nuclear waste package structure subject to internal expansions.
AbstractList A new machine‐learning based multiscale method, called k‐means FE2, is introduced to solve general nonlinear multiscale problems with internal variables and loading history‐dependent behaviors, without use of surrogate models. The macro scale problem is reduced by constructing clusters of Gauss points in a structure which are estimated to be in the same mechanical state. A k‐means clustering—machine learning technique is employed to select the Gauss points based on their strain state and sets of internal variables. Then, for all Gauss points in a cluster, only one micro nonlinear problem is solved, and its response is transferred to all integration points of the cluster in terms of mechanical properties. The solution converges with respect to the number of clusters, which is weakly depends on the number of macro mesh elements. Accelerations of FE2 calculations up to a factor 50 are observed in typical applications. Arbitrary nonlinear behaviors including internal variables can be considered at the micro level. The method is applied to heterogeneous structures with local quasi‐brittle and elastoplastic behaviors and, in particular, to a nuclear waste package structure subject to internal expansions.
A new machine-learning based multiscale method, called k-means FE 2 , is introduced to solve general nonlinear multiscale problems with internal variables and loading history-dependent behaviors, without use of surrogate models. The macro scale problem is reduced by constructing clusters of Gauss points in a structure which are estimated to be in the same mechanical state. A k-means clustering-machine learning technique is employed to select the Gauss points based on their strain state and sets of internal variables. Then, for all Gauss points in a cluster, only one micro nonlinear problem is solved, and its response is transferred to all integration points of the cluster in terms of mechanical properties. The solution converges with respect to the number of clusters, which is weakly depends on the number of macro mesh elements. Accelerations of FE 2 calculations up to a factor 50 are observed in typical applications. Arbitrary nonlinear behaviors including internal variables can be considered at the micro level. The method is applied to heterogeneous structures with local quasi-brittle and elastoplastic behaviors and, in particular, to a nuclear waste package structure subject to internal expansions.
A new machine‐learning based multiscale method, called k‐means FE, is introduced to solve general nonlinear multiscale problems with internal variables and loading history‐dependent behaviors, without use of surrogate models. The macro scale problem is reduced by constructing clusters of Gauss points in a structure which are estimated to be in the same mechanical state. A k‐means clustering—machine learning technique is employed to select the Gauss points based on their strain state and sets of internal variables. Then, for all Gauss points in a cluster, only one micro nonlinear problem is solved, and its response is transferred to all integration points of the cluster in terms of mechanical properties. The solution converges with respect to the number of clusters, which is weakly depends on the number of macro mesh elements. Accelerations of FE calculations up to a factor 50 are observed in typical applications. Arbitrary nonlinear behaviors including internal variables can be considered at the micro level. The method is applied to heterogeneous structures with local quasi‐brittle and elastoplastic behaviors and, in particular, to a nuclear waste package structure subject to internal expansions.
Author He, Qi‐Chang
Yvonnet, Julien
Benaimeche, Mohamed Amine
Bary, Benoit
Author_xml – sequence: 1
  givenname: Mohamed Amine
  surname: Benaimeche
  fullname: Benaimeche, Mohamed Amine
  organization: MSME, CNRS UMR 8208
– sequence: 2
  givenname: Julien
  surname: Yvonnet
  fullname: Yvonnet, Julien
  email: julien.yvonnet@univ-eiffel.fr
  organization: MSME, CNRS UMR 8208
– sequence: 3
  givenname: Benoit
  surname: Bary
  fullname: Bary, Benoit
  organization: Université Paris‐Saclay, CEA, Service d'Étude du Comportement des Radionucléides
– sequence: 4
  givenname: Qi‐Chang
  surname: He
  fullname: He, Qi‐Chang
  organization: MSME, CNRS UMR 8208
BackLink https://hal.science/hal-03621332$$DView record in HAL
BookMark eNp1kU1uFDEQhS0UJCYBiSNYYgOLHvzTv8tRlBCkATawtqrd5bSD2w62O1F2OQJn5CR4GNggWJX03lelp3qn5MQHj4S85GzLGRNv_YLbdhDNE7LhbOgqJlh3QjbFGqpm6PkzcprSDWOcN0xuyOOOfv3x-H1B8Ilqt6aM0fpruoCerUfqEKIvQmFGSDjRZXXZJg0O6YJ5DhM1IVLw6CBlq-mM5UK4Ro9hTTTluOq8Rkz03uaZWl9cD47eQbQwOkzPyVMDLuGL3_OMfLm8-Hx-Ve0_vXt_vttXWra8qdA0vZQj8Lab2qYRw8SlRmZkP7B-HGsjteEaTcd7PchaTHwCUU9Q9waLrOUZeXO8O4NTt9EuEB9UAKuudnt10JhsBZdS3PHCvjqytzF8WzFldRPWQ-ykRFt3Q1c-3RZqe6R0DClFNErbDNkGnyNYpzhTh0ZUaUQdGikLr_9a-JPjH2h1RO-tw4f_curjh4tf_E9C06EE
CitedBy_id crossref_primary_10_1002_nme_7419
crossref_primary_10_1007_s42405_022_00547_3
crossref_primary_10_1016_j_eml_2024_102260
crossref_primary_10_1007_s42102_024_00122_2
crossref_primary_10_1016_j_cma_2024_117525
crossref_primary_10_1016_j_cma_2025_117854
crossref_primary_10_1016_j_euromechsol_2024_105242
crossref_primary_10_1016_j_mechmat_2023_104726
crossref_primary_10_1007_s00466_023_02324_9
crossref_primary_10_1007_s00466_023_02326_7
crossref_primary_10_1016_j_cma_2024_117278
crossref_primary_10_1186_s40323_024_00280_4
crossref_primary_10_1016_j_finel_2023_104069
crossref_primary_10_1016_j_engappai_2023_106209
crossref_primary_10_1088_1402_4896_ad1c1e
crossref_primary_10_1016_j_pmatsci_2024_101336
crossref_primary_10_1007_s00466_022_02183_w
crossref_primary_10_1016_j_jmps_2023_105245
crossref_primary_10_1142_S0219649224500771
crossref_primary_10_3390_computers13060149
crossref_primary_10_1007_s42102_023_00113_9
crossref_primary_10_1016_j_cma_2025_117747
Cites_doi 10.1016/j.commatsci.2020.109850
10.1038/s41598-018-27636-2
10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
10.1016/j.cma.2017.11.005
10.1016/j.cma.2018.01.036
10.1016/S0045-7949(01)00083-9
10.1051/snamc/201402107
10.1061/(ASCE)0733-9399(1987)113:10(1512)
10.1016/j.cam.2009.08.077
10.1007/s11012-016-0538-4
10.1016/S0925-8388(98)00639-2
10.5802/crmeca.51
10.1016/j.corsci.2019.02.016
10.1016/j.cma.2010.06.018
10.1016/j.cma.2016.02.001
10.1557/mrs.2016.165
10.1016/j.cma.2010.04.011
10.1002/nme.6493
10.1016/S0022-5096(98)00034-9
10.1007/s11709-020-0691-7
10.1016/S0045-7825(01)00179-7
10.1016/j.advengsoft.2017.06.006
10.1023/A:1007545213010
10.1016/j.cma.2009.03.017
10.1016/j.jrmge.2014.04.008
10.1016/j.crme.2010.03.009
10.1002/nme.4953
10.1016/j.jmps.2009.04.011
10.1007/978-1-4020-6395-4
10.1073/pnas.1911815116
10.1016/j.cma.2020.113390
10.1016/j.cma.2019.112693
10.3390/ma9070536
10.1016/j.cma.2016.04.004
10.1016/S0045-7825(01)00314-0
10.1016/j.jcp.2020.109982
10.1115/1.4042217
10.1007/s00466-018-1643-0
10.1007/978-3-030-18383-7
10.1016/j.jcp.2016.01.040
10.1002/nme.2068
10.1016/S0020-7683(00)00167-0
10.1016/j.engfracmech.2015.03.045
10.1016/j.strusafe.2014.09.002
10.1016/j.ijmecsci.2019.105318
10.1016/j.cma.2019.112594
10.1002/nme.6463
10.2307/2346830
10.1038/s41598-017-08601-x
10.1016/S0045-7825(99)00224-8
10.1016/j.cma.2020.113482
10.1016/S0022-5096(99)00028-9
10.1016/j.cma.2020.113234
10.1016/j.euromechsol.2020.103995
10.1002/nme.541
10.1016/j.engstruct.2017.09.016
10.1002/nme.6565
10.1002/nme.6634
10.1016/S0927-0256(99)00077-4
10.1016/j.cma.2019.112657
10.1016/j.euromechsol.2017.11.007
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
DOI 10.1002/nme.6925
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 2041
ExternalDocumentID oai_HAL_hal_03621332v1
10_1002_nme_6925
NME6925
Genre article
GrantInformation_xml – fundername: Commissariat à l'Energie Atomique et aux Energies Alternatives
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
7SC
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
L7M
L~C
L~D
.Y3
1XC
31~
6TJ
AANHP
AASGY
AAYOK
ABDPE
ABEML
ACBWZ
ACKIV
ACRPL
ACSCC
ACYXJ
ADNMO
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
BDRZF
EJD
FEDTE
GBZZK
HF~
HVGLF
M6O
PALCI
RIWAO
RNS
SAMSI
VH1
VOH
VOOES
ZY4
~A~
ID FETCH-LOGICAL-c3615-ef5833ba167d65529d13ce0f38908bb4f3cf1cef718c9342d1da24da48fecefc3
IEDL.DBID DR2
ISSN 0029-5981
IngestDate Fri May 09 12:15:14 EDT 2025
Fri Jul 25 12:12:16 EDT 2025
Tue Jul 01 04:32:09 EDT 2025
Thu Apr 24 22:56:40 EDT 2025
Wed Jan 22 16:25:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Homogenization
FE2
k-means clustering
Nonlinear
Multiscale
Machine learning
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3615-ef5833ba167d65529d13ce0f38908bb4f3cf1cef718c9342d1da24da48fecefc3
Notes Funding information
Commissariat à l'Energie Atomique et aux Energies Alternatives
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2311-1929
0000-0002-9365-6601
OpenAccessLink https://hal.science/hal-03621332
PQID 2647971006
PQPubID 996376
PageCount 30
ParticipantIDs hal_primary_oai_HAL_hal_03621332v1
proquest_journals_2647971006
crossref_citationtrail_10_1002_nme_6925
crossref_primary_10_1002_nme_6925
wiley_primary_10_1002_nme_6925_NME6925
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 May 2022
PublicationDateYYYYMMDD 2022-05-15
PublicationDate_xml – month: 05
  year: 2022
  text: 15 May 2022
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
– name: Wiley
References 2017; 7
1996; 39
2015; 104
2020; 360
2000; 48
2016; 306
2020; 121
2002; 54
2009; 198
2020; 369
2020; 14
1973
2016; 304
2017; 152
2021; 122
2020; 169
2008; 73
2017; 112
1998; 278
1998; 46
1979; 28
2018; 330
2018; 8
2009; 57
1987; 113
2020; 372
2019; 64
2019; 24
1999; 16
2018; 334
2010; 234
2019; 357
2019; 116
2010; 199
2016; 41
1999; 52
2016; 313
2015; 139
2019; 152
2014; 6
2021; 428
2020; 184
2012
2017; 69
2020; 82
2015; 52
2008
1996
2020; 348
2016; 51
2001; 191
2010; 338
2019; 86
2001; 190
2020
2000; 183
2019
2020; 359
2021; 373
2001; 38
2001; 79
2016; 9
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Lißner J (e_1_2_8_8_1) 2019; 24
Bart F (e_1_2_8_57_1) 2012
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
Fayyad U (e_1_2_8_37_1) 1996
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
Duda R (e_1_2_8_39_1) 1973
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
Rocha I (e_1_2_8_27_1) 2020
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
Gersho A (e_1_2_8_38_1) 2012
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 190
  start-page: 5427
  year: 2001
  end-page: 5464
  article-title: A class of general algorithms for multi‐scale analysis of heterogeneous media
  publication-title: Comput Methods Appl Mech Eng
– volume: 73
  start-page: 185
  issue: 2
  year: 2008
  end-page: 204
  article-title: Computational homogenization for heat conduction in heterogeneous solids
  publication-title: Int J Numer Methods Eng
– volume: 41
  start-page: 610
  issue: 08
  year: 2016
  end-page: 616
  article-title: Multiscale modeling of microstructure‐property relations
  publication-title: MRS Bull
– volume: 52
  start-page: 201
  year: 1999
  end-page: 238
  article-title: Energy minimizing brittle crack propagation
  publication-title: J Elast
– volume: 52
  start-page: 78
  year: 2015
  end-page: 89
  article-title: Review and application of artificial neural networks models in reliability analysis of steel structures
  publication-title: Struct Saf
– volume: 38
  start-page: 2335
  year: 2001
  end-page: 2385
  article-title: A multilevel computational model for multi‐scale damage analysis in composite and porous media
  publication-title: Int J Solids Struct
– volume: 183
  start-page: 309
  issue: 3–4
  year: 2000
  end-page: 330
  article-title: FE multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials
  publication-title: Comput Methods Appl Mech Eng
– volume: 191
  start-page: 989
  issue: 8–10
  year: 2001
  end-page: 1012
  article-title: Total solution for structural mechanics problems
  publication-title: Comput Methods Appl Mech Eng
– volume: 169
  year: 2020
  article-title: Analytical and numerical prediction of mechanical properties of heterogeneous materials with expansive inclusions: application to waste cementation
  publication-title: Int J Mech Sci
– volume: 121
  start-page: 4717
  issue: 21
  year: 2020
  end-page: 4733
  article-title: Implementation of a new strain split to model unilateral contact within the phase field method
  publication-title: Int J Numer Methods Eng
– volume: 428
  year: 2021
  article-title: Learning non‐Markovian physics from data
  publication-title: J Comput Phys
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  end-page: 9
  article-title: In‐situ, time resolved monitoring of uranium in BFS: OPC grout. Part 1: corrosion in water vapour
  publication-title: Sci Rep
– volume: 152
  start-page: 261
  year: 2019
  end-page: 270
  article-title: Corrosion of uranium in liquid water under contained conditions with a headspace deuterium overpressure. Part 2: the ternary U+ H2O (l)+ D2 system
  publication-title: Corros Sci
– volume: 338
  start-page: 191
  year: 2010
  end-page: 198
  article-title: The variational approach to damage: I. The foundations
  publication-title: C R Mecanique
– volume: 198
  start-page: 2723
  year: 2009
  end-page: 2737
  article-title: Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials
  publication-title: Comput Methods Appl Mech Eng
– volume: 46
  start-page: 1319
  issue: 8
  year: 1998
  end-page: 1342
  article-title: Revisiting brittle fracture as an energy minimization problem
  publication-title: J Mech Phys Solids
– volume: 104
  start-page: 1061
  issue: 12
  year: 2015
  end-page: 1084
  article-title: Computational homogenization of nonlinear elastic materials using neural networks
  publication-title: Int J Numer Methods Eng
– volume: 359
  year: 2020
  article-title: A nonlinear data‐driven reduced order model for computational homogenization with physics/pattern‐guided sampling
  publication-title: Comput Methods Appl Mech Eng
– volume: 112
  start-page: 16
  year: 2017
  end-page: 30
  article-title: Analytical and 3D numerical analysis of the thermoviscoelastic behavior of concrete‐like materials including interfaces
  publication-title: Adv Eng Softw
– year: 2008
– volume: 304
  start-page: 81
  year: 2016
  end-page: 101
  article-title: Data‐driven computational mechanics
  publication-title: Comput Methods Appl Mech Eng
– volume: 122
  start-page: 2598
  issue: 10
  year: 2021
  end-page: 2625
  article-title: A computationally tractable framework for nonlinear dynamic multiscale modeling of membrane woven fabrics
  publication-title: Int J Numer Methods Eng
– volume: 199
  start-page: 3028
  issue: 45–48
  year: 2010
  end-page: 3038
  article-title: On the existence of representative volumes for softening quasi‐brittle materials–A failure zone averaging scheme
  publication-title: Comput Methods Appl Mech Eng
– volume: 82
  year: 2020
  article-title: Micromechanics‐based surrogate models for the response of composites: a critical comparison between a classical mesoscale constitutive model, hyper‐reduction and neural networks
  publication-title: Eur J Mech A/Solids
– volume: 334
  start-page: 337
  year: 2018
  end-page: 380
  article-title: A multiscale multi‐permeability poroplasticity model linked by recursive homogenizations and deep learning
  publication-title: Comput Methods Appl Mech Eng
– volume: 372
  year: 2020
  article-title: Data‐driven fracture mechanics
  publication-title: Comput Methods Appl Mech Eng
– year: 2019
– volume: 122
  start-page: 866
  issue: 3
  year: 2021
  end-page: 897
  article-title: A Fourier‐based machine learning technique with application in engineering
  publication-title: Int J Numer Methods Eng
– volume: 16
  start-page: 433
  issue: 1–4
  year: 1999
  end-page: 454
  article-title: Multiscale FE elastoviscoplastic analysis of composite structure
  publication-title: Comput Mater Sci
– volume: 24
  start-page: 57
  issue: 2
  year: 2019
  article-title: Data‐driven microstructure property relations
  publication-title: Math Comput Appl
– volume: 199
  start-page: 2776
  year: 2010
  end-page: 2778
  article-title: A phase field model for rate‐independent crack propagation: robust algorithmic implementation based on operator splits
  publication-title: Comput Methods Appl Mech Eng
– volume: 234
  start-page: 2175
  issue: 7
  year: 2010
  end-page: 2182
  article-title: Multi‐scale computational homogenization: trends and challenges
  publication-title: J Comput Appl Math
– volume: 79
  start-page: 2261
  issue: 22–25
  year: 2001
  end-page: 2276
  article-title: Neural networks in mechanics of structures and materials–new results and prospects of applications
  publication-title: Comput Struct
– volume: 6
  start-page: 338
  issue: 4
  year: 2014
  end-page: 347
  article-title: New artificial neural networks for true triaxial stress state analysis and demonstration of intermediate principal stress effects on intact rock strength
  publication-title: J Rock Mech Geotech Eng
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 12
  article-title: In‐situ, time resolved monitoring of uranium in BFS: OPC grout. Part 2: corrosion in water
  publication-title: Sci Rep
– volume: 14
  start-page: 1285
  issue: 6
  year: 2020
  end-page: 1298
  article-title: Multiscale computation on feedforward neural network and recurrent neural network
  publication-title: Front Struct Civil Eng
– volume: 48
  start-page: 797
  year: 2000
  end-page: 826
  article-title: Numerical experiments in revisited brittle fracture
  publication-title: J Mech Phys Solids
– volume: 278
  start-page: 149
  issue: 1–2
  year: 1998
  end-page: 160
  article-title: Corrosion of uranium in air and water vapor: consequences for environmental dispersal
  publication-title: J Alloys Compd
– volume: 139
  start-page: 18
  year: 2015
  end-page: 39
  article-title: A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure
  publication-title: Eng Fract Mech
– year: 1973
– year: 1996
– volume: 39
  start-page: 3391
  issue: 39
  year: 1996
  end-page: 3403
  article-title: Gradient‐enhanced damage for quasi‐brittle materials
  publication-title: Int J Numer Methods Eng
– volume: 348
  start-page: 911
  issue: 10–11
  year: 2020
  end-page: 935
  article-title: Mechanical dissimilarity of defects in welded joints via Grassmann manifold and machine learning
  publication-title: Comptes Rendus Mécanique
– volume: 69
  start-page: 201
  year: 2017
  end-page: 220
  article-title: Two‐stage data‐driven homogenization for nonlinear solids using a reduced order model
  publication-title: Eur J Mech A/Solids
– volume: 9
  start-page: 536
  issue: 7
  year: 2016
  article-title: Modeling the effects of Cu content and deformation variables on the high‐temperature flow behavior of dilute Al‐Fe‐Si alloys using an artificial neural network
  publication-title: Materials
– volume: 306
  start-page: 319
  year: 2016
  end-page: 341
  article-title: Self‐consistent clustering analysis: an efficient multi‐scale scheme for inelastic heterogeneous materials
  publication-title: Comput Methods Appl Mech Eng
– volume: 357
  year: 2019
  article-title: Accelerating multiscale finite element simulations of history‐dependent materials using a recurrent neural network
  publication-title: Comput Methods Appl Mech Eng
– year: 2012
– volume: 184
  year: 2020
  article-title: Three‐dimensional convolutional neural network (3D‐CNN) for heterogeneous material homogenization
  publication-title: Comput Mater Sci
– volume: 54
  start-page: 1235
  year: 2002
  end-page: 1260
  article-title: Multi‐scale constitutive modeling of heterogeneous materials with gradient enhanced computational homogenization scheme
  publication-title: Int J Numer Methods Eng
– volume: 51
  start-page: 3107
  issue: 12
  year: 2016
  end-page: 3128
  article-title: An overview of the modelling of fracture by gradient damage models
  publication-title: Meccanica
– volume: 313
  start-page: 635
  year: 2016
  end-page: 653
  article-title: A nonlinear manifold‐based reduced order model for multiscale analysis of heterogeneous hyperelastic materials
  publication-title: J Comput Phys
– volume: 121
  start-page: 4811
  issue: 21
  year: 2020
  end-page: 4842
  article-title: A surrogate model for computational homogenization of elastostatics at finite strain using high‐dimensional model representation‐based neural network
  publication-title: Int J Numer Methods Eng
– volume: 64
  start-page: 307
  year: 2019
  end-page: 321
  article-title: A data‐driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites
  publication-title: Comput Mech
– volume: 152
  start-page: 843
  year: 2017
  end-page: 855
  article-title: Artificial neural network prediction of buckling load of thin cylindrical shells under axial compression
  publication-title: Eng Struct
– volume: 57
  start-page: 1209
  issue: 8
  year: 2009
  end-page: 1229
  article-title: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments
  publication-title: J Mech Phys Solids
– year: 2020
  article-title: On‐the‐fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning
  publication-title: J Comput Phys X
– volume: 86
  issue: 3
  year: 2019
  article-title: Closed‐form coordinate‐free decompositions of the two‐dimensional strain and stress for modeling tension–compression dissymmetry
  publication-title: J Appl Mech
– volume: 369
  year: 2020
  article-title: A recurrent neural network‐accelerated multi‐scale model for elasto‐plastic heterogeneous materials subjected to random cyclic and non‐proportional loading paths
  publication-title: Comput Methods Appl Mech Eng
– volume: 116
  start-page: 26414
  issue: 52
  year: 2019
  end-page: 26420
  article-title: Deep learning predicts path‐dependent plasticity
  publication-title: Proc Natl Acad Sci
– volume: 373
  year: 2021
  article-title: Smart constitutive laws: inelastic homogenization through machine learning
  publication-title: Comput Methods Appl Mech Eng
– volume: 330
  start-page: 547
  year: 2018
  end-page: 577
  article-title: Microstructural material database for self‐consistent clustering analysis of elastoplastic strain softening materials
  publication-title: Comput Methods Appl Mech Eng
– volume: 360
  year: 2020
  article-title: Bayesian inference of non‐linear multiscale model parameters accelerated by a deep neural network
  publication-title: Comput Methods Appl Mech Eng
– volume: 113
  start-page: 1512
  year: 1987
  end-page: 1533
  article-title: Nonlocal damage theory
  publication-title: J Eng Mech
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  end-page: 108
  article-title: AK‐means clustering algorithm
  publication-title: J Royal Stat Soc Ser C (Appl Stat)
– ident: e_1_2_8_7_1
  doi: 10.1016/j.commatsci.2020.109850
– ident: e_1_2_8_60_1
  doi: 10.1038/s41598-018-27636-2
– ident: e_1_2_8_54_1
  doi: 10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
– ident: e_1_2_8_29_1
  doi: 10.1016/j.cma.2017.11.005
– ident: e_1_2_8_23_1
  doi: 10.1016/j.cma.2018.01.036
– year: 2020
  ident: e_1_2_8_27_1
  article-title: On‐the‐fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning
  publication-title: J Comput Phys X
– ident: e_1_2_8_5_1
  doi: 10.1016/S0045-7949(01)00083-9
– ident: e_1_2_8_49_1
  doi: 10.1051/snamc/201402107
– ident: e_1_2_8_53_1
  doi: 10.1061/(ASCE)0733-9399(1987)113:10(1512)
– ident: e_1_2_8_42_1
  doi: 10.1016/j.cam.2009.08.077
– ident: e_1_2_8_55_1
  doi: 10.1007/s11012-016-0538-4
– ident: e_1_2_8_59_1
  doi: 10.1016/S0925-8388(98)00639-2
– ident: e_1_2_8_36_1
– volume-title: Pattern Classification and Scene Analysis
  year: 1973
  ident: e_1_2_8_39_1
– ident: e_1_2_8_9_1
  doi: 10.5802/crmeca.51
– volume-title: Cement‐Based Materials for Nuclear Waste Storage
  year: 2012
  ident: e_1_2_8_57_1
– ident: e_1_2_8_58_1
  doi: 10.1016/j.corsci.2019.02.016
– ident: e_1_2_8_56_1
  doi: 10.1016/j.cma.2010.06.018
– ident: e_1_2_8_10_1
  doi: 10.1016/j.cma.2016.02.001
– ident: e_1_2_8_46_1
  doi: 10.1557/mrs.2016.165
– ident: e_1_2_8_68_1
  doi: 10.1016/j.cma.2010.04.011
– ident: e_1_2_8_22_1
  doi: 10.1002/nme.6493
– ident: e_1_2_8_62_1
  doi: 10.1016/S0022-5096(98)00034-9
– ident: e_1_2_8_20_1
  doi: 10.1007/s11709-020-0691-7
– ident: e_1_2_8_43_1
  doi: 10.1016/S0045-7825(01)00179-7
– ident: e_1_2_8_52_1
  doi: 10.1016/j.advengsoft.2017.06.006
– ident: e_1_2_8_66_1
  doi: 10.1023/A:1007545213010
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cma.2009.03.017
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jrmge.2014.04.008
– ident: e_1_2_8_64_1
  doi: 10.1016/j.crme.2010.03.009
– ident: e_1_2_8_17_1
  doi: 10.1002/nme.4953
– ident: e_1_2_8_67_1
  doi: 10.1016/j.jmps.2009.04.011
– ident: e_1_2_8_63_1
  doi: 10.1007/978-1-4020-6395-4
– ident: e_1_2_8_50_1
– ident: e_1_2_8_48_1
– ident: e_1_2_8_12_1
  doi: 10.1073/pnas.1911815116
– ident: e_1_2_8_11_1
  doi: 10.1016/j.cma.2020.113390
– volume-title: Vector Quantization and Signal Compression
  year: 2012
  ident: e_1_2_8_38_1
– ident: e_1_2_8_25_1
  doi: 10.1016/j.cma.2019.112693
– ident: e_1_2_8_2_1
  doi: 10.3390/ma9070536
– volume-title: Advances in Knowledge Discovery and Data Mining
  year: 1996
  ident: e_1_2_8_37_1
– ident: e_1_2_8_28_1
  doi: 10.1016/j.cma.2016.04.004
– ident: e_1_2_8_4_1
  doi: 10.1016/S0045-7825(01)00314-0
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jcp.2020.109982
– ident: e_1_2_8_69_1
  doi: 10.1115/1.4042217
– ident: e_1_2_8_19_1
  doi: 10.1007/s00466-018-1643-0
– ident: e_1_2_8_47_1
  doi: 10.1007/978-3-030-18383-7
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jcp.2016.01.040
– ident: e_1_2_8_41_1
  doi: 10.1002/nme.2068
– ident: e_1_2_8_45_1
  doi: 10.1016/S0020-7683(00)00167-0
– ident: e_1_2_8_71_1
  doi: 10.1016/j.engfracmech.2015.03.045
– ident: e_1_2_8_3_1
  doi: 10.1016/j.strusafe.2014.09.002
– ident: e_1_2_8_51_1
  doi: 10.1016/j.ijmecsci.2019.105318
– ident: e_1_2_8_24_1
  doi: 10.1016/j.cma.2019.112594
– ident: e_1_2_8_70_1
  doi: 10.1002/nme.6463
– ident: e_1_2_8_40_1
  doi: 10.2307/2346830
– ident: e_1_2_8_61_1
  doi: 10.1038/s41598-017-08601-x
– ident: e_1_2_8_15_1
  doi: 10.1016/S0045-7825(99)00224-8
– ident: e_1_2_8_21_1
  doi: 10.1016/j.cma.2020.113482
– ident: e_1_2_8_65_1
  doi: 10.1016/S0022-5096(99)00028-9
– ident: e_1_2_8_32_1
  doi: 10.1016/j.cma.2020.113234
– ident: e_1_2_8_30_1
  doi: 10.1016/j.euromechsol.2020.103995
– ident: e_1_2_8_44_1
  doi: 10.1002/nme.541
– volume: 24
  start-page: 57
  issue: 2
  year: 2019
  ident: e_1_2_8_8_1
  article-title: Data‐driven microstructure property relations
  publication-title: Math Comput Appl
– ident: e_1_2_8_6_1
  doi: 10.1016/j.engstruct.2017.09.016
– ident: e_1_2_8_26_1
  doi: 10.1002/nme.6565
– ident: e_1_2_8_31_1
  doi: 10.1002/nme.6634
– ident: e_1_2_8_14_1
  doi: 10.1016/S0927-0256(99)00077-4
– ident: e_1_2_8_34_1
  doi: 10.1016/j.cma.2019.112657
– ident: e_1_2_8_18_1
  doi: 10.1016/j.euromechsol.2017.11.007
SSID ssj0011503
Score 2.5157175
Snippet A new machine‐learning based multiscale method, called k‐means FE2, is introduced to solve general nonlinear multiscale problems with internal variables and...
A new machine‐learning based multiscale method, called k‐means FE, is introduced to solve general nonlinear multiscale problems with internal variables and...
A new machine-learning based multiscale method, called k-means FE 2 , is introduced to solve general nonlinear multiscale problems with internal variables and...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2012
SubjectTerms Anelasticity
Clustering
Dependent variables
Elastoplasticity
Engineering Sciences
FE2
Finite element method
homogenization
k‐means clustering
Load history
Machine learning
Mechanical properties
multiscale
Multiscale analysis
nonlinear
Radioactive wastes
Title A k‐means clustering machine learning‐based multiscale method for anelastic heterogeneous structures with internal variables
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6925
https://www.proquest.com/docview/2647971006
https://hal.science/hal-03621332
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9wwEMdHlBM9lEJbdQtFBlXtKcsmdrLxcVWBVojlUBUJqYfIj3Gp2EfVsBw48RH6GftJOpOXFkSlilOUZKI4yTjztzXzM8AHK8MwT0McaZQ-Uir4SHtPA9dA0VlbbaTmauTJWTY-VycX6UWTVcm1MDUfoptw455R_a-5gxtbHq5AQ2fYz3TC9eWcqsV66EtHjmKdI9vsjlTnccudHSSH7YX3ItGzS86DXBGZq1K1ijXHm_CtbWWdYnLVX17bvrt9AHB82mO8hBeNBBWj2me2YA3n27DZyFHRdPZyG56vsAppb9IBXstXcDcSV3_ufs-QIp1w0yXjFshMzKrcTBTNYhTfyYbjpBdV4mJJDoGiXrRakFoWhlpvmBQtLjktZ0HejItlKWqq7fIXloInisWPet5yKm5oaM_FXuVrOD8--vp5HDWLOUROkmqKMHB9lzVxNvRZmibax9LhIJBgGuTWqiBdiB0GipVOS5X42JtEeaPygHTYyTewPl_M8S2I3CiDA7oUVVBGoomZiZMr64ZZQJv24FP7YQvXkM55wY1pUTOak4JeesEvvQf7neXPmu7xiM0B-UZ3mnHc49Fpwcc4-tMYP7mJe7Dbuk7R_ATKgrTmUDM9KevBx8oH_nmT4mxyxNt3_2u4AxsJF2IwRzbdhXX6LPie5NG13as6wl8ENhG-
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdHbTkABwoFRKDAghCcnMbeteMVpwi1CpDkgFqpByRrH7MUNQ-Emx449SPwGfkkzPilgEBCnKw4Y_k16_nvauY3AC-sDMM8DXGkUfpIqeAj7T1NXANFZ221kZqrkaezbHyi3p2mp1vwuq2FqfkQ3YIbj4zqe80DnBekDzaooQvsZzpJt-EaN_Su5lMfOnYUKx3Z5nekOo9b8uwgOWiP_CUWbZ9xJuSGzNwUq1W0OdqFj-111kkm5_31he27b78hHP_zRm7DrUaFilHtNndgC5d7sNsoUtGM93IPbm7gCunXtGO8lnfhaiTOf1x9XyAFO-HmayYukJlYVOmZKJp-FJ_IhkOlF1XuYkk-gaLuWy1IMAtDl28YFi3OODNnRQ6Nq3UparDt-iuWgteKxed66XIuLml2z_Ve5T04OTo8fjOOmn4OkZMknCIMXOJlTZwNfZamifaxdDgIpJkGubUqSBdih4HCpdNSJT72JlHeqDwg7XbyPuwsV0t8ACI3yuCADkUVlJFoYsbi5Mq6YRbQpj141b7ZwjWwc-65MS9qTHNS0EMv-KH34Fln-aUGfPzB5jk5R_c3E7nHo0nB-1gA0DQ_uYx7sN_6TtF8B8qC5OZQM0Ap68HLygn-epJiNj3k7cN_NXwK18fH00kxeTt7_whuJFyXwVjZdB926BXhY1JLF_ZJNSp-AvczFdk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ba9RAFMcPtoLoQ6vV4mrVUUSfsk0yk2zmcbFdVu0uIhYKPgxztdK9FNPtQ5_6EfyMfhLPyY1VFMSnkOSETJIzOf8ZzvkNwEvDw6DIQhJJz10kRHCRdA4HrgGjszRSc0nVyJNpPj4W706ykyarkmphaj5EN-FGPaP6X1MHP3dhfw0aOvf9XKbZBtwUeVyQRx987NBRJHR4m96RySJpwbNxut9e-Uso2jilRMg1lbmuVatgM9qGz20z6xyTs_7qwvTt1W8Ex_97jruw1WhQNqyd5h7c8Isd2G70KGt6e7kDd9Zghbg36Qiv5X24HrKzH9ff5x5DHbOzFfEW0IzNq-RMz5rVKL6gDQVKx6rMxRI9wrN61WqGcplpbL0mVDQ7pbycJbqzX65KVmNtV998yWimmH2tJy5n7BLH9lTtVT6A49HhpzfjqFnNIbIcZVPkAxV4GZ3kA5dnWSpdwq2PAyqmuDBGBG5DYn3AYGklF6lLnE6F06IIHg9bvgubi-XCPwRWaKF9jJd6EYTmXicExSmEsYM8eJP14HX7YZVtUOe04sZM1ZDmVOFLV_TSe_C8szyv8R5_sHmBvtGdJh73eHik6BiFfxzkp5dJD_Za11HNX6BUKDYHkvBJeQ9eVT7w15uo6eSQto_-1fAZ3PpwMFJHb6fvH8PtlIoyiCmb7cEmfiH_BKXShXla9Ymf1gcUkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+k%E2%80%90means+clustering+machine+learning%E2%80%90based+multiscale+method+for+anelastic+heterogeneous+structures+with+internal+variables&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Benaimeche%2C+Mohamed+Amine&rft.au=Yvonnet%2C+Julien&rft.au=Bary%2C+Benoit&rft.au=Qi%E2%80%90Chang+He&rft.date=2022-05-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=123&rft.issue=9&rft.spage=2012&rft.epage=2041&rft_id=info:doi/10.1002%2Fnme.6925&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon