Spatial and mixture models for recurrent event processes

Studies of recurring infection or chronic disease often collect longitudinal data on the disease status of subjects. Two types of models may be envisioned for the analysis of such data: counting process models or multi‐state transitional models. We consider both scenarios in the specific case where...

Full description

Saved in:
Bibliographic Details
Published inEnvironmetrics (London, Ont.) Vol. 18; no. 7; pp. 713 - 725
Main Authors Dean, C. B., Nathoo, F., Nielsen, J. D.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.11.2007
Subjects
Online AccessGet full text
ISSN1180-4009
1099-095X
DOI10.1002/env.870

Cover

Abstract Studies of recurring infection or chronic disease often collect longitudinal data on the disease status of subjects. Two types of models may be envisioned for the analysis of such data: counting process models or multi‐state transitional models. We consider both scenarios in the specific case where the population consists of mixtures. A flexible semi‐parametric model for analyzing longitudinal panel count data is presented. Discrete mixtures of smooth counting process intensity forms are considered, including mixtures of splines, which permit time‐varying covariate effects, with the so‐called proportional intensity model as a limiting case. For recurrent events handled in a multi‐state transitional model framework, individuals may be said to occupy one of a discrete set of states and interest centers on the transition process between states. We examine the use of mixed Markov models for the analysis of such longitudinal data where the processes corresponding to different subjects may be correlated spatially over a region. Both discrete and continuous‐time models incorporating spatially correlated random effects are discussed. Examples illustrate the methods discussed including a study of recurrent weevil infestation, and one to assess the effectiveness of a pheromone treatment in disturbing the mating habits of the cherry bark tortrix moth. Copyright © 2007 John Wiley & Sons, Ltd.
AbstractList Studies of recurring infection or chronic disease often collect longitudinal data on the disease status of subjects. Two types of models may be envisioned for the analysis of such data: counting process models or multi-state transitional models. We consider both scenarios in the specific case where the population consists of mixtures. A flexible semi-parametric model for analyzing longitudinal panel count data is presented. Discrete mixtures of smooth counting process intensity forms are considered, including mixtures of splines, which permit time-varying covariate effects, with the so-called proportional intensity model as a limiting case. For recurrent events handled in a multi-state transitional model framework, individuals may be said to occupy one of a discrete set of states and interest centers on the transition process between states. We examine the use of mixed Markov models for the analysis of such longitudinal data where the processes corresponding to different subjects may be correlated spatially over a region. Both discrete and continuous-time models incorporating spatially correlated random effects are discussed. Examples illustrate the methods discussed including a study of recurrent weevil infestation, and one to assess the effectiveness of a pheromone treatment in disturbing the mating habits of the cherry bark tortrix moth.
Studies of recurring infection or chronic disease often collect longitudinal data on the disease status of subjects. Two types of models may be envisioned for the analysis of such data: counting process models or multi‐state transitional models. We consider both scenarios in the specific case where the population consists of mixtures. A flexible semi‐parametric model for analyzing longitudinal panel count data is presented. Discrete mixtures of smooth counting process intensity forms are considered, including mixtures of splines, which permit time‐varying covariate effects, with the so‐called proportional intensity model as a limiting case. For recurrent events handled in a multi‐state transitional model framework, individuals may be said to occupy one of a discrete set of states and interest centers on the transition process between states. We examine the use of mixed Markov models for the analysis of such longitudinal data where the processes corresponding to different subjects may be correlated spatially over a region. Both discrete and continuous‐time models incorporating spatially correlated random effects are discussed. Examples illustrate the methods discussed including a study of recurrent weevil infestation, and one to assess the effectiveness of a pheromone treatment in disturbing the mating habits of the cherry bark tortrix moth. Copyright © 2007 John Wiley & Sons, Ltd.
Author Dean, C. B.
Nathoo, F.
Nielsen, J. D.
Author_xml – sequence: 1
  givenname: C. B.
  surname: Dean
  fullname: Dean, C. B.
  email: dean@stat.sfu.ca
  organization: Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
– sequence: 2
  givenname: F.
  surname: Nathoo
  fullname: Nathoo, F.
  organization: Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada V8W 3P4
– sequence: 3
  givenname: J. D.
  surname: Nielsen
  fullname: Nielsen, J. D.
  organization: Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
BookMark eNqF0E1Lw0AQBuBFKthW8S_kpAdJnc1mk-xRSluFWvG7t2W7mYVomtTdtLb_3i0VQVG8zMzh4R14O6RV1RUSckyhRwGic6xWvSyFPdKmIEQIgk9b_qYZhDGAOCAd517AXwlP2yS7X6imUGWgqjyYF-tmaTGY1zmWLjC1DSzqpbVYNQGutnNha43OoTsk-0aVDo8-d5c8DgcP_ctwfDO66l-MQ80SCmFEDRMZx0ikkTEq5hwxEVrw3ADnyUyAMbNMJEZTkeYRaMNyg3ma6NgwShPWJSe7XP_5bYmukfPCaSxLVWG9dJIBZTGl9F8YQSy8BA9Pd1Db2jmLRi5sMVd2IynIbYXSVyh9hV6GP6QuGl9XXTVWFeUv_mzn34sSN3_FysHk6Vt64Rpcf2llX2WSspTL58lIRsNrdjuZZvKOfQBni5JH
CitedBy_id crossref_primary_10_1214_12_AOAS567
crossref_primary_10_1214_09_EJS525
crossref_primary_10_1002_cjs_11743
crossref_primary_10_1002_env_2685
Cites_doi 10.1007/0-387-28982-8
10.1002/0471721182
10.1198/016214502388618870
10.1080/01621459.1997.10473608
10.1002/(SICI)1097-0258(19980715)17:13<1481::AID-SIM858>3.0.CO;2-H
10.1191/0962280202sm278ra
10.1191/1471082x02st039ob
10.1007/978-1-4899-4473-3
10.2307/2533501
10.1111/j.1541‐0420.2007.00752.x
10.1080/01621459.1987.10478502
10.1046/j.1369-7412.2003.00422.x
10.2307/2530646
10.2307/2290687
10.2307/3109759
10.1214/ss/1038425655
10.1093/biomet/87.2.391
10.1111/j.1541-0420.2007.00940.x
10.1007/978-1-4612-6333-3
10.2307/3315717
10.1111/j.1541‐0420.2007.00785.x
10.1023/A:1009650012039
10.1017/CBO9780511755453
10.1007/978-1-4757-3683-0
10.1111/j.0006-341X.2002.00324.x
10.1111/1467-9868.00183
10.1007/b98823
10.1093/biostatistics/4.1.11
10.1111/1467-9868.00362
10.1137/0715022
ContentType Journal Article
Copyright Copyright © 2007 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2007 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7QG
7QR
7SS
8FD
FR3
P64
KR7
DOI 10.1002/env.870
DatabaseName Istex
CrossRef
Animal Behavior Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Civil Engineering Abstracts
DatabaseTitle CrossRef
Entomology Abstracts
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Animal Behavior Abstracts
Biotechnology and BioEngineering Abstracts
Civil Engineering Abstracts
DatabaseTitleList Entomology Abstracts
CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1099-095X
EndPage 725
ExternalDocumentID 10_1002_env_870
ENV870
ark_67375_WNG_2FM3QNX8_R
Genre article
GrantInformation_xml – fundername: GEOIDE Network of Centres of Excellence
– fundername: Natural Sciences and Engineering Research Council of Canada
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EDH
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
Y6R
ZY4
ZZTAW
~02
~IA
~WT
AAHHS
ABTAH
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WWD
AAYXX
CITATION
7QG
7QR
7SS
8FD
FR3
P64
KR7
ID FETCH-LOGICAL-c3610-21f3985e2972ffa455ee69c95df0556b90ffb896fc197d20cf3dfed76c4f31163
IEDL.DBID DR2
ISSN 1180-4009
IngestDate Fri Jul 11 05:04:48 EDT 2025
Fri Jul 11 08:56:24 EDT 2025
Tue Jul 01 01:11:03 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Wed Jan 22 16:21:30 EST 2025
Tue Sep 09 05:31:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3610-21f3985e2972ffa455ee69c95df0556b90ffb896fc197d20cf3dfed76c4f31163
Notes Natural Sciences and Engineering Research Council of Canada
istex:24B6316BEA86125AB6D260964ED5DC26D7CC6C49
GEOIDE Network of Centres of Excellence
ark:/67375/WNG-2FM3QNX8-R
ArticleID:ENV870
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
SourceType-Scholarly Journals-2
ObjectType-Conference Paper-1
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
PQID 20493410
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_30134111
proquest_miscellaneous_20493410
crossref_primary_10_1002_env_870
crossref_citationtrail_10_1002_env_870
wiley_primary_10_1002_env_870_ENV870
istex_primary_ark_67375_WNG_2FM3QNX8_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-11
November 2007
2007-11-00
20071101
PublicationDateYYYYMMDD 2007-11-01
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Environmetrics (London, Ont.)
PublicationTitleAlternate Environmetrics
PublicationYear 2007
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Green PJ, Silverman BW. 1994. Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. Chapman & Hall Ltd: London.
Huffer FW, Wu HL. 1998. Markov chain Monte Carlo for autologistic regression models with application to the distribution of plant species. Biometrics 54: 509-524.
Green PJ, Richardson S. 2002. Hidden Markov models and disease mapping. Journal of the American Statistical Association 97: 1055-1070.
Muenz LR, Rubinstein LV. 1985. Markov models for covariate dependence of binary sequences. Biometrics 41: 91-101.
Balshaw RF, Dean CB. 2002. A semiparametric model for the analysis of recurrentevent panel data. Biometrics 58: 324-331.
Gelman A, Meng XL, Stern HS. 1996. Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Statistica Sinica 6: 733-807.
Lawless JF. 1987. Regression methods for Poisson process data. Journal of the American Statistical Association 82: 808-815.
McCulloch CE, Searle SR. 2001. Generalized, linear, and mixed models. John Wiley & Sons.
Breslow NE, Clayton DG. 1993. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 88: 9-25.
Gelfand AE, Vounatsou P. 2003. Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4: 11-25.
Rosen O, Jiang W, Tanner MA. 2000. Mixtures of marginal models. Biometrika 87: 391-404.
Andersen PK, Borgan Ø, Gill RD, Keiding N. 1993. Statistical Models Based on Counting Processes. Springer Series in Statistics. Springer-Verlag: New York.
Jupp DLB. 1978. Approximation to data by splines with free knots. SIAM Journal on Numerical Analysis 15: 328-343.
Kooperberg C, Bose S, Stone CJ. 1997. Polychotomous regression. Journal of the American Statistical Association 92: 117-127.
Cook RJ, Lawless JF. 2002. Analysis of repeated events. Statistical Methods in Medical Research 11: 141-166.
Staniswalis JG, Thall PF, Salch J. 1997. Semiparametric regression analysis for recurrent event interval counts. Biometrics 53: 1334-1353.
Lin X, Zhang D. 1999. Inference in generalized additive mixed models by using smoothing splines. Journal of the Royal Statistical Society, Series B: Statistical Methodology 61: 381-400.
Nathoo FS, Dean CB. 2006a. A mixed mover-stayer model for spatio-temporal two-state processes. Biometrics 2007; DOI: 10.1111/j.1541-0420.2007.00752.x.
Currie ID, Durban M. 2002. Flexible smoothing with P-splines: a unified approach. Statistical Modelling 2: 333-349.
Durbin J, Koopman SJ. 2001. Time Series Analysis by State Space Methods, Oxford Statistical Science Series, vol. 24. Oxford University Press: Oxford.
Lawless JF, Zhan M. 1998. Analysis of interval-grouped recurrent-event data using piecewise constant rate functions. The Canadian Journal of Statistics 26: 549-565.
Nathoo FS, Dean CB. 2006b. Spatial multi-state transitional models for longitudinal event data. Biometrics 2007; DOI: 10.1111/j.1541-0420.2007.00785.x.
Albert PS, Waclawi MA. 1998. A two-state Markov chain for heterogeneous transitional data: a quasi-likelihood approach. Statistics in Medicine 17: 1481-1493.
Gu C. 2002. Smoothing Spline ANOVA Models. Springer-Verlag Inc: New York.
Fernandez C, Green PJ. 2002. Modelling spatially correlated data via mixtures: a Bayesian approach. Journal of the Royal Statistical Society Series B 64: 805-826.
McLachlan G, Peel D. 2000. Finite Mixture Models. Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley-Interscience: New York.
Mao W, Zhao LH. 2003. Free-knot polynomial splines with confidence intervals. Journal of the Royal Statistical Society, Series B: Statistical Methodology 65: 901-919.
de Boor C. 1978. A Practical Guide to Splines, Applied Mathematical Sciences, vol. 27. Springer-Verlag: New York.
Ruppert D, Wand MP, Carroll RJ. 2003. Semiparametric Regression, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 12. Cambridge University Press: Cambridge.
Eilers PHC, Marx BD. 1996. Flexible smoothing with B-splines and penalties. Statistical Science 11: 89-102.
Cappé O, Moulines E, Rydén T. 2005. Inference in Hidden Markov Models. Springer Series in Statistics. Springer-Verlag: New York.
Ng EM, Cook RJ. 1997. Modelling two-state disease processes with random effects. Lifetime Data Analysis 3: 315-335.
1998; 26
2002; 58
2002; 97
2006b
2006a
1993; 88
2000; 87
2002; 11
2002; 2
1997
2007
2006
2005
1994
1993
1978; 15
1985; 41
2002
1999; 61
2001; 24
1997; 3
1996; 11
2003; 12
1998; 17
1997; 92
1987; 82
2001
2002; 64
2000
1997; 53
2003; 4
1978; 27
1998; 54
2003; 65
1996; 6
McCulloch CE (e_1_2_1_27_1) 2001
e_1_2_1_20_1
e_1_2_1_23_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_22_1
e_1_2_1_28_1
Gelman A (e_1_2_1_15_1) 1996; 6
e_1_2_1_25_1
e_1_2_1_26_1
e_1_2_1_29_1
Andersen PK (e_1_2_1_4_1) 1993
Durbin J (e_1_2_1_11_1) 2001
e_1_2_1_7_1
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_14_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – reference: Kooperberg C, Bose S, Stone CJ. 1997. Polychotomous regression. Journal of the American Statistical Association 92: 117-127.
– reference: Green PJ, Richardson S. 2002. Hidden Markov models and disease mapping. Journal of the American Statistical Association 97: 1055-1070.
– reference: Muenz LR, Rubinstein LV. 1985. Markov models for covariate dependence of binary sequences. Biometrics 41: 91-101.
– reference: de Boor C. 1978. A Practical Guide to Splines, Applied Mathematical Sciences, vol. 27. Springer-Verlag: New York.
– reference: Durbin J, Koopman SJ. 2001. Time Series Analysis by State Space Methods, Oxford Statistical Science Series, vol. 24. Oxford University Press: Oxford.
– reference: Gu C. 2002. Smoothing Spline ANOVA Models. Springer-Verlag Inc: New York.
– reference: McCulloch CE, Searle SR. 2001. Generalized, linear, and mixed models. John Wiley & Sons.
– reference: Nathoo FS, Dean CB. 2006a. A mixed mover-stayer model for spatio-temporal two-state processes. Biometrics 2007; DOI: 10.1111/j.1541-0420.2007.00752.x.
– reference: Lawless JF. 1987. Regression methods for Poisson process data. Journal of the American Statistical Association 82: 808-815.
– reference: Staniswalis JG, Thall PF, Salch J. 1997. Semiparametric regression analysis for recurrent event interval counts. Biometrics 53: 1334-1353.
– reference: Ng EM, Cook RJ. 1997. Modelling two-state disease processes with random effects. Lifetime Data Analysis 3: 315-335.
– reference: Gelfand AE, Vounatsou P. 2003. Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4: 11-25.
– reference: Fernandez C, Green PJ. 2002. Modelling spatially correlated data via mixtures: a Bayesian approach. Journal of the Royal Statistical Society Series B 64: 805-826.
– reference: Andersen PK, Borgan Ø, Gill RD, Keiding N. 1993. Statistical Models Based on Counting Processes. Springer Series in Statistics. Springer-Verlag: New York.
– reference: McLachlan G, Peel D. 2000. Finite Mixture Models. Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley-Interscience: New York.
– reference: Currie ID, Durban M. 2002. Flexible smoothing with P-splines: a unified approach. Statistical Modelling 2: 333-349.
– reference: Ruppert D, Wand MP, Carroll RJ. 2003. Semiparametric Regression, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 12. Cambridge University Press: Cambridge.
– reference: Albert PS, Waclawi MA. 1998. A two-state Markov chain for heterogeneous transitional data: a quasi-likelihood approach. Statistics in Medicine 17: 1481-1493.
– reference: Green PJ, Silverman BW. 1994. Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. Chapman & Hall Ltd: London.
– reference: Nathoo FS, Dean CB. 2006b. Spatial multi-state transitional models for longitudinal event data. Biometrics 2007; DOI: 10.1111/j.1541-0420.2007.00785.x.
– reference: Rosen O, Jiang W, Tanner MA. 2000. Mixtures of marginal models. Biometrika 87: 391-404.
– reference: Cappé O, Moulines E, Rydén T. 2005. Inference in Hidden Markov Models. Springer Series in Statistics. Springer-Verlag: New York.
– reference: Lawless JF, Zhan M. 1998. Analysis of interval-grouped recurrent-event data using piecewise constant rate functions. The Canadian Journal of Statistics 26: 549-565.
– reference: Breslow NE, Clayton DG. 1993. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 88: 9-25.
– reference: Eilers PHC, Marx BD. 1996. Flexible smoothing with B-splines and penalties. Statistical Science 11: 89-102.
– reference: Huffer FW, Wu HL. 1998. Markov chain Monte Carlo for autologistic regression models with application to the distribution of plant species. Biometrics 54: 509-524.
– reference: Lin X, Zhang D. 1999. Inference in generalized additive mixed models by using smoothing splines. Journal of the Royal Statistical Society, Series B: Statistical Methodology 61: 381-400.
– reference: Mao W, Zhao LH. 2003. Free-knot polynomial splines with confidence intervals. Journal of the Royal Statistical Society, Series B: Statistical Methodology 65: 901-919.
– reference: Jupp DLB. 1978. Approximation to data by splines with free knots. SIAM Journal on Numerical Analysis 15: 328-343.
– reference: Balshaw RF, Dean CB. 2002. A semiparametric model for the analysis of recurrentevent panel data. Biometrics 58: 324-331.
– reference: Cook RJ, Lawless JF. 2002. Analysis of repeated events. Statistical Methods in Medical Research 11: 141-166.
– reference: Gelman A, Meng XL, Stern HS. 1996. Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Statistica Sinica 6: 733-807.
– volume: 24
  year: 2001
– volume: 61
  start-page: 381
  year: 1999
  end-page: 400
  article-title: Inference in generalized additive mixed models by using smoothing splines
  publication-title: Journal of the Royal Statistical Society, Series B: Statistical Methodology
– volume: 65
  start-page: 901
  year: 2003
  end-page: 919
  article-title: Free‐knot polynomial splines with confidence intervals
  publication-title: Journal of the Royal Statistical Society, Series B: Statistical Methodology
– volume: 88
  start-page: 9
  year: 1993
  end-page: 25
  article-title: Approximate inference in generalized linear mixed models
  publication-title: Journal of the American Statistical Association
– year: 2005
– volume: 3
  start-page: 315
  year: 1997
  end-page: 335
  article-title: Modelling two‐state disease processes with random effects
  publication-title: Lifetime Data Analysis
– volume: 27
  year: 1978
– volume: 17
  start-page: 1481
  year: 1998
  end-page: 1493
  article-title: A two‐state Markov chain for heterogeneous transitional data: a quasi‐likelihood approach
  publication-title: Statistics in Medicine
– year: 2001
– year: 2007
– volume: 87
  start-page: 391
  year: 2000
  end-page: 404
  article-title: Mixtures of marginal models
  publication-title: Biometrika
– year: 2000
– volume: 4
  start-page: 11
  year: 2003
  end-page: 25
  article-title: Proper multivariate conditional autoregressive models for spatial data analysis
  publication-title: Biostatistics
– volume: 15
  start-page: 328
  year: 1978
  end-page: 343
  article-title: Approximation to data by splines with free knots
  publication-title: SIAM Journal on Numerical Analysis
– volume: 97
  start-page: 1055
  year: 2002
  end-page: 1070
  article-title: Hidden Markov models and disease mapping
  publication-title: Journal of the American Statistical Association
– volume: 64
  start-page: 805
  year: 2002
  end-page: 826
  article-title: Modelling spatially correlated data via mixtures: a Bayesian approach
  publication-title: Journal of the Royal Statistical Society Series B
– volume: 54
  start-page: 509
  year: 1998
  end-page: 524
  article-title: Markov chain Monte Carlo for autologistic regression models with application to the distribution of plant species
  publication-title: Biometrics
– volume: 6
  start-page: 733
  year: 1996
  end-page: 807
  article-title: Posterior predictive assessment of model fitness via realized discrepancies (with discussion)
  publication-title: Statistica Sinica
– year: 1994
– volume: 53
  start-page: 1334
  year: 1997
  end-page: 1353
  article-title: Semiparametric regression analysis for recurrent event interval counts
  publication-title: Biometrics
– volume: 11
  start-page: 141
  year: 2002
  end-page: 166
  article-title: Analysis of repeated events
  publication-title: Statistical Methods in Medical Research
– volume: 26
  start-page: 549
  year: 1998
  end-page: 565
  article-title: Analysis of interval‐grouped recurrent‐event data using piecewise constant rate functions
  publication-title: The Canadian Journal of Statistics
– volume: 82
  start-page: 808
  year: 1987
  end-page: 815
  article-title: Regression methods for Poisson process data
  publication-title: Journal of the American Statistical Association
– volume: 92
  start-page: 117
  year: 1997
  end-page: 127
  article-title: Polychotomous regression
  publication-title: Journal of the American Statistical Association
– volume: 12
  year: 2003
– year: 2002
– volume: 11
  start-page: 89
  year: 1996
  end-page: 102
  article-title: Flexible smoothing with ‐splines and penalties
  publication-title: Statistical Science
– year: 2006
– year: 1997
– year: 2006b
  article-title: Spatial multi‐state transitional models for longitudinal event data
  publication-title: Biometrics
– volume: 41
  start-page: 91
  year: 1985
  end-page: 101
  article-title: Markov models for covariate dependence of binary sequences
  publication-title: Biometrics
– year: 2006a
  article-title: A mixed mover‐stayer model for spatio‐temporal two‐state processes
  publication-title: Biometrics
– year: 1993
– volume: 58
  start-page: 324
  year: 2002
  end-page: 331
  article-title: A semiparametric model for the analysis of recurrentevent panel data
  publication-title: Biometrics
– volume: 2
  start-page: 333
  year: 2002
  end-page: 349
  article-title: Flexible smoothing with ‐splines: a unified approach
  publication-title: Statistical Modelling
– ident: e_1_2_1_7_1
  doi: 10.1007/0-387-28982-8
– ident: e_1_2_1_28_1
  doi: 10.1002/0471721182
– ident: e_1_2_1_16_1
  doi: 10.1198/016214502388618870
– ident: e_1_2_1_22_1
  doi: 10.1080/01621459.1997.10473608
– ident: e_1_2_1_3_1
  doi: 10.1002/(SICI)1097-0258(19980715)17:13<1481::AID-SIM858>3.0.CO;2-H
– ident: e_1_2_1_8_1
  doi: 10.1191/0962280202sm278ra
– ident: e_1_2_1_9_1
  doi: 10.1191/1471082x02st039ob
– ident: e_1_2_1_17_1
  doi: 10.1007/978-1-4899-4473-3
– ident: e_1_2_1_36_1
  doi: 10.2307/2533501
– volume-title: Generalized, linear, and mixed models
  year: 2001
  ident: e_1_2_1_27_1
– ident: e_1_2_1_30_1
  doi: 10.1111/j.1541‐0420.2007.00752.x
– ident: e_1_2_1_23_1
  doi: 10.1080/01621459.1987.10478502
– ident: e_1_2_1_26_1
  doi: 10.1046/j.1369-7412.2003.00422.x
– ident: e_1_2_1_29_1
  doi: 10.2307/2530646
– ident: e_1_2_1_6_1
  doi: 10.2307/2290687
– ident: e_1_2_1_20_1
  doi: 10.2307/3109759
– ident: e_1_2_1_12_1
  doi: 10.1214/ss/1038425655
– ident: e_1_2_1_34_1
  doi: 10.1093/biomet/87.2.391
– ident: e_1_2_1_33_1
  doi: 10.1111/j.1541-0420.2007.00940.x
– ident: e_1_2_1_10_1
  doi: 10.1007/978-1-4612-6333-3
– ident: e_1_2_1_24_1
  doi: 10.2307/3315717
– volume-title: Statistical Models Based on Counting Processes. Springer Series in Statistics
  year: 1993
  ident: e_1_2_1_4_1
– ident: e_1_2_1_31_1
  doi: 10.1111/j.1541‐0420.2007.00785.x
– ident: e_1_2_1_32_1
  doi: 10.1023/A:1009650012039
– ident: e_1_2_1_35_1
  doi: 10.1017/CBO9780511755453
– ident: e_1_2_1_2_1
– ident: e_1_2_1_18_1
  doi: 10.1007/978-1-4757-3683-0
– ident: e_1_2_1_5_1
  doi: 10.1111/j.0006-341X.2002.00324.x
– ident: e_1_2_1_25_1
  doi: 10.1111/1467-9868.00183
– ident: e_1_2_1_19_1
  doi: 10.1007/b98823
– volume-title: Time Series Analysis by State Space Methods, Oxford Statistical Science Series
  year: 2001
  ident: e_1_2_1_11_1
– ident: e_1_2_1_14_1
  doi: 10.1093/biostatistics/4.1.11
– ident: e_1_2_1_13_1
  doi: 10.1111/1467-9868.00362
– volume: 6
  start-page: 733
  year: 1996
  ident: e_1_2_1_15_1
  article-title: Posterior predictive assessment of model fitness via realized discrepancies (with discussion)
  publication-title: Statistica Sinica
– ident: e_1_2_1_21_1
  doi: 10.1137/0715022
SSID ssj0009657
Score 1.7689247
Snippet Studies of recurring infection or chronic disease often collect longitudinal data on the disease status of subjects. Two types of models may be envisioned for...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 713
SubjectTerms longitudinal panel data
mixture models
multi-state models
Prunus
recurrent events
splines
Title Spatial and mixture models for recurrent event processes
URI https://api.istex.fr/ark:/67375/WNG-2FM3QNX8-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fenv.870
https://www.proquest.com/docview/20493410
https://www.proquest.com/docview/30134111
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQvXBpeRR1Wx4-rPaWJYljJz4iuguqxEqgUlZcLD-lijagzS5C_HrGdvbVCqnqKQePJcczY38ee75BqFvISlHuyoSZELopXFJJy8CWNXGlM5Rrf1C8HLGLm-LbmI5XSn1FfohFwM17RlivvYNL1ZwsSUNt_dQHY4PVNyPMs-Z_vV4SR3FGY1mVKoUTUspjuqzvedL2W9uH3vkpfV4DmatQNew1ww_obj7K-MTkvj-bqr5--YPA8b9-Yxu9bxEoPo0ms4M2bL2L9gfLhDdobD2-2UOVr1kMNoplbfDvn8_-wgGH8jkNBryLJz5e7xmecKCCwo8x8cA2H9HNcPD97CJpqy0kmgCGSvLMEV5Rm_Myd04WlFrLuObUOE-4o3jqnKo4czrjpclT7Yhx1pRMF45kAOv20Wb9UNtPCHMiAefJwhpFClcxDpLKGiZVwVIiaQf15nMvdEtF7iti_BKRRDkHl30SMCsdhBeCj5F942-RXlDeol1O7v1jtZKK29G5yIeX5Go0rsR1Bx3PtSvAhfy9iKztw6wROZySYDNP35aAVRAEsqyDukGXbw1GDEY_4PP538S-oK0QKQ6ZjQdoczqZ2UOAOFN1FKz5FTKD-qY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5Be4BLeVZsKa0PVW_ZJvEj8RHR3S7QjUTVwkocLMcPCRXSah9Vxa9n7GR3KagS4pSDx5Jjz9jfjD3fABwwXdZc-iIRNoZumE9K7QTqsqG-8JZLExzFcSVGF-zDhE-6V5UhF6blh1gF3IJlxP06GHgISB-tWUNdc9NHbXsImwxhRnC8js_W1FFS8LawSpmij5TKNmE2dD3qOt45iTbDpN7egZm_g9V42gyfwNflONtHJpf9xbzum59_UDj-3488ha0OhJK3rdY8gweueQ7bg3XOGzZ2Rj97AWUoW4xqSnRjyY9vt-HOgcQKOjOCkJdMQ8g-kDyRyAZFrtvcAzd7CRfDwfm7UdIVXEgMRRiV5JmnsuQul0XuvWacOyekkdz6wLlTy9T7upTCm0wWNk-Np9Y7WwjDPM0Q2W3DRnPVuFdAJNUI9TRztqbMl0KiZO2s0DUTKdW8B4fLyVemYyMPRTG-q5ZHOUervVE4Kz0gK8HrloDjb5HDuHqrdj29DO_VCq6-VCcqH47pp2pSqrMe7C-XV6EVhasR3birxUzl6CjheZ7eL4EbIQpkWQ8O4mLeNxg1qD7jZ-ffxPbh0eh8fKpO31cfX8PjGDiOiY67sDGfLtwbRDzzei-q9i_VfP7F
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xkCoubWlBbF_4gLhlSeLYiY9Vu1seJWoRjxUXy_FDQrRhtQ-E-us7drK70AoJccrBY8nxzNifx55vAHYyVVRMuDziJoRuMhcVynK0ZU1d7gwT2h8Uj0u-f5YdDtjgXqmvhh9iHnDznhHWa-_gQ-P2FqShtr7torEtw2rGEUd4PHSyYI4SnDV1VYoYj0ixaPJlfde9tuODjWjVz-ndA5R5H6uGzab_Ci5nw2zemFx3p5Oqq__8w-D4rP94DS9bCEo-NzazDku2fgObvUXGGza2Lj9-C4UvWoxGSlRtyO-rO3_jQEL9nDFBwEtGPmDvKZ5I4IIiwybzwI434KzfO_2yH7XlFiJNEURFaeKoKJhNRZ46pzLGrOVCC2acZ9ypROxcVQjudCJyk8baUeOsybnOHE0Q123CSn1T2y0ggioEeiqzpqKZK7hAycoarirUFVWsA7uzuZe65SL3JTF-yYZFOUWfvZU4Kx0gc8FhQ7_xv8huUN68XY2u_Wu1nMmL8ptM-8f0Zzko5EkHtmfalehD_mJE1fZmOpYpHpNwN48fl8BlEAWSpAM7QZePDUb2ynP8vHua2Da8-PG1L78flEfvYS1EjUOW4wdYmYym9iPCnUn1KRj2X-h0_XQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+and+mixture+models+for+recurrent+event+processes&rft.jtitle=Environmetrics+%28London%2C+Ont.%29&rft.au=Dean%2C+C.+B.&rft.au=Nathoo%2C+F.&rft.au=Nielsen%2C+J.+D.&rft.date=2007-11-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1180-4009&rft.eissn=1099-095X&rft.volume=18&rft.issue=7&rft.spage=713&rft.epage=725&rft_id=info:doi/10.1002%2Fenv.870&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_2FM3QNX8_R
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1180-4009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1180-4009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1180-4009&client=summon