Spatial and mixture models for recurrent event processes
Studies of recurring infection or chronic disease often collect longitudinal data on the disease status of subjects. Two types of models may be envisioned for the analysis of such data: counting process models or multi‐state transitional models. We consider both scenarios in the specific case where...
Saved in:
Published in | Environmetrics (London, Ont.) Vol. 18; no. 7; pp. 713 - 725 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.11.2007
|
Subjects | |
Online Access | Get full text |
ISSN | 1180-4009 1099-095X |
DOI | 10.1002/env.870 |
Cover
Abstract | Studies of recurring infection or chronic disease often collect longitudinal data on the disease status of subjects. Two types of models may be envisioned for the analysis of such data: counting process models or multi‐state transitional models. We consider both scenarios in the specific case where the population consists of mixtures. A flexible semi‐parametric model for analyzing longitudinal panel count data is presented. Discrete mixtures of smooth counting process intensity forms are considered, including mixtures of splines, which permit time‐varying covariate effects, with the so‐called proportional intensity model as a limiting case. For recurrent events handled in a multi‐state transitional model framework, individuals may be said to occupy one of a discrete set of states and interest centers on the transition process between states. We examine the use of mixed Markov models for the analysis of such longitudinal data where the processes corresponding to different subjects may be correlated spatially over a region. Both discrete and continuous‐time models incorporating spatially correlated random effects are discussed. Examples illustrate the methods discussed including a study of recurrent weevil infestation, and one to assess the effectiveness of a pheromone treatment in disturbing the mating habits of the cherry bark tortrix moth. Copyright © 2007 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Studies of recurring infection or chronic disease often collect longitudinal data on the disease status of subjects. Two types of models may be envisioned for the analysis of such data: counting process models or multi-state transitional models. We consider both scenarios in the specific case where the population consists of mixtures. A flexible semi-parametric model for analyzing longitudinal panel count data is presented. Discrete mixtures of smooth counting process intensity forms are considered, including mixtures of splines, which permit time-varying covariate effects, with the so-called proportional intensity model as a limiting case. For recurrent events handled in a multi-state transitional model framework, individuals may be said to occupy one of a discrete set of states and interest centers on the transition process between states. We examine the use of mixed Markov models for the analysis of such longitudinal data where the processes corresponding to different subjects may be correlated spatially over a region. Both discrete and continuous-time models incorporating spatially correlated random effects are discussed. Examples illustrate the methods discussed including a study of recurrent weevil infestation, and one to assess the effectiveness of a pheromone treatment in disturbing the mating habits of the cherry bark tortrix moth. Studies of recurring infection or chronic disease often collect longitudinal data on the disease status of subjects. Two types of models may be envisioned for the analysis of such data: counting process models or multi‐state transitional models. We consider both scenarios in the specific case where the population consists of mixtures. A flexible semi‐parametric model for analyzing longitudinal panel count data is presented. Discrete mixtures of smooth counting process intensity forms are considered, including mixtures of splines, which permit time‐varying covariate effects, with the so‐called proportional intensity model as a limiting case. For recurrent events handled in a multi‐state transitional model framework, individuals may be said to occupy one of a discrete set of states and interest centers on the transition process between states. We examine the use of mixed Markov models for the analysis of such longitudinal data where the processes corresponding to different subjects may be correlated spatially over a region. Both discrete and continuous‐time models incorporating spatially correlated random effects are discussed. Examples illustrate the methods discussed including a study of recurrent weevil infestation, and one to assess the effectiveness of a pheromone treatment in disturbing the mating habits of the cherry bark tortrix moth. Copyright © 2007 John Wiley & Sons, Ltd. |
Author | Dean, C. B. Nathoo, F. Nielsen, J. D. |
Author_xml | – sequence: 1 givenname: C. B. surname: Dean fullname: Dean, C. B. email: dean@stat.sfu.ca organization: Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6 – sequence: 2 givenname: F. surname: Nathoo fullname: Nathoo, F. organization: Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada V8W 3P4 – sequence: 3 givenname: J. D. surname: Nielsen fullname: Nielsen, J. D. organization: Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6 |
BookMark | eNqF0E1Lw0AQBuBFKthW8S_kpAdJnc1mk-xRSluFWvG7t2W7mYVomtTdtLb_3i0VQVG8zMzh4R14O6RV1RUSckyhRwGic6xWvSyFPdKmIEQIgk9b_qYZhDGAOCAd517AXwlP2yS7X6imUGWgqjyYF-tmaTGY1zmWLjC1DSzqpbVYNQGutnNha43OoTsk-0aVDo8-d5c8DgcP_ctwfDO66l-MQ80SCmFEDRMZx0ikkTEq5hwxEVrw3ADnyUyAMbNMJEZTkeYRaMNyg3ma6NgwShPWJSe7XP_5bYmukfPCaSxLVWG9dJIBZTGl9F8YQSy8BA9Pd1Db2jmLRi5sMVd2IynIbYXSVyh9hV6GP6QuGl9XXTVWFeUv_mzn34sSN3_FysHk6Vt64Rpcf2llX2WSspTL58lIRsNrdjuZZvKOfQBni5JH |
CitedBy_id | crossref_primary_10_1214_12_AOAS567 crossref_primary_10_1214_09_EJS525 crossref_primary_10_1002_cjs_11743 crossref_primary_10_1002_env_2685 |
Cites_doi | 10.1007/0-387-28982-8 10.1002/0471721182 10.1198/016214502388618870 10.1080/01621459.1997.10473608 10.1002/(SICI)1097-0258(19980715)17:13<1481::AID-SIM858>3.0.CO;2-H 10.1191/0962280202sm278ra 10.1191/1471082x02st039ob 10.1007/978-1-4899-4473-3 10.2307/2533501 10.1111/j.1541‐0420.2007.00752.x 10.1080/01621459.1987.10478502 10.1046/j.1369-7412.2003.00422.x 10.2307/2530646 10.2307/2290687 10.2307/3109759 10.1214/ss/1038425655 10.1093/biomet/87.2.391 10.1111/j.1541-0420.2007.00940.x 10.1007/978-1-4612-6333-3 10.2307/3315717 10.1111/j.1541‐0420.2007.00785.x 10.1023/A:1009650012039 10.1017/CBO9780511755453 10.1007/978-1-4757-3683-0 10.1111/j.0006-341X.2002.00324.x 10.1111/1467-9868.00183 10.1007/b98823 10.1093/biostatistics/4.1.11 10.1111/1467-9868.00362 10.1137/0715022 |
ContentType | Journal Article |
Copyright | Copyright © 2007 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2007 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7QG 7QR 7SS 8FD FR3 P64 KR7 |
DOI | 10.1002/env.870 |
DatabaseName | Istex CrossRef Animal Behavior Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Civil Engineering Abstracts |
DatabaseTitle | CrossRef Entomology Abstracts Chemoreception Abstracts Engineering Research Database Technology Research Database Animal Behavior Abstracts Biotechnology and BioEngineering Abstracts Civil Engineering Abstracts |
DatabaseTitleList | Entomology Abstracts CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1099-095X |
EndPage | 725 |
ExternalDocumentID | 10_1002_env_870 ENV870 ark_67375_WNG_2FM3QNX8_R |
Genre | article |
GrantInformation_xml | – fundername: GEOIDE Network of Centres of Excellence – fundername: Natural Sciences and Engineering Research Council of Canada |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EDH EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XPP XV2 Y6R ZY4 ZZTAW ~02 ~IA ~WT AAHHS ABTAH ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WWD AAYXX CITATION 7QG 7QR 7SS 8FD FR3 P64 KR7 |
ID | FETCH-LOGICAL-c3610-21f3985e2972ffa455ee69c95df0556b90ffb896fc197d20cf3dfed76c4f31163 |
IEDL.DBID | DR2 |
ISSN | 1180-4009 |
IngestDate | Fri Jul 11 05:04:48 EDT 2025 Fri Jul 11 08:56:24 EDT 2025 Tue Jul 01 01:11:03 EDT 2025 Thu Apr 24 23:03:49 EDT 2025 Wed Jan 22 16:21:30 EST 2025 Tue Sep 09 05:31:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3610-21f3985e2972ffa455ee69c95df0556b90ffb896fc197d20cf3dfed76c4f31163 |
Notes | Natural Sciences and Engineering Research Council of Canada istex:24B6316BEA86125AB6D260964ED5DC26D7CC6C49 GEOIDE Network of Centres of Excellence ark:/67375/WNG-2FM3QNX8-R ArticleID:ENV870 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 SourceType-Scholarly Journals-2 ObjectType-Conference Paper-1 SourceType-Conference Papers & Proceedings-1 ObjectType-Article-3 |
PQID | 20493410 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_30134111 proquest_miscellaneous_20493410 crossref_primary_10_1002_env_870 crossref_citationtrail_10_1002_env_870 wiley_primary_10_1002_env_870_ENV870 istex_primary_ark_67375_WNG_2FM3QNX8_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-11 November 2007 2007-11-00 20071101 |
PublicationDateYYYYMMDD | 2007-11-01 |
PublicationDate_xml | – month: 11 year: 2007 text: 2007-11 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK |
PublicationTitle | Environmetrics (London, Ont.) |
PublicationTitleAlternate | Environmetrics |
PublicationYear | 2007 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | Green PJ, Silverman BW. 1994. Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. Chapman & Hall Ltd: London. Huffer FW, Wu HL. 1998. Markov chain Monte Carlo for autologistic regression models with application to the distribution of plant species. Biometrics 54: 509-524. Green PJ, Richardson S. 2002. Hidden Markov models and disease mapping. Journal of the American Statistical Association 97: 1055-1070. Muenz LR, Rubinstein LV. 1985. Markov models for covariate dependence of binary sequences. Biometrics 41: 91-101. Balshaw RF, Dean CB. 2002. A semiparametric model for the analysis of recurrentevent panel data. Biometrics 58: 324-331. Gelman A, Meng XL, Stern HS. 1996. Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Statistica Sinica 6: 733-807. Lawless JF. 1987. Regression methods for Poisson process data. Journal of the American Statistical Association 82: 808-815. McCulloch CE, Searle SR. 2001. Generalized, linear, and mixed models. John Wiley & Sons. Breslow NE, Clayton DG. 1993. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 88: 9-25. Gelfand AE, Vounatsou P. 2003. Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4: 11-25. Rosen O, Jiang W, Tanner MA. 2000. Mixtures of marginal models. Biometrika 87: 391-404. Andersen PK, Borgan Ø, Gill RD, Keiding N. 1993. Statistical Models Based on Counting Processes. Springer Series in Statistics. Springer-Verlag: New York. Jupp DLB. 1978. Approximation to data by splines with free knots. SIAM Journal on Numerical Analysis 15: 328-343. Kooperberg C, Bose S, Stone CJ. 1997. Polychotomous regression. Journal of the American Statistical Association 92: 117-127. Cook RJ, Lawless JF. 2002. Analysis of repeated events. Statistical Methods in Medical Research 11: 141-166. Staniswalis JG, Thall PF, Salch J. 1997. Semiparametric regression analysis for recurrent event interval counts. Biometrics 53: 1334-1353. Lin X, Zhang D. 1999. Inference in generalized additive mixed models by using smoothing splines. Journal of the Royal Statistical Society, Series B: Statistical Methodology 61: 381-400. Nathoo FS, Dean CB. 2006a. A mixed mover-stayer model for spatio-temporal two-state processes. Biometrics 2007; DOI: 10.1111/j.1541-0420.2007.00752.x. Currie ID, Durban M. 2002. Flexible smoothing with P-splines: a unified approach. Statistical Modelling 2: 333-349. Durbin J, Koopman SJ. 2001. Time Series Analysis by State Space Methods, Oxford Statistical Science Series, vol. 24. Oxford University Press: Oxford. Lawless JF, Zhan M. 1998. Analysis of interval-grouped recurrent-event data using piecewise constant rate functions. The Canadian Journal of Statistics 26: 549-565. Nathoo FS, Dean CB. 2006b. Spatial multi-state transitional models for longitudinal event data. Biometrics 2007; DOI: 10.1111/j.1541-0420.2007.00785.x. Albert PS, Waclawi MA. 1998. A two-state Markov chain for heterogeneous transitional data: a quasi-likelihood approach. Statistics in Medicine 17: 1481-1493. Gu C. 2002. Smoothing Spline ANOVA Models. Springer-Verlag Inc: New York. Fernandez C, Green PJ. 2002. Modelling spatially correlated data via mixtures: a Bayesian approach. Journal of the Royal Statistical Society Series B 64: 805-826. McLachlan G, Peel D. 2000. Finite Mixture Models. Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley-Interscience: New York. Mao W, Zhao LH. 2003. Free-knot polynomial splines with confidence intervals. Journal of the Royal Statistical Society, Series B: Statistical Methodology 65: 901-919. de Boor C. 1978. A Practical Guide to Splines, Applied Mathematical Sciences, vol. 27. Springer-Verlag: New York. Ruppert D, Wand MP, Carroll RJ. 2003. Semiparametric Regression, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 12. Cambridge University Press: Cambridge. Eilers PHC, Marx BD. 1996. Flexible smoothing with B-splines and penalties. Statistical Science 11: 89-102. Cappé O, Moulines E, Rydén T. 2005. Inference in Hidden Markov Models. Springer Series in Statistics. Springer-Verlag: New York. Ng EM, Cook RJ. 1997. Modelling two-state disease processes with random effects. Lifetime Data Analysis 3: 315-335. 1998; 26 2002; 58 2002; 97 2006b 2006a 1993; 88 2000; 87 2002; 11 2002; 2 1997 2007 2006 2005 1994 1993 1978; 15 1985; 41 2002 1999; 61 2001; 24 1997; 3 1996; 11 2003; 12 1998; 17 1997; 92 1987; 82 2001 2002; 64 2000 1997; 53 2003; 4 1978; 27 1998; 54 2003; 65 1996; 6 McCulloch CE (e_1_2_1_27_1) 2001 e_1_2_1_20_1 e_1_2_1_23_1 e_1_2_1_24_1 e_1_2_1_21_1 e_1_2_1_22_1 e_1_2_1_28_1 Gelman A (e_1_2_1_15_1) 1996; 6 e_1_2_1_25_1 e_1_2_1_26_1 e_1_2_1_29_1 Andersen PK (e_1_2_1_4_1) 1993 Durbin J (e_1_2_1_11_1) 2001 e_1_2_1_7_1 e_1_2_1_31_1 e_1_2_1_8_1 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_32_1 e_1_2_1_16_1 e_1_2_1_17_1 e_1_2_1_14_1 e_1_2_1_36_1 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 |
References_xml | – reference: Kooperberg C, Bose S, Stone CJ. 1997. Polychotomous regression. Journal of the American Statistical Association 92: 117-127. – reference: Green PJ, Richardson S. 2002. Hidden Markov models and disease mapping. Journal of the American Statistical Association 97: 1055-1070. – reference: Muenz LR, Rubinstein LV. 1985. Markov models for covariate dependence of binary sequences. Biometrics 41: 91-101. – reference: de Boor C. 1978. A Practical Guide to Splines, Applied Mathematical Sciences, vol. 27. Springer-Verlag: New York. – reference: Durbin J, Koopman SJ. 2001. Time Series Analysis by State Space Methods, Oxford Statistical Science Series, vol. 24. Oxford University Press: Oxford. – reference: Gu C. 2002. Smoothing Spline ANOVA Models. Springer-Verlag Inc: New York. – reference: McCulloch CE, Searle SR. 2001. Generalized, linear, and mixed models. John Wiley & Sons. – reference: Nathoo FS, Dean CB. 2006a. A mixed mover-stayer model for spatio-temporal two-state processes. Biometrics 2007; DOI: 10.1111/j.1541-0420.2007.00752.x. – reference: Lawless JF. 1987. Regression methods for Poisson process data. Journal of the American Statistical Association 82: 808-815. – reference: Staniswalis JG, Thall PF, Salch J. 1997. Semiparametric regression analysis for recurrent event interval counts. Biometrics 53: 1334-1353. – reference: Ng EM, Cook RJ. 1997. Modelling two-state disease processes with random effects. Lifetime Data Analysis 3: 315-335. – reference: Gelfand AE, Vounatsou P. 2003. Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4: 11-25. – reference: Fernandez C, Green PJ. 2002. Modelling spatially correlated data via mixtures: a Bayesian approach. Journal of the Royal Statistical Society Series B 64: 805-826. – reference: Andersen PK, Borgan Ø, Gill RD, Keiding N. 1993. Statistical Models Based on Counting Processes. Springer Series in Statistics. Springer-Verlag: New York. – reference: McLachlan G, Peel D. 2000. Finite Mixture Models. Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley-Interscience: New York. – reference: Currie ID, Durban M. 2002. Flexible smoothing with P-splines: a unified approach. Statistical Modelling 2: 333-349. – reference: Ruppert D, Wand MP, Carroll RJ. 2003. Semiparametric Regression, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 12. Cambridge University Press: Cambridge. – reference: Albert PS, Waclawi MA. 1998. A two-state Markov chain for heterogeneous transitional data: a quasi-likelihood approach. Statistics in Medicine 17: 1481-1493. – reference: Green PJ, Silverman BW. 1994. Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. Chapman & Hall Ltd: London. – reference: Nathoo FS, Dean CB. 2006b. Spatial multi-state transitional models for longitudinal event data. Biometrics 2007; DOI: 10.1111/j.1541-0420.2007.00785.x. – reference: Rosen O, Jiang W, Tanner MA. 2000. Mixtures of marginal models. Biometrika 87: 391-404. – reference: Cappé O, Moulines E, Rydén T. 2005. Inference in Hidden Markov Models. Springer Series in Statistics. Springer-Verlag: New York. – reference: Lawless JF, Zhan M. 1998. Analysis of interval-grouped recurrent-event data using piecewise constant rate functions. The Canadian Journal of Statistics 26: 549-565. – reference: Breslow NE, Clayton DG. 1993. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 88: 9-25. – reference: Eilers PHC, Marx BD. 1996. Flexible smoothing with B-splines and penalties. Statistical Science 11: 89-102. – reference: Huffer FW, Wu HL. 1998. Markov chain Monte Carlo for autologistic regression models with application to the distribution of plant species. Biometrics 54: 509-524. – reference: Lin X, Zhang D. 1999. Inference in generalized additive mixed models by using smoothing splines. Journal of the Royal Statistical Society, Series B: Statistical Methodology 61: 381-400. – reference: Mao W, Zhao LH. 2003. Free-knot polynomial splines with confidence intervals. Journal of the Royal Statistical Society, Series B: Statistical Methodology 65: 901-919. – reference: Jupp DLB. 1978. Approximation to data by splines with free knots. SIAM Journal on Numerical Analysis 15: 328-343. – reference: Balshaw RF, Dean CB. 2002. A semiparametric model for the analysis of recurrentevent panel data. Biometrics 58: 324-331. – reference: Cook RJ, Lawless JF. 2002. Analysis of repeated events. Statistical Methods in Medical Research 11: 141-166. – reference: Gelman A, Meng XL, Stern HS. 1996. Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Statistica Sinica 6: 733-807. – volume: 24 year: 2001 – volume: 61 start-page: 381 year: 1999 end-page: 400 article-title: Inference in generalized additive mixed models by using smoothing splines publication-title: Journal of the Royal Statistical Society, Series B: Statistical Methodology – volume: 65 start-page: 901 year: 2003 end-page: 919 article-title: Free‐knot polynomial splines with confidence intervals publication-title: Journal of the Royal Statistical Society, Series B: Statistical Methodology – volume: 88 start-page: 9 year: 1993 end-page: 25 article-title: Approximate inference in generalized linear mixed models publication-title: Journal of the American Statistical Association – year: 2005 – volume: 3 start-page: 315 year: 1997 end-page: 335 article-title: Modelling two‐state disease processes with random effects publication-title: Lifetime Data Analysis – volume: 27 year: 1978 – volume: 17 start-page: 1481 year: 1998 end-page: 1493 article-title: A two‐state Markov chain for heterogeneous transitional data: a quasi‐likelihood approach publication-title: Statistics in Medicine – year: 2001 – year: 2007 – volume: 87 start-page: 391 year: 2000 end-page: 404 article-title: Mixtures of marginal models publication-title: Biometrika – year: 2000 – volume: 4 start-page: 11 year: 2003 end-page: 25 article-title: Proper multivariate conditional autoregressive models for spatial data analysis publication-title: Biostatistics – volume: 15 start-page: 328 year: 1978 end-page: 343 article-title: Approximation to data by splines with free knots publication-title: SIAM Journal on Numerical Analysis – volume: 97 start-page: 1055 year: 2002 end-page: 1070 article-title: Hidden Markov models and disease mapping publication-title: Journal of the American Statistical Association – volume: 64 start-page: 805 year: 2002 end-page: 826 article-title: Modelling spatially correlated data via mixtures: a Bayesian approach publication-title: Journal of the Royal Statistical Society Series B – volume: 54 start-page: 509 year: 1998 end-page: 524 article-title: Markov chain Monte Carlo for autologistic regression models with application to the distribution of plant species publication-title: Biometrics – volume: 6 start-page: 733 year: 1996 end-page: 807 article-title: Posterior predictive assessment of model fitness via realized discrepancies (with discussion) publication-title: Statistica Sinica – year: 1994 – volume: 53 start-page: 1334 year: 1997 end-page: 1353 article-title: Semiparametric regression analysis for recurrent event interval counts publication-title: Biometrics – volume: 11 start-page: 141 year: 2002 end-page: 166 article-title: Analysis of repeated events publication-title: Statistical Methods in Medical Research – volume: 26 start-page: 549 year: 1998 end-page: 565 article-title: Analysis of interval‐grouped recurrent‐event data using piecewise constant rate functions publication-title: The Canadian Journal of Statistics – volume: 82 start-page: 808 year: 1987 end-page: 815 article-title: Regression methods for Poisson process data publication-title: Journal of the American Statistical Association – volume: 92 start-page: 117 year: 1997 end-page: 127 article-title: Polychotomous regression publication-title: Journal of the American Statistical Association – volume: 12 year: 2003 – year: 2002 – volume: 11 start-page: 89 year: 1996 end-page: 102 article-title: Flexible smoothing with ‐splines and penalties publication-title: Statistical Science – year: 2006 – year: 1997 – year: 2006b article-title: Spatial multi‐state transitional models for longitudinal event data publication-title: Biometrics – volume: 41 start-page: 91 year: 1985 end-page: 101 article-title: Markov models for covariate dependence of binary sequences publication-title: Biometrics – year: 2006a article-title: A mixed mover‐stayer model for spatio‐temporal two‐state processes publication-title: Biometrics – year: 1993 – volume: 58 start-page: 324 year: 2002 end-page: 331 article-title: A semiparametric model for the analysis of recurrentevent panel data publication-title: Biometrics – volume: 2 start-page: 333 year: 2002 end-page: 349 article-title: Flexible smoothing with ‐splines: a unified approach publication-title: Statistical Modelling – ident: e_1_2_1_7_1 doi: 10.1007/0-387-28982-8 – ident: e_1_2_1_28_1 doi: 10.1002/0471721182 – ident: e_1_2_1_16_1 doi: 10.1198/016214502388618870 – ident: e_1_2_1_22_1 doi: 10.1080/01621459.1997.10473608 – ident: e_1_2_1_3_1 doi: 10.1002/(SICI)1097-0258(19980715)17:13<1481::AID-SIM858>3.0.CO;2-H – ident: e_1_2_1_8_1 doi: 10.1191/0962280202sm278ra – ident: e_1_2_1_9_1 doi: 10.1191/1471082x02st039ob – ident: e_1_2_1_17_1 doi: 10.1007/978-1-4899-4473-3 – ident: e_1_2_1_36_1 doi: 10.2307/2533501 – volume-title: Generalized, linear, and mixed models year: 2001 ident: e_1_2_1_27_1 – ident: e_1_2_1_30_1 doi: 10.1111/j.1541‐0420.2007.00752.x – ident: e_1_2_1_23_1 doi: 10.1080/01621459.1987.10478502 – ident: e_1_2_1_26_1 doi: 10.1046/j.1369-7412.2003.00422.x – ident: e_1_2_1_29_1 doi: 10.2307/2530646 – ident: e_1_2_1_6_1 doi: 10.2307/2290687 – ident: e_1_2_1_20_1 doi: 10.2307/3109759 – ident: e_1_2_1_12_1 doi: 10.1214/ss/1038425655 – ident: e_1_2_1_34_1 doi: 10.1093/biomet/87.2.391 – ident: e_1_2_1_33_1 doi: 10.1111/j.1541-0420.2007.00940.x – ident: e_1_2_1_10_1 doi: 10.1007/978-1-4612-6333-3 – ident: e_1_2_1_24_1 doi: 10.2307/3315717 – volume-title: Statistical Models Based on Counting Processes. Springer Series in Statistics year: 1993 ident: e_1_2_1_4_1 – ident: e_1_2_1_31_1 doi: 10.1111/j.1541‐0420.2007.00785.x – ident: e_1_2_1_32_1 doi: 10.1023/A:1009650012039 – ident: e_1_2_1_35_1 doi: 10.1017/CBO9780511755453 – ident: e_1_2_1_2_1 – ident: e_1_2_1_18_1 doi: 10.1007/978-1-4757-3683-0 – ident: e_1_2_1_5_1 doi: 10.1111/j.0006-341X.2002.00324.x – ident: e_1_2_1_25_1 doi: 10.1111/1467-9868.00183 – ident: e_1_2_1_19_1 doi: 10.1007/b98823 – volume-title: Time Series Analysis by State Space Methods, Oxford Statistical Science Series year: 2001 ident: e_1_2_1_11_1 – ident: e_1_2_1_14_1 doi: 10.1093/biostatistics/4.1.11 – ident: e_1_2_1_13_1 doi: 10.1111/1467-9868.00362 – volume: 6 start-page: 733 year: 1996 ident: e_1_2_1_15_1 article-title: Posterior predictive assessment of model fitness via realized discrepancies (with discussion) publication-title: Statistica Sinica – ident: e_1_2_1_21_1 doi: 10.1137/0715022 |
SSID | ssj0009657 |
Score | 1.7689247 |
Snippet | Studies of recurring infection or chronic disease often collect longitudinal data on the disease status of subjects. Two types of models may be envisioned for... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 713 |
SubjectTerms | longitudinal panel data mixture models multi-state models Prunus recurrent events splines |
Title | Spatial and mixture models for recurrent event processes |
URI | https://api.istex.fr/ark:/67375/WNG-2FM3QNX8-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fenv.870 https://www.proquest.com/docview/20493410 https://www.proquest.com/docview/30134111 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQvXBpeRR1Wx4-rPaWJYljJz4iuguqxEqgUlZcLD-lijagzS5C_HrGdvbVCqnqKQePJcczY38ee75BqFvISlHuyoSZELopXFJJy8CWNXGlM5Rrf1C8HLGLm-LbmI5XSn1FfohFwM17RlivvYNL1ZwsSUNt_dQHY4PVNyPMs-Z_vV4SR3FGY1mVKoUTUspjuqzvedL2W9uH3vkpfV4DmatQNew1ww_obj7K-MTkvj-bqr5--YPA8b9-Yxu9bxEoPo0ms4M2bL2L9gfLhDdobD2-2UOVr1kMNoplbfDvn8_-wgGH8jkNBryLJz5e7xmecKCCwo8x8cA2H9HNcPD97CJpqy0kmgCGSvLMEV5Rm_Myd04WlFrLuObUOE-4o3jqnKo4czrjpclT7Yhx1pRMF45kAOv20Wb9UNtPCHMiAefJwhpFClcxDpLKGiZVwVIiaQf15nMvdEtF7iti_BKRRDkHl30SMCsdhBeCj5F942-RXlDeol1O7v1jtZKK29G5yIeX5Go0rsR1Bx3PtSvAhfy9iKztw6wROZySYDNP35aAVRAEsqyDukGXbw1GDEY_4PP538S-oK0QKQ6ZjQdoczqZ2UOAOFN1FKz5FTKD-qY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5Be4BLeVZsKa0PVW_ZJvEj8RHR3S7QjUTVwkocLMcPCRXSah9Vxa9n7GR3KagS4pSDx5Jjz9jfjD3fABwwXdZc-iIRNoZumE9K7QTqsqG-8JZLExzFcSVGF-zDhE-6V5UhF6blh1gF3IJlxP06GHgISB-tWUNdc9NHbXsImwxhRnC8js_W1FFS8LawSpmij5TKNmE2dD3qOt45iTbDpN7egZm_g9V42gyfwNflONtHJpf9xbzum59_UDj-3488ha0OhJK3rdY8gweueQ7bg3XOGzZ2Rj97AWUoW4xqSnRjyY9vt-HOgcQKOjOCkJdMQ8g-kDyRyAZFrtvcAzd7CRfDwfm7UdIVXEgMRRiV5JmnsuQul0XuvWacOyekkdz6wLlTy9T7upTCm0wWNk-Np9Y7WwjDPM0Q2W3DRnPVuFdAJNUI9TRztqbMl0KiZO2s0DUTKdW8B4fLyVemYyMPRTG-q5ZHOUervVE4Kz0gK8HrloDjb5HDuHqrdj29DO_VCq6-VCcqH47pp2pSqrMe7C-XV6EVhasR3birxUzl6CjheZ7eL4EbIQpkWQ8O4mLeNxg1qD7jZ-ffxPbh0eh8fKpO31cfX8PjGDiOiY67sDGfLtwbRDzzei-q9i_VfP7F |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xkCoubWlBbF_4gLhlSeLYiY9Vu1seJWoRjxUXy_FDQrRhtQ-E-us7drK70AoJccrBY8nxzNifx55vAHYyVVRMuDziJoRuMhcVynK0ZU1d7gwT2h8Uj0u-f5YdDtjgXqmvhh9iHnDznhHWa-_gQ-P2FqShtr7torEtw2rGEUd4PHSyYI4SnDV1VYoYj0ixaPJlfde9tuODjWjVz-ndA5R5H6uGzab_Ci5nw2zemFx3p5Oqq__8w-D4rP94DS9bCEo-NzazDku2fgObvUXGGza2Lj9-C4UvWoxGSlRtyO-rO3_jQEL9nDFBwEtGPmDvKZ5I4IIiwybzwI434KzfO_2yH7XlFiJNEURFaeKoKJhNRZ46pzLGrOVCC2acZ9ypROxcVQjudCJyk8baUeOsybnOHE0Q123CSn1T2y0ggioEeiqzpqKZK7hAycoarirUFVWsA7uzuZe65SL3JTF-yYZFOUWfvZU4Kx0gc8FhQ7_xv8huUN68XY2u_Wu1nMmL8ptM-8f0Zzko5EkHtmfalehD_mJE1fZmOpYpHpNwN48fl8BlEAWSpAM7QZePDUb2ynP8vHua2Da8-PG1L78flEfvYS1EjUOW4wdYmYym9iPCnUn1KRj2X-h0_XQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+and+mixture+models+for+recurrent+event+processes&rft.jtitle=Environmetrics+%28London%2C+Ont.%29&rft.au=Dean%2C+C.+B.&rft.au=Nathoo%2C+F.&rft.au=Nielsen%2C+J.+D.&rft.date=2007-11-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1180-4009&rft.eissn=1099-095X&rft.volume=18&rft.issue=7&rft.spage=713&rft.epage=725&rft_id=info:doi/10.1002%2Fenv.870&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_2FM3QNX8_R |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1180-4009&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1180-4009&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1180-4009&client=summon |