A hybrid blockchain and machine learning approach for intrusion detection system in Industrial Internet of Things

The Industrial Internet of Things (IIoT) is a key component of Industry 4.0, which enables manufacturing to be automated and data collected in real-time. Edge IoT devices are subject to cybersecurity threats and unauthorised access. Decentralisation and resource limitations of IIoT often prevent tra...

Full description

Saved in:
Bibliographic Details
Published inAlexandria engineering journal Vol. 127; pp. 619 - 627
Main Authors Song, Wu, Zhu, Xiangyuan, Ren, Sheng, Tan, Wenxue, Peng, Yibo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Industrial Internet of Things (IIoT) is a key component of Industry 4.0, which enables manufacturing to be automated and data collected in real-time. Edge IoT devices are subject to cybersecurity threats and unauthorised access. Decentralisation and resource limitations of IIoT often prevent traditional security mechanisms from addressing these threats. Intrusion detection systems (IDSs), which are used to detect intrusions in IIoT environments, are presented in this paper as hybrid machine learning-blockchain approaches. Blockchain technology ensures data integrity, secures communication, and prevents unauthorised modifications through the proposed system. To reduce false positives and improve threat detection accuracy, XGBoost is able to reduce the number of false positives. Using the BOT-IoT dataset, the model is demonstrated to be superior to conventional intrusion detection systems. This approach ensures enhanced security and trustworthiness of IIoT networks by offering a scalable, efficient, and secure solution.
AbstractList The Industrial Internet of Things (IIoT) is a key component of Industry 4.0, which enables manufacturing to be automated and data collected in real-time. Edge IoT devices are subject to cybersecurity threats and unauthorised access. Decentralisation and resource limitations of IIoT often prevent traditional security mechanisms from addressing these threats. Intrusion detection systems (IDSs), which are used to detect intrusions in IIoT environments, are presented in this paper as hybrid machine learning-blockchain approaches. Blockchain technology ensures data integrity, secures communication, and prevents unauthorised modifications through the proposed system. To reduce false positives and improve threat detection accuracy, XGBoost is able to reduce the number of false positives. Using the BOT-IoT dataset, the model is demonstrated to be superior to conventional intrusion detection systems. This approach ensures enhanced security and trustworthiness of IIoT networks by offering a scalable, efficient, and secure solution.
Author Song, Wu
Ren, Sheng
Tan, Wenxue
Peng, Yibo
Zhu, Xiangyuan
Author_xml – sequence: 1
  givenname: Wu
  surname: Song
  fullname: Song, Wu
  email: songwu@huas.edu.cn
  organization: School of Computer and Electrical Engineering, Hunan University of Arts and Science, Changde, Hunan 415000, China
– sequence: 2
  givenname: Xiangyuan
  surname: Zhu
  fullname: Zhu, Xiangyuan
  email: swthesis@163.com
  organization: Hunan Provincial Key Laboratory of Network Investigational Technology, Hunan Police Academy, Changsha, Hunan 410138, China
– sequence: 3
  givenname: Sheng
  surname: Ren
  fullname: Ren, Sheng
  email: rensheng@huas.edu.cn
  organization: School of Computer and Electrical Engineering, Hunan University of Arts and Science, Changde, Hunan 415000, China
– sequence: 4
  givenname: Wenxue
  surname: Tan
  fullname: Tan, Wenxue
  email: twxpaper@huas.edu.cn
  organization: School of Computer and Electrical Engineering, Hunan University of Arts and Science, Changde, Hunan 415000, China
– sequence: 5
  givenname: Yibo
  surname: Peng
  fullname: Peng, Yibo
  email: hnwlpyb@huas.edu.cn
  organization: School of Computer and Electrical Engineering, Hunan University of Arts and Science, Changde, Hunan 415000, China
BookMark eNp9kMtKQzEQhrOoYL08gLu8QGsuJ-eCKxEvBcGNrkMukzbH06QmUejbm1px6TAwwwz_x8x_hmYhBkDoipIlJbS9HpcKxiUjTCxJTU5maE4pJYu67E_RZc4jqSG6oRnaOfq4xZu9Tt5iPUXzbjbKB6yCxVtlNj4AnkCl4MMaq90uxTrELibsQ0mf2ceALRQw5dDlfS6wrSu8CvYzl-TVVNsCKUDB0eHXClznC3Ti1JTh8reeo7eH-9e7p8Xzy-Pq7vZ5YXhLysLp1nZGMT7oXghHXcsdcA5MM0uAWtsYBlz0g2k607YElGBc972DHqxyjp-j1ZFroxrlLvmtSnsZlZc_g5jWUqXizQQSKKdGD6wzom8EG3o9DNyRRoMwjbZdZdEjy6SYcwL3x6NEHmyXo6y2y4PtktTkpGpujhqoT355SDIbD8GA9ak6Vq_w_6i_AbwCkM8
Cites_doi 10.1109/TIFS.2019.2936975
10.1109/TCE.2024.3351221
10.1109/ACCESS.2021.3095078
10.1109/ACCESS.2018.2799854
10.1109/CCGRID.2017.8
10.1016/j.compeleceng.2022.108379
10.1109/ACCESS.2019.2935142
10.1186/s42400-019-0038-7
10.1109/TEM.2019.2921736
10.3390/s22062112
10.1109/ACCESS.2020.3017891
10.3390/s22020572
10.3390/network3010006
10.1109/COMST.2015.2494502
10.3390/electronics9030521
10.34028/iajit/19/5/14
10.3390/su15119001
10.1186/s40854-016-0046-5
10.1109/TSMC.2020.3019272
10.1016/j.phycom.2020.101157
10.1016/j.jnca.2016.09.014
10.3390/en13153951
10.4018/JITR.2021070102
10.1016/j.future.2019.05.041
10.64179/3080-7549.1004
10.1016/j.future.2017.11.022
10.1016/j.inffus.2023.102002
10.1109/JIOT.2021.3125190
10.1016/j.jnca.2012.05.003
10.1109/TII.2020.3023430
10.1145/3291064.3291075
10.3390/s19143119
10.3390/electronics13040687
10.3390/s20164636
10.4018/IJDST.307900
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.aej.2025.05.030
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 627
ExternalDocumentID oai_doaj_org_article_e131cb927c5845298b993f04be5c4bd7
10_1016_j_aej_2025_05_030
S1110016825006507
GroupedDBID --K
0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
XH2
AAYXX
CITATION
ID FETCH-LOGICAL-c360t-fb6d7ca239b855f1f63fe33e2b2d0e1dd4c2e3589c47c660ea523b88fe8edaff3
IEDL.DBID DOA
ISSN 1110-0168
IngestDate Wed Aug 27 01:24:05 EDT 2025
Wed Aug 27 16:40:07 EDT 2025
Sat Aug 30 17:13:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Industry 4.0
Intrusion Detection Systems
Blockchain
Industrial Internet of Things
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-fb6d7ca239b855f1f63fe33e2b2d0e1dd4c2e3589c47c660ea523b88fe8edaff3
OpenAccessLink https://doaj.org/article/e131cb927c5845298b993f04be5c4bd7
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_e131cb927c5845298b993f04be5c4bd7
crossref_primary_10_1016_j_aej_2025_05_030
elsevier_sciencedirect_doi_10_1016_j_aej_2025_05_030
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationTitle Alexandria engineering journal
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Gong, Lee (bib42) 2020; 9
Adhikari, Ramkumar (bib7) 2023; 3
Meng, Li, Zhu (bib29) 2020; 67
Ali (bib40) 2022; 22
AlKadi, Moustafa, Turnbull, Choo (bib22) 2019; 7
Khan (bib47) 2024; 101
Hu, Zhou, Tian, Hu, Junping (bib33) Apr. 2021; 51
Khraisat, Gondal, Vamplew, Kamruzzaman (bib17) 2019; 2
Almaiah, Ali, Hajjej, Pasha, Alohali (bib35) 2022; 22
Botello, Mesa, Rodríguez, Díaz-López, Nespoli, Mármol (bib39) 2020; 20
Khan, Salah (bib26) 2018; 82
Bobde, Narayanan, Jati, Raj, Cvitić, Peraković (bib5) 2024; 13
S. Axelsson, Intrusion detection systems: A survey and taxonomy, 2000, (Accessed: Nov. 29, 2024). [Online]. Available
C.R. Meiners, J. Patel, E. Norige, E. Torng, and A.X. Liu, Fast regular expression matching using small {tcams} for network intrusion detection and prevention systems, in 19th USENIX Security Symposium (USENIX Security 10), 2010. (Accessed: Mar. 02, 2025). [Online]. Available
Guezzaz, Azrour, Benkirane, Mohy-Eddine, Attou, Douiba (bib36) 2022; 19
S. Kim, B. Kim, and H.J. Kim, Intrusion Detection and Mitigation System Using Blockchain Analysis for Bitcoin Exchange, in Proceedings of the 2018 International Conference on Cloud Computing and Internet of Things, Singapore Singapore: ACM, 2018, pp. 40–44.
Alkadi, Moustafa, Turnbull, Choo (bib18) 2020; 15
Buczak, Guven (bib13) 2016; 18
M. Sarhan, W.W. Lo, S. Layeghy, and M. Portmann, HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a Collaborative IoT Intrusion Detection, 2022, arXiv.
Alexopoulos, Vasilomanolakis, Ivánkó, Mühlhäuser (bib23) 2018; 10707
Singh (bib1) 2024
Bolat-Akça, Bozkaya (bib12) 2023
Xu (bib27) 2016; 2
Meng, Tischhauser, Wang, Wang, Han (bib24) 2018; 6
J.-H. Ahn, J.-Y. Kim, M. Im, J.-W. Han, and Y.-K. Choi, A nanogap-embedded nanowire field effect transistor for sensor applications: Immunosensor and humidity sensor, in Proceedings of the 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2010. (Accessed: Dec. 11, 2024). [Online]. Available
Goel, Khatri, Gangu, Ayyagiri, Mokkapati, Hussien (bib34) 2024
Rani (bib10) 2023
Nguyen, Marchal, Miettinen, Fereidooni, Asokan, Sadeghi (bib46) 2019
M. Almehdhar et al., Deep learning in the fast lane: A survey on advanced intrusion detection systems for intelligent vehicle networks, in IEEE Open Journal of Vehicular Technology, 2024, (Accessed: Mar. 02, 2025). [Online]. Available
Bhola (bib8) 2022
Zhang, Sun, Situ, Jiang, Xie (bib38) 2021; 9
Derhab (bib4) 2019; 19
M. Niedermaier, M. Striegel, F. Sauer, D. Merli, and G. Sigl, Efficient Intrusion Detection on Low-Performance Industrial IoT Edge Node Devices, 2019, arXiv.
Li, Meng, Kwok, Ip (bib19) 2017; 77
Alshahrani, Khan, Rizwan, Reshan, Sulaiman, Shaikh (bib3) 2023; 15
Baraniak, Starzyński (bib32) 2020; 13
Bediya, Kumar (bib11) 2021; 14
Li, Wu, Song, Lu, Li, Zhao (bib44) 2021; 17
Kumar (bib9) 2020; 8
.
Modi, Patel, Borisaniya, Patel, Patel, Rajarajan (bib21) 2013; 36
Gholami, Fakhari (bib31) 2017
Yu (bib41) 2022; 9
X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla, ProvChain: A Blockchain-Based Data Provenance Architecture in Cloud Environment with Enhanced Privacy and Availability, in 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), Madrid, Spain: IEEE, May 2017, pp. 468–477.
Rani, Garjola, Abbas (bib2) 2024; 1
Zhao, Yin, Shi, Xue (bib45) 2020; 42
Koroniotis, Moustafa, Sitnikova, Turnbull (bib43) 2019; 100
Hussain, Rani, Kumar, Chaudhary (bib20) 2022; 13
Gholami (10.1016/j.aej.2025.05.030_bib31) 2017
AlKadi (10.1016/j.aej.2025.05.030_bib22) 2019; 7
Alexopoulos (10.1016/j.aej.2025.05.030_bib23) 2018; 10707
Guezzaz (10.1016/j.aej.2025.05.030_bib36) 2022; 19
Rani (10.1016/j.aej.2025.05.030_bib2) 2024; 1
Bhola (10.1016/j.aej.2025.05.030_bib8) 2022
Alkadi (10.1016/j.aej.2025.05.030_bib18) 2020; 15
Meng (10.1016/j.aej.2025.05.030_bib24) 2018; 6
Alshahrani (10.1016/j.aej.2025.05.030_bib3) 2023; 15
Modi (10.1016/j.aej.2025.05.030_bib21) 2013; 36
Yu (10.1016/j.aej.2025.05.030_bib41) 2022; 9
Derhab (10.1016/j.aej.2025.05.030_bib4) 2019; 19
Li (10.1016/j.aej.2025.05.030_bib44) 2021; 17
Hussain (10.1016/j.aej.2025.05.030_bib20) 2022; 13
Zhao (10.1016/j.aej.2025.05.030_bib45) 2020; 42
Buczak (10.1016/j.aej.2025.05.030_bib13) 2016; 18
Bediya (10.1016/j.aej.2025.05.030_bib11) 2021; 14
10.1016/j.aej.2025.05.030_bib6
Kumar (10.1016/j.aej.2025.05.030_bib9) 2020; 8
Adhikari (10.1016/j.aej.2025.05.030_bib7) 2023; 3
Rani (10.1016/j.aej.2025.05.030_bib10) 2023
Gong (10.1016/j.aej.2025.05.030_bib42) 2020; 9
Goel (10.1016/j.aej.2025.05.030_bib34) 2024
10.1016/j.aej.2025.05.030_bib25
Khraisat (10.1016/j.aej.2025.05.030_bib17) 2019; 2
10.1016/j.aej.2025.05.030_bib28
Khan (10.1016/j.aej.2025.05.030_bib26) 2018; 82
Nguyen (10.1016/j.aej.2025.05.030_bib46) 2019
Botello (10.1016/j.aej.2025.05.030_bib39) 2020; 20
Singh (10.1016/j.aej.2025.05.030_bib1) 2024
Zhang (10.1016/j.aej.2025.05.030_bib38) 2021; 9
Meng (10.1016/j.aej.2025.05.030_bib29) 2020; 67
Baraniak (10.1016/j.aej.2025.05.030_bib32) 2020; 13
Khan (10.1016/j.aej.2025.05.030_bib47) 2024; 101
Li (10.1016/j.aej.2025.05.030_bib19) 2017; 77
Xu (10.1016/j.aej.2025.05.030_bib27) 2016; 2
Ali (10.1016/j.aej.2025.05.030_bib40) 2022; 22
Hu (10.1016/j.aej.2025.05.030_bib33) 2021; 51
10.1016/j.aej.2025.05.030_bib30
Bobde (10.1016/j.aej.2025.05.030_bib5) 2024; 13
Bolat-Akça (10.1016/j.aej.2025.05.030_bib12) 2023
Almaiah (10.1016/j.aej.2025.05.030_bib35) 2022; 22
10.1016/j.aej.2025.05.030_bib14
10.1016/j.aej.2025.05.030_bib15
10.1016/j.aej.2025.05.030_bib37
10.1016/j.aej.2025.05.030_bib16
Koroniotis (10.1016/j.aej.2025.05.030_bib43) 2019; 100
References_xml – start-page: 515
  year: 2017
  end-page: 535
  ident: bib31
  article-title: Support vector machine: principles, parameters, and applications
  publication-title: Handbook of Neural Computation
– volume: 100
  start-page: 779
  year: 2019
  end-page: 796
  ident: bib43
  article-title: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset
  publication-title: Future Gener. Comput. Syst.
– volume: 14
  start-page: 20
  year: 2021
  end-page: 37
  ident: bib11
  article-title: A novel intrusion detection system for Internet of Things network security
  publication-title: J. Inf. Technol. Res.
– volume: 9
  start-page: 8154
  year: 2022
  end-page: 8167
  ident: bib41
  article-title: A blockchain-based Shamir’s threshold cryptography scheme for data protection in Industrial Internet of Things settings
  publication-title: IEEE Internet Things J.
– volume: 9
  start-page: 521
  year: 2020
  ident: bib42
  article-title: BLOCIS: blockchain-based cyber threat intelligence sharing framework for sybil-resistance
  publication-title: Electronics
– start-page: 756
  year: 2019
  end-page: 767
  ident: bib46
  article-title: DÏoT: A federated self-learning anomaly detection system for IoT
  publication-title: in 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), IEEE
– volume: 20
  start-page: 4636
  year: 2020
  ident: bib39
  article-title: BlockSIEM: protecting smart city services through a blockchain-based and distributed SIEM
  publication-title: Sensors
– volume: 19
  start-page: 3119
  year: 2019
  ident: bib4
  article-title: Blockchain and random subspace learning-based IDS for SDN-enabled industrial IoT security
  publication-title: Sensors
– volume: 10707
  start-page: 107
  year: 2018
  end-page: 118
  ident: bib23
  article-title: Towards Blockchain-Based Collaborative Intrusion Detection Systems, Critical Information Infrastructures Security
  publication-title: in Lecture Notes in Computer Science
– reference: M. Sarhan, W.W. Lo, S. Layeghy, and M. Portmann, HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a Collaborative IoT Intrusion Detection, 2022, arXiv.
– reference: M. Almehdhar et al., Deep learning in the fast lane: A survey on advanced intrusion detection systems for intelligent vehicle networks, in IEEE Open Journal of Vehicular Technology, 2024, (Accessed: Mar. 02, 2025). [Online]. Available:
– volume: 19
  year: 2022
  ident: bib36
  article-title: A lightweight hybrid intrusion detection framework using machine learning for edge-based IIoT security
  publication-title: IAJIT
– year: 2024
  ident: bib1
  article-title: Blockchain-based lightweight authentication protocol for next-generation trustworthy internet of vehicles communication
  publication-title: IEEE Trans. Consum. Electron.
– reference: S. Axelsson, Intrusion detection systems: A survey and taxonomy, 2000, (Accessed: Nov. 29, 2024). [Online]. Available:
– volume: 67
  start-page: 1377
  year: 2020
  end-page: 1386
  ident: bib29
  article-title: Enhancing medical smartphone networks via blockchain-based trust management against insider attacks
  publication-title: IEEE Trans. Eng. Manag.
– volume: 36
  start-page: 42
  year: 2013
  end-page: 57
  ident: bib21
  article-title: A survey of intrusion detection techniques in Cloud
  publication-title: J. Netw. Comput. Appl.
– start-page: 0672
  year: 2023
  end-page: 0677
  ident: bib12
  article-title: Software-Defined Intrusion Detection System for DDoS Attacks in IoT Edge Networks
  publication-title: 2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Abu Dhabi, United Arab Emirates
– volume: 13
  start-page: 3951
  year: 2020
  ident: bib32
  article-title: Modeling the impact of electric vehicle charging systems on electric power quality
  publication-title: Energies
– volume: 22
  start-page: 572
  year: 2022
  ident: bib40
  article-title: An industrial IoT-based blockchain-enabled secure searchable encryption approach for healthcare systems using neural network
  publication-title: Sensors
– reference: M. Niedermaier, M. Striegel, F. Sauer, D. Merli, and G. Sigl, Efficient Intrusion Detection on Low-Performance Industrial IoT Edge Node Devices, 2019, arXiv.
– volume: 8
  start-page: 154166
  year: 2020
  end-page: 154185
  ident: bib9
  article-title: BlockEdge: blockchain-edge framework for industrial IoT networks
  publication-title: IEEE Access
– volume: 9
  start-page: 98630
  year: 2021
  end-page: 98638
  ident: bib38
  article-title: Federated transfer learning for IIoT devices with low computing power based on blockchain and edge computing
  publication-title: IEEE Access
– volume: 101
  year: 2024
  ident: bib47
  article-title: Fed-inforce-fusion: a federated reinforcement-based fusion model for security and privacy protection of IoMT networks against cyber-attacks
  publication-title: Inf. Fusion
– reference: C.R. Meiners, J. Patel, E. Norige, E. Torng, and A.X. Liu, Fast regular expression matching using small {tcams} for network intrusion detection and prevention systems, in 19th USENIX Security Symposium (USENIX Security 10), 2010. (Accessed: Mar. 02, 2025). [Online]. Available:
– volume: 15
  start-page: 9001
  year: 2023
  ident: bib3
  article-title: Intrusion detection framework for Industrial Internet of Things using software defined network
  publication-title: Sustainability
– volume: 18
  start-page: 1153
  year: 2016
  end-page: 1176
  ident: bib13
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 7
  start-page: 114607
  year: 2019
  end-page: 114618
  ident: bib22
  article-title: Mixture localization-based outliers models for securing data migration in cloud centers
  publication-title: IEEE Access
– volume: 82
  start-page: 395
  year: 2018
  end-page: 411
  ident: bib26
  article-title: IoT security: review, blockchain solutions, and open challenges
  publication-title: Future Gener. Comput. Syst.
– start-page: 307
  year: 2024
  end-page: 313
  ident: bib34
  article-title: Secure Edge IoT Intrusion Detection Framework for Industrial IoT via Blockchain Integration
  publication-title: 2024 4th International Conference on Blockchain Technology and Information Security (ICBCTIS)
– volume: 6
  start-page: 10179
  year: 2018
  end-page: 10188
  ident: bib24
  article-title: When intrusion detection meets blockchain technology: a review
  publication-title: IEEE Access
– volume: 2
  start-page: 20
  year: 2019
  ident: bib17
  article-title: Survey of intrusion detection systems: techniques, datasets and challenges
  publication-title: Cybersecur
– volume: 2
  start-page: 25
  year: 2016
  ident: bib27
  article-title: Are blockchains immune to all malicious attacks?
  publication-title: Financ Innov.
– year: 2023
  ident: bib10
  article-title: Federated learning-based misbehaviour detection for the 5G-enabled internet of vehicles
  publication-title: IEEE Trans. Consum. Electron.
– volume: 77
  start-page: 135
  year: 2017
  end-page: 145
  ident: bib19
  article-title: Enhancing collaborative intrusion detection networks against insider attacks using supervised intrusion sensitivity-based trust management model
  publication-title: J. Netw. Comput. Appl.
– volume: 42
  year: 2020
  ident: bib45
  article-title: Intelligent intrusion detection based on federated learning aided long short-term memory
  publication-title: Phys. Commun.
– volume: 13
  start-page: 687
  year: 2024
  ident: bib5
  article-title: Enhancing Industrial IoT Network Security through Blockchain Integration
  publication-title: Electronics
– reference: .
– volume: 15
  start-page: 1164
  year: 2020
  end-page: 1174
  ident: bib18
  article-title: An ontological graph identification method for improving localization of IP prefix hijacking in network systems
  publication-title: IEEE Trans. Inform. Forensic Secur
– volume: 13
  start-page: 1
  year: 2022
  end-page: 23
  ident: bib20
  article-title: A deep comprehensive research architecture, characteristics, challenges, issues, and benefits of routing protocol for vehicular ad-hoc networks
  publication-title: Int. J. Distrib. Syst. Technol. (IJDST)
– reference: S. Kim, B. Kim, and H.J. Kim, Intrusion Detection and Mitigation System Using Blockchain Analysis for Bitcoin Exchange, in Proceedings of the 2018 International Conference on Cloud Computing and Internet of Things, Singapore Singapore: ACM, 2018, pp. 40–44.
– volume: 51
  start-page: 2187
  year: Apr. 2021
  end-page: 2198
  ident: bib33
  article-title: Decentralized consensus decision-making for cybersecurity protection in multimicrogrid systems
  publication-title: IEEE Trans. Syst. Man Cyber Syst.
– volume: 17
  start-page: 5615
  year: 2021
  end-page: 5624
  ident: bib44
  article-title: DeepFed: federated deep learning for intrusion detection in industrial cyber–physical systems
  publication-title: IEEE Trans. Ind. Inf.
– volume: 3
  start-page: 115
  year: 2023
  end-page: 141
  ident: bib7
  article-title: IoT and blockchain integration: applications, opportunities, and challenges
  publication-title: Network
– reference: X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla, ProvChain: A Blockchain-Based Data Provenance Architecture in Cloud Environment with Enhanced Privacy and Availability, in 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), Madrid, Spain: IEEE, May 2017, pp. 468–477.
– year: 2022
  ident: bib8
  article-title: Quality-enabled decentralized dynamic IoT platform with scalable resources integration
  publication-title: IET Commun.
– reference: J.-H. Ahn, J.-Y. Kim, M. Im, J.-W. Han, and Y.-K. Choi, A nanogap-embedded nanowire field effect transistor for sensor applications: Immunosensor and humidity sensor, in Proceedings of the 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2010. (Accessed: Dec. 11, 2024). [Online]. Available:
– volume: 1
  start-page: 53
  year: 2024
  end-page: 65
  ident: bib2
  article-title: A predictive IoT and cloud framework for smart healthcare monitoring using integrated deep learning model
  publication-title: NJF Intell. Eng. J.
– volume: 22
  start-page: 2112
  year: 2022
  ident: bib35
  article-title: A lightweight hybrid deep learning privacy preserving model for FC-based Industrial Internet of medical things
  publication-title: Sensors
– year: 2022
  ident: 10.1016/j.aej.2025.05.030_bib8
  article-title: Quality-enabled decentralized dynamic IoT platform with scalable resources integration
  publication-title: IET Commun.
– ident: 10.1016/j.aej.2025.05.030_bib16
– volume: 15
  start-page: 1164
  year: 2020
  ident: 10.1016/j.aej.2025.05.030_bib18
  article-title: An ontological graph identification method for improving localization of IP prefix hijacking in network systems
  publication-title: IEEE Trans. Inform. Forensic Secur
  doi: 10.1109/TIFS.2019.2936975
– year: 2024
  ident: 10.1016/j.aej.2025.05.030_bib1
  article-title: Blockchain-based lightweight authentication protocol for next-generation trustworthy internet of vehicles communication
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2024.3351221
– ident: 10.1016/j.aej.2025.05.030_bib14
– volume: 9
  start-page: 98630
  year: 2021
  ident: 10.1016/j.aej.2025.05.030_bib38
  article-title: Federated transfer learning for IIoT devices with low computing power based on blockchain and edge computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3095078
– start-page: 0672
  year: 2023
  ident: 10.1016/j.aej.2025.05.030_bib12
  article-title: Software-Defined Intrusion Detection System for DDoS Attacks in IoT Edge Networks
– volume: 6
  start-page: 10179
  year: 2018
  ident: 10.1016/j.aej.2025.05.030_bib24
  article-title: When intrusion detection meets blockchain technology: a review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2799854
– ident: 10.1016/j.aej.2025.05.030_bib25
  doi: 10.1109/CCGRID.2017.8
– ident: 10.1016/j.aej.2025.05.030_bib37
  doi: 10.1016/j.compeleceng.2022.108379
– start-page: 307
  year: 2024
  ident: 10.1016/j.aej.2025.05.030_bib34
  article-title: Secure Edge IoT Intrusion Detection Framework for Industrial IoT via Blockchain Integration
– volume: 10707
  start-page: 107
  year: 2018
  ident: 10.1016/j.aej.2025.05.030_bib23
  article-title: Towards Blockchain-Based Collaborative Intrusion Detection Systems, Critical Information Infrastructures Security
– volume: 7
  start-page: 114607
  year: 2019
  ident: 10.1016/j.aej.2025.05.030_bib22
  article-title: Mixture localization-based outliers models for securing data migration in cloud centers
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2935142
– year: 2023
  ident: 10.1016/j.aej.2025.05.030_bib10
  article-title: Federated learning-based misbehaviour detection for the 5G-enabled internet of vehicles
  publication-title: IEEE Trans. Consum. Electron.
– volume: 2
  start-page: 20
  issue: 1
  year: 2019
  ident: 10.1016/j.aej.2025.05.030_bib17
  article-title: Survey of intrusion detection systems: techniques, datasets and challenges
  publication-title: Cybersecur
  doi: 10.1186/s42400-019-0038-7
– volume: 67
  start-page: 1377
  issue: 4
  year: 2020
  ident: 10.1016/j.aej.2025.05.030_bib29
  article-title: Enhancing medical smartphone networks via blockchain-based trust management against insider attacks
  publication-title: IEEE Trans. Eng. Manag.
  doi: 10.1109/TEM.2019.2921736
– volume: 22
  start-page: 2112
  issue: 6
  year: 2022
  ident: 10.1016/j.aej.2025.05.030_bib35
  article-title: A lightweight hybrid deep learning privacy preserving model for FC-based Industrial Internet of medical things
  publication-title: Sensors
  doi: 10.3390/s22062112
– volume: 8
  start-page: 154166
  year: 2020
  ident: 10.1016/j.aej.2025.05.030_bib9
  article-title: BlockEdge: blockchain-edge framework for industrial IoT networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3017891
– volume: 22
  start-page: 572
  issue: 2
  year: 2022
  ident: 10.1016/j.aej.2025.05.030_bib40
  article-title: An industrial IoT-based blockchain-enabled secure searchable encryption approach for healthcare systems using neural network
  publication-title: Sensors
  doi: 10.3390/s22020572
– volume: 3
  start-page: 115
  issue: 1
  year: 2023
  ident: 10.1016/j.aej.2025.05.030_bib7
  article-title: IoT and blockchain integration: applications, opportunities, and challenges
  publication-title: Network
  doi: 10.3390/network3010006
– volume: 18
  start-page: 1153
  issue: 2
  year: 2016
  ident: 10.1016/j.aej.2025.05.030_bib13
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2015.2494502
– volume: 9
  start-page: 521
  issue: 3
  year: 2020
  ident: 10.1016/j.aej.2025.05.030_bib42
  article-title: BLOCIS: blockchain-based cyber threat intelligence sharing framework for sybil-resistance
  publication-title: Electronics
  doi: 10.3390/electronics9030521
– start-page: 756
  year: 2019
  ident: 10.1016/j.aej.2025.05.030_bib46
  article-title: DÏoT: A federated self-learning anomaly detection system for IoT
– volume: 19
  issue: 5
  year: 2022
  ident: 10.1016/j.aej.2025.05.030_bib36
  article-title: A lightweight hybrid intrusion detection framework using machine learning for edge-based IIoT security
  publication-title: IAJIT
  doi: 10.34028/iajit/19/5/14
– volume: 15
  start-page: 9001
  issue: 11
  year: 2023
  ident: 10.1016/j.aej.2025.05.030_bib3
  article-title: Intrusion detection framework for Industrial Internet of Things using software defined network
  publication-title: Sustainability
  doi: 10.3390/su15119001
– volume: 2
  start-page: 25
  issue: 1
  year: 2016
  ident: 10.1016/j.aej.2025.05.030_bib27
  article-title: Are blockchains immune to all malicious attacks?
  publication-title: Financ Innov.
  doi: 10.1186/s40854-016-0046-5
– ident: 10.1016/j.aej.2025.05.030_bib6
– ident: 10.1016/j.aej.2025.05.030_bib15
– volume: 51
  start-page: 2187
  issue: 4
  year: 2021
  ident: 10.1016/j.aej.2025.05.030_bib33
  article-title: Decentralized consensus decision-making for cybersecurity protection in multimicrogrid systems
  publication-title: IEEE Trans. Syst. Man Cyber Syst.
  doi: 10.1109/TSMC.2020.3019272
– volume: 42
  year: 2020
  ident: 10.1016/j.aej.2025.05.030_bib45
  article-title: Intelligent intrusion detection based on federated learning aided long short-term memory
  publication-title: Phys. Commun.
  doi: 10.1016/j.phycom.2020.101157
– volume: 77
  start-page: 135
  year: 2017
  ident: 10.1016/j.aej.2025.05.030_bib19
  article-title: Enhancing collaborative intrusion detection networks against insider attacks using supervised intrusion sensitivity-based trust management model
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2016.09.014
– volume: 13
  start-page: 3951
  issue: 15
  year: 2020
  ident: 10.1016/j.aej.2025.05.030_bib32
  article-title: Modeling the impact of electric vehicle charging systems on electric power quality
  publication-title: Energies
  doi: 10.3390/en13153951
– volume: 14
  start-page: 20
  issue: 3
  year: 2021
  ident: 10.1016/j.aej.2025.05.030_bib11
  article-title: A novel intrusion detection system for Internet of Things network security
  publication-title: J. Inf. Technol. Res.
  doi: 10.4018/JITR.2021070102
– volume: 100
  start-page: 779
  year: 2019
  ident: 10.1016/j.aej.2025.05.030_bib43
  article-title: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.05.041
– ident: 10.1016/j.aej.2025.05.030_bib30
– volume: 1
  start-page: 53
  issue: 1
  year: 2024
  ident: 10.1016/j.aej.2025.05.030_bib2
  article-title: A predictive IoT and cloud framework for smart healthcare monitoring using integrated deep learning model
  publication-title: NJF Intell. Eng. J.
  doi: 10.64179/3080-7549.1004
– volume: 82
  start-page: 395
  year: 2018
  ident: 10.1016/j.aej.2025.05.030_bib26
  article-title: IoT security: review, blockchain solutions, and open challenges
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.11.022
– volume: 101
  year: 2024
  ident: 10.1016/j.aej.2025.05.030_bib47
  article-title: Fed-inforce-fusion: a federated reinforcement-based fusion model for security and privacy protection of IoMT networks against cyber-attacks
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.102002
– volume: 9
  start-page: 8154
  issue: 11
  year: 2022
  ident: 10.1016/j.aej.2025.05.030_bib41
  article-title: A blockchain-based Shamir’s threshold cryptography scheme for data protection in Industrial Internet of Things settings
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3125190
– volume: 36
  start-page: 42
  issue: 1
  year: 2013
  ident: 10.1016/j.aej.2025.05.030_bib21
  article-title: A survey of intrusion detection techniques in Cloud
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2012.05.003
– volume: 17
  start-page: 5615
  issue: 8
  year: 2021
  ident: 10.1016/j.aej.2025.05.030_bib44
  article-title: DeepFed: federated deep learning for intrusion detection in industrial cyber–physical systems
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2020.3023430
– ident: 10.1016/j.aej.2025.05.030_bib28
  doi: 10.1145/3291064.3291075
– volume: 19
  start-page: 3119
  issue: 14
  year: 2019
  ident: 10.1016/j.aej.2025.05.030_bib4
  article-title: Blockchain and random subspace learning-based IDS for SDN-enabled industrial IoT security
  publication-title: Sensors
  doi: 10.3390/s19143119
– volume: 13
  start-page: 687
  issue: 4
  year: 2024
  ident: 10.1016/j.aej.2025.05.030_bib5
  article-title: Enhancing Industrial IoT Network Security through Blockchain Integration
  publication-title: Electronics
  doi: 10.3390/electronics13040687
– volume: 20
  start-page: 4636
  issue: 16
  year: 2020
  ident: 10.1016/j.aej.2025.05.030_bib39
  article-title: BlockSIEM: protecting smart city services through a blockchain-based and distributed SIEM
  publication-title: Sensors
  doi: 10.3390/s20164636
– volume: 13
  start-page: 1
  issue: 8
  year: 2022
  ident: 10.1016/j.aej.2025.05.030_bib20
  article-title: A deep comprehensive research architecture, characteristics, challenges, issues, and benefits of routing protocol for vehicular ad-hoc networks
  publication-title: Int. J. Distrib. Syst. Technol. (IJDST)
  doi: 10.4018/IJDST.307900
– start-page: 515
  year: 2017
  ident: 10.1016/j.aej.2025.05.030_bib31
  article-title: Support vector machine: principles, parameters, and applications
SSID ssj0000579496
Score 2.3470252
Snippet The Industrial Internet of Things (IIoT) is a key component of Industry 4.0, which enables manufacturing to be automated and data collected in real-time. Edge...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 619
SubjectTerms Blockchain
Industrial Internet of Things
Industry 4.0
Intrusion Detection Systems
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqJhgQT1Fe8sCEFNXxK_HYIlCFBBNI3aLYPkOLSAF14d9zdhIoAwtSljh2HN0597DvviPkgllu0O2CLOqWTAbus1obl1lAfca1qvOUC3N3r6eP8namZgNy1efCxLDKTva3Mj1J665l1FFz9Dafj_A_jPhBGl2cZGfEjHIhy5TEN5t877PEZEuZynTF_lkc0B9upjCvGhboJXKV8DtjLPSaekoo_mtaak3z3OyQ7c5kpOP2q3bJAJo9srUGJLhP3sf0-TPmXlGLyunFPaO_T-vG09cUKwm0Kw7xRHsMcYrGKp03MeUCOUM9rFJMVkNbaGd8RH-qetB23xBWdBloW-nzgDzeXD9cTbOumELmhGarLFjtC1dzYWypVMiDFgGEAG65Z5B7Lx0HoUrjZOG0ZlCji2rLMkAJvg5BHJKNZtnAEaGWuTKIEA9tcRQrjMudMbwWAaWuksWQXPY0rN5azIyqDyZbVEjwKhK8YngJNiSTSOXvjhHuOjUsP56qjt8V5CJ31vDCob2kuCktmlWBSQvKSetxRtnzqPq1evBV87_nPv7fsBOyGe_aMMBTsoGsgjM0TVb2PK29L6HF4Xg
  priority: 102
  providerName: Elsevier
Title A hybrid blockchain and machine learning approach for intrusion detection system in Industrial Internet of Things
URI https://dx.doi.org/10.1016/j.aej.2025.05.030
https://doaj.org/article/e131cb927c5845298b993f04be5c4bd7
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVQucBhtcCiLSyVD5yQonX8lfjYIqpCBQdERW9RbI-37YoUpFz494ztBHJBXJCiHPJhRzNW3kzy5g0hr5nlBtMuKCK2FDJwX7TauMIC4hnXqi1TLczHT3qzkx_2aj9p9RU5YVkeOBvuFkpROmt45RAqFTe1RUQNTFpQTlqf6sgR8ybJVFb1xnWWmnOVZWJe6Xr8pZnIXS2cMDfkKql2Rgb0BJSSdv8EmyZ4s74kF0OgSJf5AZ-QB9A9JY8n8oHPyI8lPfyMFVfUIiTduwNm-bTtPP2WGJJAh5YQd3RUDqcYotJjFwst0B_UQ5-YWB3Ngs54iv7p5UHz10Lo6TnQ3N_ziuzW77683RRDC4XCCc36IljtK9dyYWytVCiDFgGEAG65Z1B6Lx0HoWrjZOW0ZtBiYmrrOkANvg1BPCez7tzBNaGWuTqg5blUeBerjCudMbwVAd-1SlZz8ma0YfM9K2U0I4Xs1KDBm2jwhuEm2JysopV_XxhFrtMBdH0zuL75l-vnRI4-aoZ4IccBONTx73O_-B9zvySP4pCZCnhDZug4eIXhSW8X5OFy-_nrdpFWJO7f71e_AAAR5BY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4HIBDxaOIRws-cEKK1vEr8RFQ0dICJ5D2ZsX2GJaqWUB74d8zdhK6PXCplJOdSaIZZx72zDeEnDDHDYZdUCTbUsjIQ9Fo4wsHaM-4Vk2Za2FubvX4Xv6cqMkSuRhqYVJaZa_7O52etXU_Muq5OXqeTkf4Hyb8II0hTvYzqmWyit5Alfo3XE3OPzZaUrWlzH26EkGRKIbTzZzn1cATholcZQDPlAy9YJ8yjP-CmVowPZeb5EvvM9Kz7rO2yBK022RjAUlwh7yc0ce3VHxFHVqn3_4RA37atIH-ycmSQPvuEA90ABGn6K3SaZtqLlA0NMA8J2W1tMN2xin6t60H7TYOYU5nkXatPr-S-8sfdxfjou-mUHih2byITofKN1wYVysVy6hFBCGAOx4YlCFIz0Go2nhZea0ZNBijurqOUENoYhS7ZKWdtbBHqGO-jiKmU1ukYpXxpTeGNyKi2lWy2ienAw_tcweaYYdssieLDLeJ4ZbhJdg-OU9c_rgx4V3ngdnrg-0FbqEUpXeGVx4dJsVN7dCvikw6UF66gG-Ug4zsP8sHHzX9_N0H_0d2TNbGdzfX9vrq9tchWU8zXU7gN7KCYoPv6KfM3VFeh-__XeSX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+blockchain+and+machine+learning+approach+for+intrusion+detection+system+in+Industrial+Internet+of+Things&rft.jtitle=Alexandria+engineering+journal&rft.au=Wu+Song&rft.au=Xiangyuan+Zhu&rft.au=Sheng+Ren&rft.au=Wenxue+Tan&rft.date=2025-08-01&rft.pub=Elsevier&rft.issn=1110-0168&rft.volume=127&rft.spage=619&rft.epage=627&rft_id=info:doi/10.1016%2Fj.aej.2025.05.030&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e131cb927c5845298b993f04be5c4bd7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon