Structuring an integrated air quality monitoring network in large urban areas – Discussing the purpose, criteria and deployment strategy
Air pollution in large urban areas has become a serious issue due to its negative impacts on human health, building materials, biodiversity and urban ecosystems in both developed and less-wealthy nations. In most large urban areas, especially in developed countries air quality monitoring networks (A...
Saved in:
Published in | Atmospheric Environment: X Vol. 2; p. 100027 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier
01.04.2019
|
Online Access | Get full text |
ISSN | 2590-1621 2590-1621 |
DOI | 10.1016/j.aeaoa.2019.100027 |
Cover
Loading…
Abstract | Air pollution in large urban areas has become a serious issue due to its negative impacts on human health, building materials, biodiversity and urban ecosystems in both developed and less-wealthy nations. In most large urban areas, especially in developed countries air quality monitoring networks (AQMN) have been established that provide air quality (AQ) data for various purposes, e.g., to monitor regulatory compliance and to assess the effectiveness of control strategies. However, the criteria of structuring the network are currently defined by single questions rather than attempting to create a network to serve multiple functions. Here we propose a methodology supported by numerical, conceptual and GIS frameworks for structuring AQMN using social, environmental and economic indicators as a case study in Sheffield, UK. The main factors used for air quality monitoring station (AQMS) selection are population-weighted pollution concentration (PWPC) and weighted spatial variability (WSV) incorporating population density (social indicator), pollution levels and spatial variability of air pollutant concentrations (environmental indicator). Total number of sensors is decided on the basis of budget (economic indicator), whereas the number of sensors deployed in each output area is proportional to WSV. The purpose of AQ monitoring and its role in determining the location of AQMS is analysed. Furthermore, the existing AQMN is analysed and an alternative proposed following a formal procedure. In contrast to traditional networks, which are structured based on a single AQ monitoring approach, the proposed AQMN has several layers of sensors: Reference sensors recommended by EU and DEFRA, low-cost sensors (LCS) (AQMesh and Envirowatch E-MOTEs) and IoT (Internet of Things) sensors. The core aim is to structure an integrated AQMN in urban areas, which will lead to the collection of AQ data with high spatiotemporal resolution. The use of LCS in the proposed network provides a cheaper option for setting up a purpose-designed network for greater spatial coverage, especially in low- and middle-income countries. Keywords: Air quality monitoring, Low-cost AQ sensors, AQ network, Sensors deployment, Sheffield |
---|---|
AbstractList | Air pollution in large urban areas has become a serious issue due to its negative impacts on human health, building materials, biodiversity and urban ecosystems in both developed and less-wealthy nations. In most large urban areas, especially in developed countries air quality monitoring networks (AQMN) have been established that provide air quality (AQ) data for various purposes, e.g., to monitor regulatory compliance and to assess the effectiveness of control strategies. However, the criteria of structuring the network are currently defined by single questions rather than attempting to create a network to serve multiple functions. Here we propose a methodology supported by numerical, conceptual and GIS frameworks for structuring AQMN using social, environmental and economic indicators as a case study in Sheffield, UK. The main factors used for air quality monitoring station (AQMS) selection are population-weighted pollution concentration (PWPC) and weighted spatial variability (WSV) incorporating population density (social indicator), pollution levels and spatial variability of air pollutant concentrations (environmental indicator). Total number of sensors is decided on the basis of budget (economic indicator), whereas the number of sensors deployed in each output area is proportional to WSV. The purpose of AQ monitoring and its role in determining the location of AQMS is analysed. Furthermore, the existing AQMN is analysed and an alternative proposed following a formal procedure. In contrast to traditional networks, which are structured based on a single AQ monitoring approach, the proposed AQMN has several layers of sensors: Reference sensors recommended by EU and DEFRA, low-cost sensors (LCS) (AQMesh and Envirowatch E-MOTEs) and IoT (Internet of Things) sensors. The core aim is to structure an integrated AQMN in urban areas, which will lead to the collection of AQ data with high spatiotemporal resolution. The use of LCS in the proposed network provides a cheaper option for setting up a purpose-designed network for greater spatial coverage, especially in low- and middle-income countries. Keywords: Air quality monitoring, Low-cost AQ sensors, AQ network, Sensors deployment, Sheffield |
ArticleNumber | 100027 |
Author | Mayfield, Martin Jubb, Stephen A. Coca, Daniel Munir, Said |
Author_xml | – sequence: 1 givenname: Said orcidid: 0000-0002-7163-2107 surname: Munir fullname: Munir, Said – sequence: 2 givenname: Martin surname: Mayfield fullname: Mayfield, Martin – sequence: 3 givenname: Daniel surname: Coca fullname: Coca, Daniel – sequence: 4 givenname: Stephen A. surname: Jubb fullname: Jubb, Stephen A. |
BookMark | eNp9kUuO1DAQhi00SAzDnICND0A3duw48RINr5FGYgGsrYofwU3absqOUO9Yz5YbchKSboRGLFhVqfQ_pPqekouUkyfkOWdbzrh6uduChwzbhnG9XBhrukfksmk123DV8IsH-xNyXcpulTRSKsYvyf3HirOtM8Y0Ukg0pupHhOodhYj02wxTrEe6zynWfBIlX79n_Loo6QQ4ejrjsBgBPRT668dP-joWO5eyausXTw8zHnLxL6jFWD1GWGocdf4w5ePep0pLXfvG4zPyOMBU_PWfeUU-v33z6eb95u7Du9ubV3cbKxSrm6Dbzg2qU63sVc-7vh9k6AMEpToRwhC6XivhpG0b2w06CBW048BdAwAuOHFFbs-5LsPOHDDuAY8mQzSnQ8bRANZoJ2-8aFo19EpJx6RXoCVwLZRshdPaMr1kiXOWxVwK-vA3jzOz0jE7c6JjVjrmTGdx6X9cNlaoMaflFXH6r_c3LMmdJQ |
CitedBy_id | crossref_primary_10_1007_s11869_022_01254_4 crossref_primary_10_5194_acp_22_4615_2022 crossref_primary_10_1088_1748_9326_ab8d7e crossref_primary_10_1089_ees_2023_0029 crossref_primary_10_2903_j_efsa_2024_e221104 crossref_primary_10_1007_s11869_024_01665_5 crossref_primary_10_1080_23251042_2023_2295099 crossref_primary_10_1109_JSEN_2023_3305779 crossref_primary_10_1109_IOTM_0101_2100007 crossref_primary_10_1038_s41597_021_01068_6 crossref_primary_10_1002_met_2161 crossref_primary_10_25044_25392190_1049 |
Cites_doi | 10.1016/j.envint.2017.05.005 10.1016/j.atmosenv.2012.11.060 10.1016/j.atmosenv.2004.06.049 10.1039/C5FD00201J 10.1016/j.scitotenv.2013.02.068 10.1016/j.proeng.2015.06.128 10.1016/j.atmosenv.2008.05.057 10.1016/S2468-2667(16)30023-8 10.1016/j.envsci.2016.01.009 10.1016/j.envint.2016.12.007 10.1016/S1352-2310(99)00292-7 10.1080/10473289.2002.10470778 10.1016/j.atmosenv.2014.08.015 10.1016/j.atmosenv.2016.11.014 10.1016/j.atmosenv.2016.09.050 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1016/j.aeaoa.2019.100027 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2590-1621 |
ExternalDocumentID | oai_doaj_org_article_e3256b8664d04e6a94a1936453d99c09 10_1016_j_aeaoa_2019_100027 |
GroupedDBID | 0R~ AAEDW AAHBH AALRI AAXUO AAYWO AAYXX ABMAC ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV CITATION EBS EJD FDB GROUPED_DOAJ M41 OK1 ROL SSZ |
ID | FETCH-LOGICAL-c360t-f957db676548681788b4f8faf6673ffbf78963d4c52c7b9f36f9d1a1d2aaadfd3 |
IEDL.DBID | DOA |
ISSN | 2590-1621 |
IngestDate | Wed Aug 27 01:30:07 EDT 2025 Tue Jul 01 04:16:24 EDT 2025 Thu Apr 24 23:11:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-f957db676548681788b4f8faf6673ffbf78963d4c52c7b9f36f9d1a1d2aaadfd3 |
ORCID | 0000-0002-7163-2107 |
OpenAccessLink | https://doaj.org/article/e3256b8664d04e6a94a1936453d99c09 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e3256b8664d04e6a94a1936453d99c09 crossref_primary_10_1016_j_aeaoa_2019_100027 crossref_citationtrail_10_1016_j_aeaoa_2019_100027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-00 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-00 |
PublicationDecade | 2010 |
PublicationTitle | Atmospheric Environment: X |
PublicationYear | 2019 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | (10.1016/j.aeaoa.2019.100027_bib13) 2011 Lewis (10.1016/j.aeaoa.2019.100027_bib19) 2016; 189 Ivaskova (10.1016/j.aeaoa.2019.100027_bib11) 2015; 108 SCC (10.1016/j.aeaoa.2019.100027_bib28) 2016 Hoek (10.1016/j.aeaoa.2019.100027_bib10) 2008; 42 Raffuse (10.1016/j.aeaoa.2019.100027_bib24) 2007 Air quality objectives (10.1016/j.aeaoa.2019.100027_bib1) 2015 Mead (10.1016/j.aeaoa.2019.100027_bib20) 2013; 70 Martin (10.1016/j.aeaoa.2019.100027_bib21) 2015 DEFRA (10.1016/j.aeaoa.2019.100027_bib6) 2015 Lebret (10.1016/j.aeaoa.2019.100027_bib18) 2000; 34 Borrego (10.1016/j.aeaoa.2019.100027_bib2) 2016; 147 Wu (10.1016/j.aeaoa.2019.100027_bib31) 2017; 149 Office for National Statistics (10.1016/j.aeaoa.2019.100027_bib23) 2018 LAQM.TG16 (10.1016/j.aeaoa.2019.100027_bib16) 2016 Brunt (10.1016/j.aeaoa.2019.100027_bib3) 2016; 58 Castell (10.1016/j.aeaoa.2019.100027_bib5) 2017; 99 Goswami (10.1016/j.aeaoa.2019.100027_bib9) 2002; 52 Landrigan (10.1016/j.aeaoa.2019.100027_bib15) 2017; 2 Munn (10.1016/j.aeaoa.2019.100027_bib22) 1981 DEFRA (10.1016/j.aeaoa.2019.100027_bib7) 2017 Kracht (10.1016/j.aeaoa.2019.100027_bib14) 2017 Walters (10.1016/j.aeaoa.2019.100027_bib29) 2001 Kanaroglou (10.1016/j.aeaoa.2019.100027_bib12) 2005; 39 Santiago (10.1016/j.aeaoa.2019.100027_bib26) 2013; 454 ESCAPE (10.1016/j.aeaoa.2019.100027_bib8) 2010 LAQM.TG9 (10.1016/j.aeaoa.2019.100027_bib17) 2009 Righini (10.1016/j.aeaoa.2019.100027_bib25) 2014; 97 WHO (10.1016/j.aeaoa.2019.100027_bib30) 2013 Carslaw (10.1016/j.aeaoa.2019.100027_bib4) 2015 Schneider (10.1016/j.aeaoa.2019.100027_bib27) 2017; 106 |
References_xml | – year: 2007 ident: 10.1016/j.aeaoa.2019.100027_bib24 – volume: 106 start-page: 234 year: 2017 ident: 10.1016/j.aeaoa.2019.100027_bib27 article-title: Mapping urban air quality in near real-time using observations from low cost sensors and model information publication-title: Environ. Int. doi: 10.1016/j.envint.2017.05.005 – start-page: 275 year: 2001 ident: 10.1016/j.aeaoa.2019.100027_bib29 – year: 2011 ident: 10.1016/j.aeaoa.2019.100027_bib13 – year: 2015 ident: 10.1016/j.aeaoa.2019.100027_bib21 – year: 2018 ident: 10.1016/j.aeaoa.2019.100027_bib23 – year: 2016 ident: 10.1016/j.aeaoa.2019.100027_bib16 – year: 2009 ident: 10.1016/j.aeaoa.2019.100027_bib17 – volume: 70 start-page: 186 year: 2013 ident: 10.1016/j.aeaoa.2019.100027_bib20 article-title: The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2012.11.060 – year: 2015 ident: 10.1016/j.aeaoa.2019.100027_bib6 – volume: 39 start-page: 2399 year: 2005 ident: 10.1016/j.aeaoa.2019.100027_bib12 article-title: Establishing an air pollution monitoring network for intraurban population exposure assessment: a location-allocation approach publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2004.06.049 – volume: 189 start-page: 85 year: 2016 ident: 10.1016/j.aeaoa.2019.100027_bib19 article-title: Evaluating the performance of low cost chemical sensors for air pollution research publication-title: Faraday Discuss doi: 10.1039/C5FD00201J – volume: 454 start-page: 61 year: 2013 ident: 10.1016/j.aeaoa.2019.100027_bib26 article-title: A computational fluid dynamic modelling approach to assess the representativeness of urban monitoring station publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.02.068 – year: 2015 ident: 10.1016/j.aeaoa.2019.100027_bib4 – volume: 108 start-page: 131 year: 2015 ident: 10.1016/j.aeaoa.2019.100027_bib11 article-title: Air pollution as an important factor in construction materials deterioration in Slovak Republic publication-title: Procedia Engineering doi: 10.1016/j.proeng.2015.06.128 – year: 1981 ident: 10.1016/j.aeaoa.2019.100027_bib22 – volume: 42 start-page: 7561 year: 2008 ident: 10.1016/j.aeaoa.2019.100027_bib10 article-title: A review of land-use regression models to assess spatial variation of outdoor air pollution publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.05.057 – volume: 2 start-page: 4 issue: 1 year: 2017 ident: 10.1016/j.aeaoa.2019.100027_bib15 article-title: Air pollution and health publication-title: The LANCET – Public Health doi: 10.1016/S2468-2667(16)30023-8 – year: 2016 ident: 10.1016/j.aeaoa.2019.100027_bib28 – volume: 58 start-page: 52 year: 2016 ident: 10.1016/j.aeaoa.2019.100027_bib3 article-title: Local air quality management policy and practice in the UK: the case for greater public health integration and engagement publication-title: Environ. Sci. Policy doi: 10.1016/j.envsci.2016.01.009 – year: 2015 ident: 10.1016/j.aeaoa.2019.100027_bib1 – year: 2017 ident: 10.1016/j.aeaoa.2019.100027_bib14 – volume: 99 start-page: 293 year: 2017 ident: 10.1016/j.aeaoa.2019.100027_bib5 article-title: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? publication-title: Environ. Int. doi: 10.1016/j.envint.2016.12.007 – volume: 34 start-page: 177 issue: 2 year: 2000 ident: 10.1016/j.aeaoa.2019.100027_bib18 article-title: Small area variations in ambient NO2concentrations in four European areas publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(99)00292-7 – volume: 52 start-page: 324 year: 2002 ident: 10.1016/j.aeaoa.2019.100027_bib9 article-title: Spatial characteristics of fine particulate matter: identifying representative monitoring locations in Seattle. Washington publication-title: J. Air Waste Manag. Assoc. doi: 10.1080/10473289.2002.10470778 – year: 2013 ident: 10.1016/j.aeaoa.2019.100027_bib30 – year: 2017 ident: 10.1016/j.aeaoa.2019.100027_bib7 – volume: 97 start-page: 121 year: 2014 ident: 10.1016/j.aeaoa.2019.100027_bib25 article-title: GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.08.015 – year: 2010 ident: 10.1016/j.aeaoa.2019.100027_bib8 – volume: 149 start-page: 24 year: 2017 ident: 10.1016/j.aeaoa.2019.100027_bib31 article-title: Effect of monitoring network design on land use regression models for estimating residential NO2 concentration publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.11.014 – volume: 147 start-page: 246 year: 2016 ident: 10.1016/j.aeaoa.2019.100027_bib2 article-title: Assessment of air quality microsensors versus reference methods: the EuNetAir joint exercise publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.09.050 |
SSID | ssj0002244601 |
Score | 2.2813861 |
Snippet | Air pollution in large urban areas has become a serious issue due to its negative impacts on human health, building materials, biodiversity and urban... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 100027 |
Title | Structuring an integrated air quality monitoring network in large urban areas – Discussing the purpose, criteria and deployment strategy |
URI | https://doaj.org/article/e3256b8664d04e6a94a1936453d99c09 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwsCAeItD4yNiBvHsUdeFWJgASS26PySQJBWLQzdmFn5h_wS7uy26gQLa3ROrPM5d7a--z7GTpwu6xhEVTQWqkIK2xRQWlEo5SKmhIBBktg-b9X1g7x5rB-XpL4IE5bpgbPjTkOFSdlqpaQvZVBgJGDNoWRdeWNcbt3DnLd0mHpOpC54zEnax1jel4VQfTGnHErgLggwJNYhYQgmUJKmzFJaWmLvT2lmsMHWZ_UhP8vz2mQrodtin3eJ5TV1FHLo-ILjwXN4GvPcGDnlr2l_JqMuo7vRkr8Q1pu_jy0OBIKg8--PL375NHHvE7oo4FgC8hH6ezgJPY4_EWJvBvyM5z6QHDDdH_JJZrGdbrOHwdX9xXUxE1EoXKXKtyKauvFWNaQPr7TAE6-VUUeIpPcZo42Nxj3opav7rrEmVioaL0D4PgD46KsdttoNu7DLuDa-kkH7WgbMfbUDUM4ro6OJ0Oja7LH-3IetmzGMk9DFSzuHkj23yfEtOb7Njt9jvcWgUSbY-N38nBZnYUrs2OkBxkw7i5n2r5jZ_4-XHLA1mldG8RyyVQyEcIQFyps9TrH4A7mp48o |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structuring+an+integrated+air+quality+monitoring+network+in+large+urban+areas+%E2%80%93+Discussing+the+purpose%2C+criteria+and+deployment+strategy&rft.jtitle=Atmospheric+Environment%3A+X&rft.au=Said+Munir&rft.au=Martin+Mayfield&rft.au=Daniel+Coca&rft.au=Stephen+A.+Jubb&rft.date=2019-04-01&rft.pub=Elsevier&rft.issn=2590-1621&rft.eissn=2590-1621&rft.volume=2&rft_id=info:doi/10.1016%2Fj.aeaoa.2019.100027&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e3256b8664d04e6a94a1936453d99c09 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1621&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1621&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1621&client=summon |