Structuring an integrated air quality monitoring network in large urban areas – Discussing the purpose, criteria and deployment strategy

Air pollution in large urban areas has become a serious issue due to its negative impacts on human health, building materials, biodiversity and urban ecosystems in both developed and less-wealthy nations. In most large urban areas, especially in developed countries air quality monitoring networks (A...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric Environment: X Vol. 2; p. 100027
Main Authors Munir, Said, Mayfield, Martin, Coca, Daniel, Jubb, Stephen A.
Format Journal Article
LanguageEnglish
Published Elsevier 01.04.2019
Online AccessGet full text
ISSN2590-1621
2590-1621
DOI10.1016/j.aeaoa.2019.100027

Cover

Loading…
Abstract Air pollution in large urban areas has become a serious issue due to its negative impacts on human health, building materials, biodiversity and urban ecosystems in both developed and less-wealthy nations. In most large urban areas, especially in developed countries air quality monitoring networks (AQMN) have been established that provide air quality (AQ) data for various purposes, e.g., to monitor regulatory compliance and to assess the effectiveness of control strategies. However, the criteria of structuring the network are currently defined by single questions rather than attempting to create a network to serve multiple functions. Here we propose a methodology supported by numerical, conceptual and GIS frameworks for structuring AQMN using social, environmental and economic indicators as a case study in Sheffield, UK. The main factors used for air quality monitoring station (AQMS) selection are population-weighted pollution concentration (PWPC) and weighted spatial variability (WSV) incorporating population density (social indicator), pollution levels and spatial variability of air pollutant concentrations (environmental indicator). Total number of sensors is decided on the basis of budget (economic indicator), whereas the number of sensors deployed in each output area is proportional to WSV. The purpose of AQ monitoring and its role in determining the location of AQMS is analysed. Furthermore, the existing AQMN is analysed and an alternative proposed following a formal procedure. In contrast to traditional networks, which are structured based on a single AQ monitoring approach, the proposed AQMN has several layers of sensors: Reference sensors recommended by EU and DEFRA, low-cost sensors (LCS) (AQMesh and Envirowatch E-MOTEs) and IoT (Internet of Things) sensors. The core aim is to structure an integrated AQMN in urban areas, which will lead to the collection of AQ data with high spatiotemporal resolution. The use of LCS in the proposed network provides a cheaper option for setting up a purpose-designed network for greater spatial coverage, especially in low- and middle-income countries. Keywords: Air quality monitoring, Low-cost AQ sensors, AQ network, Sensors deployment, Sheffield
AbstractList Air pollution in large urban areas has become a serious issue due to its negative impacts on human health, building materials, biodiversity and urban ecosystems in both developed and less-wealthy nations. In most large urban areas, especially in developed countries air quality monitoring networks (AQMN) have been established that provide air quality (AQ) data for various purposes, e.g., to monitor regulatory compliance and to assess the effectiveness of control strategies. However, the criteria of structuring the network are currently defined by single questions rather than attempting to create a network to serve multiple functions. Here we propose a methodology supported by numerical, conceptual and GIS frameworks for structuring AQMN using social, environmental and economic indicators as a case study in Sheffield, UK. The main factors used for air quality monitoring station (AQMS) selection are population-weighted pollution concentration (PWPC) and weighted spatial variability (WSV) incorporating population density (social indicator), pollution levels and spatial variability of air pollutant concentrations (environmental indicator). Total number of sensors is decided on the basis of budget (economic indicator), whereas the number of sensors deployed in each output area is proportional to WSV. The purpose of AQ monitoring and its role in determining the location of AQMS is analysed. Furthermore, the existing AQMN is analysed and an alternative proposed following a formal procedure. In contrast to traditional networks, which are structured based on a single AQ monitoring approach, the proposed AQMN has several layers of sensors: Reference sensors recommended by EU and DEFRA, low-cost sensors (LCS) (AQMesh and Envirowatch E-MOTEs) and IoT (Internet of Things) sensors. The core aim is to structure an integrated AQMN in urban areas, which will lead to the collection of AQ data with high spatiotemporal resolution. The use of LCS in the proposed network provides a cheaper option for setting up a purpose-designed network for greater spatial coverage, especially in low- and middle-income countries. Keywords: Air quality monitoring, Low-cost AQ sensors, AQ network, Sensors deployment, Sheffield
ArticleNumber 100027
Author Mayfield, Martin
Jubb, Stephen A.
Coca, Daniel
Munir, Said
Author_xml – sequence: 1
  givenname: Said
  orcidid: 0000-0002-7163-2107
  surname: Munir
  fullname: Munir, Said
– sequence: 2
  givenname: Martin
  surname: Mayfield
  fullname: Mayfield, Martin
– sequence: 3
  givenname: Daniel
  surname: Coca
  fullname: Coca, Daniel
– sequence: 4
  givenname: Stephen A.
  surname: Jubb
  fullname: Jubb, Stephen A.
BookMark eNp9kUuO1DAQhi00SAzDnICND0A3duw48RINr5FGYgGsrYofwU3absqOUO9Yz5YbchKSboRGLFhVqfQ_pPqekouUkyfkOWdbzrh6uduChwzbhnG9XBhrukfksmk123DV8IsH-xNyXcpulTRSKsYvyf3HirOtM8Y0Ukg0pupHhOodhYj02wxTrEe6zynWfBIlX79n_Loo6QQ4ejrjsBgBPRT668dP-joWO5eyausXTw8zHnLxL6jFWD1GWGocdf4w5ePep0pLXfvG4zPyOMBU_PWfeUU-v33z6eb95u7Du9ubV3cbKxSrm6Dbzg2qU63sVc-7vh9k6AMEpToRwhC6XivhpG0b2w06CBW048BdAwAuOHFFbs-5LsPOHDDuAY8mQzSnQ8bRANZoJ2-8aFo19EpJx6RXoCVwLZRshdPaMr1kiXOWxVwK-vA3jzOz0jE7c6JjVjrmTGdx6X9cNlaoMaflFXH6r_c3LMmdJQ
CitedBy_id crossref_primary_10_1007_s11869_022_01254_4
crossref_primary_10_5194_acp_22_4615_2022
crossref_primary_10_1088_1748_9326_ab8d7e
crossref_primary_10_1089_ees_2023_0029
crossref_primary_10_2903_j_efsa_2024_e221104
crossref_primary_10_1007_s11869_024_01665_5
crossref_primary_10_1080_23251042_2023_2295099
crossref_primary_10_1109_JSEN_2023_3305779
crossref_primary_10_1109_IOTM_0101_2100007
crossref_primary_10_1038_s41597_021_01068_6
crossref_primary_10_1002_met_2161
crossref_primary_10_25044_25392190_1049
Cites_doi 10.1016/j.envint.2017.05.005
10.1016/j.atmosenv.2012.11.060
10.1016/j.atmosenv.2004.06.049
10.1039/C5FD00201J
10.1016/j.scitotenv.2013.02.068
10.1016/j.proeng.2015.06.128
10.1016/j.atmosenv.2008.05.057
10.1016/S2468-2667(16)30023-8
10.1016/j.envsci.2016.01.009
10.1016/j.envint.2016.12.007
10.1016/S1352-2310(99)00292-7
10.1080/10473289.2002.10470778
10.1016/j.atmosenv.2014.08.015
10.1016/j.atmosenv.2016.11.014
10.1016/j.atmosenv.2016.09.050
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.aeaoa.2019.100027
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2590-1621
ExternalDocumentID oai_doaj_org_article_e3256b8664d04e6a94a1936453d99c09
10_1016_j_aeaoa_2019_100027
GroupedDBID 0R~
AAEDW
AAHBH
AALRI
AAXUO
AAYWO
AAYXX
ABMAC
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
M41
OK1
ROL
SSZ
ID FETCH-LOGICAL-c360t-f957db676548681788b4f8faf6673ffbf78963d4c52c7b9f36f9d1a1d2aaadfd3
IEDL.DBID DOA
ISSN 2590-1621
IngestDate Wed Aug 27 01:30:07 EDT 2025
Tue Jul 01 04:16:24 EDT 2025
Thu Apr 24 23:11:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-f957db676548681788b4f8faf6673ffbf78963d4c52c7b9f36f9d1a1d2aaadfd3
ORCID 0000-0002-7163-2107
OpenAccessLink https://doaj.org/article/e3256b8664d04e6a94a1936453d99c09
ParticipantIDs doaj_primary_oai_doaj_org_article_e3256b8664d04e6a94a1936453d99c09
crossref_primary_10_1016_j_aeaoa_2019_100027
crossref_citationtrail_10_1016_j_aeaoa_2019_100027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-00
2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-00
PublicationDecade 2010
PublicationTitle Atmospheric Environment: X
PublicationYear 2019
Publisher Elsevier
Publisher_xml – name: Elsevier
References (10.1016/j.aeaoa.2019.100027_bib13) 2011
Lewis (10.1016/j.aeaoa.2019.100027_bib19) 2016; 189
Ivaskova (10.1016/j.aeaoa.2019.100027_bib11) 2015; 108
SCC (10.1016/j.aeaoa.2019.100027_bib28) 2016
Hoek (10.1016/j.aeaoa.2019.100027_bib10) 2008; 42
Raffuse (10.1016/j.aeaoa.2019.100027_bib24) 2007
Air quality objectives (10.1016/j.aeaoa.2019.100027_bib1) 2015
Mead (10.1016/j.aeaoa.2019.100027_bib20) 2013; 70
Martin (10.1016/j.aeaoa.2019.100027_bib21) 2015
DEFRA (10.1016/j.aeaoa.2019.100027_bib6) 2015
Lebret (10.1016/j.aeaoa.2019.100027_bib18) 2000; 34
Borrego (10.1016/j.aeaoa.2019.100027_bib2) 2016; 147
Wu (10.1016/j.aeaoa.2019.100027_bib31) 2017; 149
Office for National Statistics (10.1016/j.aeaoa.2019.100027_bib23) 2018
LAQM.TG16 (10.1016/j.aeaoa.2019.100027_bib16) 2016
Brunt (10.1016/j.aeaoa.2019.100027_bib3) 2016; 58
Castell (10.1016/j.aeaoa.2019.100027_bib5) 2017; 99
Goswami (10.1016/j.aeaoa.2019.100027_bib9) 2002; 52
Landrigan (10.1016/j.aeaoa.2019.100027_bib15) 2017; 2
Munn (10.1016/j.aeaoa.2019.100027_bib22) 1981
DEFRA (10.1016/j.aeaoa.2019.100027_bib7) 2017
Kracht (10.1016/j.aeaoa.2019.100027_bib14) 2017
Walters (10.1016/j.aeaoa.2019.100027_bib29) 2001
Kanaroglou (10.1016/j.aeaoa.2019.100027_bib12) 2005; 39
Santiago (10.1016/j.aeaoa.2019.100027_bib26) 2013; 454
ESCAPE (10.1016/j.aeaoa.2019.100027_bib8) 2010
LAQM.TG9 (10.1016/j.aeaoa.2019.100027_bib17) 2009
Righini (10.1016/j.aeaoa.2019.100027_bib25) 2014; 97
WHO (10.1016/j.aeaoa.2019.100027_bib30) 2013
Carslaw (10.1016/j.aeaoa.2019.100027_bib4) 2015
Schneider (10.1016/j.aeaoa.2019.100027_bib27) 2017; 106
References_xml – year: 2007
  ident: 10.1016/j.aeaoa.2019.100027_bib24
– volume: 106
  start-page: 234
  year: 2017
  ident: 10.1016/j.aeaoa.2019.100027_bib27
  article-title: Mapping urban air quality in near real-time using observations from low cost sensors and model information
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2017.05.005
– start-page: 275
  year: 2001
  ident: 10.1016/j.aeaoa.2019.100027_bib29
– year: 2011
  ident: 10.1016/j.aeaoa.2019.100027_bib13
– year: 2015
  ident: 10.1016/j.aeaoa.2019.100027_bib21
– year: 2018
  ident: 10.1016/j.aeaoa.2019.100027_bib23
– year: 2016
  ident: 10.1016/j.aeaoa.2019.100027_bib16
– year: 2009
  ident: 10.1016/j.aeaoa.2019.100027_bib17
– volume: 70
  start-page: 186
  year: 2013
  ident: 10.1016/j.aeaoa.2019.100027_bib20
  article-title: The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.11.060
– year: 2015
  ident: 10.1016/j.aeaoa.2019.100027_bib6
– volume: 39
  start-page: 2399
  year: 2005
  ident: 10.1016/j.aeaoa.2019.100027_bib12
  article-title: Establishing an air pollution monitoring network for intraurban population exposure assessment: a location-allocation approach
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2004.06.049
– volume: 189
  start-page: 85
  year: 2016
  ident: 10.1016/j.aeaoa.2019.100027_bib19
  article-title: Evaluating the performance of low cost chemical sensors for air pollution research
  publication-title: Faraday Discuss
  doi: 10.1039/C5FD00201J
– volume: 454
  start-page: 61
  year: 2013
  ident: 10.1016/j.aeaoa.2019.100027_bib26
  article-title: A computational fluid dynamic modelling approach to assess the representativeness of urban monitoring station
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.02.068
– year: 2015
  ident: 10.1016/j.aeaoa.2019.100027_bib4
– volume: 108
  start-page: 131
  year: 2015
  ident: 10.1016/j.aeaoa.2019.100027_bib11
  article-title: Air pollution as an important factor in construction materials deterioration in Slovak Republic
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2015.06.128
– year: 1981
  ident: 10.1016/j.aeaoa.2019.100027_bib22
– volume: 42
  start-page: 7561
  year: 2008
  ident: 10.1016/j.aeaoa.2019.100027_bib10
  article-title: A review of land-use regression models to assess spatial variation of outdoor air pollution
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.05.057
– volume: 2
  start-page: 4
  issue: 1
  year: 2017
  ident: 10.1016/j.aeaoa.2019.100027_bib15
  article-title: Air pollution and health
  publication-title: The LANCET – Public Health
  doi: 10.1016/S2468-2667(16)30023-8
– year: 2016
  ident: 10.1016/j.aeaoa.2019.100027_bib28
– volume: 58
  start-page: 52
  year: 2016
  ident: 10.1016/j.aeaoa.2019.100027_bib3
  article-title: Local air quality management policy and practice in the UK: the case for greater public health integration and engagement
  publication-title: Environ. Sci. Policy
  doi: 10.1016/j.envsci.2016.01.009
– year: 2015
  ident: 10.1016/j.aeaoa.2019.100027_bib1
– year: 2017
  ident: 10.1016/j.aeaoa.2019.100027_bib14
– volume: 99
  start-page: 293
  year: 2017
  ident: 10.1016/j.aeaoa.2019.100027_bib5
  article-title: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2016.12.007
– volume: 34
  start-page: 177
  issue: 2
  year: 2000
  ident: 10.1016/j.aeaoa.2019.100027_bib18
  article-title: Small area variations in ambient NO2concentrations in four European areas
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(99)00292-7
– volume: 52
  start-page: 324
  year: 2002
  ident: 10.1016/j.aeaoa.2019.100027_bib9
  article-title: Spatial characteristics of fine particulate matter: identifying representative monitoring locations in Seattle. Washington
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.1080/10473289.2002.10470778
– year: 2013
  ident: 10.1016/j.aeaoa.2019.100027_bib30
– year: 2017
  ident: 10.1016/j.aeaoa.2019.100027_bib7
– volume: 97
  start-page: 121
  year: 2014
  ident: 10.1016/j.aeaoa.2019.100027_bib25
  article-title: GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.08.015
– year: 2010
  ident: 10.1016/j.aeaoa.2019.100027_bib8
– volume: 149
  start-page: 24
  year: 2017
  ident: 10.1016/j.aeaoa.2019.100027_bib31
  article-title: Effect of monitoring network design on land use regression models for estimating residential NO2 concentration
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.11.014
– volume: 147
  start-page: 246
  year: 2016
  ident: 10.1016/j.aeaoa.2019.100027_bib2
  article-title: Assessment of air quality microsensors versus reference methods: the EuNetAir joint exercise
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.09.050
SSID ssj0002244601
Score 2.2813861
Snippet Air pollution in large urban areas has become a serious issue due to its negative impacts on human health, building materials, biodiversity and urban...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 100027
Title Structuring an integrated air quality monitoring network in large urban areas – Discussing the purpose, criteria and deployment strategy
URI https://doaj.org/article/e3256b8664d04e6a94a1936453d99c09
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwsCAeItD4yNiBvHsUdeFWJgASS26PySQJBWLQzdmFn5h_wS7uy26gQLa3ROrPM5d7a--z7GTpwu6xhEVTQWqkIK2xRQWlEo5SKmhIBBktg-b9X1g7x5rB-XpL4IE5bpgbPjTkOFSdlqpaQvZVBgJGDNoWRdeWNcbt3DnLd0mHpOpC54zEnax1jel4VQfTGnHErgLggwJNYhYQgmUJKmzFJaWmLvT2lmsMHWZ_UhP8vz2mQrodtin3eJ5TV1FHLo-ILjwXN4GvPcGDnlr2l_JqMuo7vRkr8Q1pu_jy0OBIKg8--PL375NHHvE7oo4FgC8hH6ezgJPY4_EWJvBvyM5z6QHDDdH_JJZrGdbrOHwdX9xXUxE1EoXKXKtyKauvFWNaQPr7TAE6-VUUeIpPcZo42Nxj3opav7rrEmVioaL0D4PgD46KsdttoNu7DLuDa-kkH7WgbMfbUDUM4ro6OJ0Oja7LH-3IetmzGMk9DFSzuHkj23yfEtOb7Njt9jvcWgUSbY-N38nBZnYUrs2OkBxkw7i5n2r5jZ_4-XHLA1mldG8RyyVQyEcIQFyps9TrH4A7mp48o
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structuring+an+integrated+air+quality+monitoring+network+in+large+urban+areas+%E2%80%93+Discussing+the+purpose%2C+criteria+and+deployment+strategy&rft.jtitle=Atmospheric+Environment%3A+X&rft.au=Said+Munir&rft.au=Martin+Mayfield&rft.au=Daniel+Coca&rft.au=Stephen+A.+Jubb&rft.date=2019-04-01&rft.pub=Elsevier&rft.issn=2590-1621&rft.eissn=2590-1621&rft.volume=2&rft_id=info:doi/10.1016%2Fj.aeaoa.2019.100027&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e3256b8664d04e6a94a1936453d99c09
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1621&client=summon