Enhancing heat transfer in a heat exchanger: CFD study of twisted tube and nanofluid (Al2O3, Cu, CuO, and TiO2) effects

This study investigates the influence of nanofluids on heat exchanger efficiency using 3-D computational fluid dynamics (CFD). The objective is to optimize the performance of twisted tubes by analyzing various pitch lengths (P = 180, 135, 90, 67.5, and 45 mm). The method's accuracy is validated...

Full description

Saved in:
Bibliographic Details
Published inCase studies in thermal engineering Vol. 53; p. 103864
Main Authors Ghazanfari, Valiyollah, Taheri, Armin, Amini, Younes, Mansourzade, Fatemeh
Format Journal Article
LanguageEnglish
Published Elsevier 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study investigates the influence of nanofluids on heat exchanger efficiency using 3-D computational fluid dynamics (CFD). The objective is to optimize the performance of twisted tubes by analyzing various pitch lengths (P = 180, 135, 90, 67.5, and 45 mm). The method's accuracy is validated by comparing experimental and numerical data from previous studies. The analysis focuses on key parameters such as heat transfer factors, outlet temperatures, and pressure drops, encompassing a wide range of flow rates (0.5 kg/s to 2 kg/s). The findings demonstrate that using nanofluids in twisted tubes significantly enhances heat transfer while slightly increasing pressure drop. Specifically, when compared to the smooth tube device with six baffles, employing 0.1 vol% Cu and 0.15 vol% Al2O3 nanoparticles in the twisted tube with a pitch length of 45 mm leads to heat transfer improvements of 1.04 and 1.12 times, respectively. Moreover, eliminating baffles favoring the optimized twisted tube configuration results in a notable reduction in pressure drop by approximately 1.55 times. These results highlight the potential of nanofluid implementation in enhancing heat exchanger efficiency and offer valuable insights for designing and optimizing heat transfer systems in various industrial applications.
AbstractList This study investigates the influence of nanofluids on heat exchanger efficiency using 3-D computational fluid dynamics (CFD). The objective is to optimize the performance of twisted tubes by analyzing various pitch lengths (P = 180, 135, 90, 67.5, and 45 mm). The method's accuracy is validated by comparing experimental and numerical data from previous studies. The analysis focuses on key parameters such as heat transfer factors, outlet temperatures, and pressure drops, encompassing a wide range of flow rates (0.5 kg/s to 2 kg/s). The findings demonstrate that using nanofluids in twisted tubes significantly enhances heat transfer while slightly increasing pressure drop. Specifically, when compared to the smooth tube device with six baffles, employing 0.1 vol% Cu and 0.15 vol% Al2O3 nanoparticles in the twisted tube with a pitch length of 45 mm leads to heat transfer improvements of 1.04 and 1.12 times, respectively. Moreover, eliminating baffles favoring the optimized twisted tube configuration results in a notable reduction in pressure drop by approximately 1.55 times. These results highlight the potential of nanofluid implementation in enhancing heat exchanger efficiency and offer valuable insights for designing and optimizing heat transfer systems in various industrial applications.
ArticleNumber 103864
Author Amini, Younes
Ghazanfari, Valiyollah
Taheri, Armin
Mansourzade, Fatemeh
Author_xml – sequence: 1
  givenname: Valiyollah
  surname: Ghazanfari
  fullname: Ghazanfari, Valiyollah
– sequence: 2
  givenname: Armin
  surname: Taheri
  fullname: Taheri, Armin
– sequence: 3
  givenname: Younes
  surname: Amini
  fullname: Amini, Younes
– sequence: 4
  givenname: Fatemeh
  surname: Mansourzade
  fullname: Mansourzade, Fatemeh
BookMark eNp9kUtrWzEQhUVIIWmaX5CNli3Yrl73oe6Mm4fB4I0D2Ym50siRudEtkoybf99ru4XSRRdixJk5h2G-j-QyDhEJueNsxhmvv-5mNoeCM8GEHBXZ1uqCXAvB1ZRXzcvlX_8rcpvzjjHGG9lypa7J4T6-QrQhbukrQqElQcweEw2RwlnCn3Yc2WL6RhcP32kue_dOB0_LIeSCjpZ9hxSioxHi4Pt9cPTzvBdrOaGL_fGtJ6f2JqzFF4reoy35E_ngoc94-7vekOeH-83iabpaPy4X89XUypqVKXrmtVOMA6i2kqr1DnXV1KrpOmyhsl3jQeuucc4J0bTIlMfaOqi9UqhB3pDlOdcNsDM_UniD9G4GCOYkDGlrIJVgezRW1-AcglWVU6KRGjmvoLXWVaBF7ccsfc6yacg5oTc2FChhiOPVQm84M0cgZmdOQMwRiDkDGb3yH--fXf7n-gXKEZLa
CitedBy_id crossref_primary_10_1016_j_csite_2024_104751
crossref_primary_10_1007_s10973_024_13531_8
crossref_primary_10_1016_j_rineng_2024_102509
crossref_primary_10_1016_j_rineng_2024_101934
crossref_primary_10_1007_s10973_024_13616_4
crossref_primary_10_1016_j_cej_2024_156204
crossref_primary_10_1063_5_0249271
crossref_primary_10_1007_s10973_024_13294_2
crossref_primary_10_1016_j_rineng_2024_102150
crossref_primary_10_1016_j_csite_2024_105397
crossref_primary_10_1016_j_cherd_2024_04_058
crossref_primary_10_3390_pr12050870
crossref_primary_10_1016_j_rineng_2024_102851
crossref_primary_10_1016_j_csite_2024_105472
crossref_primary_10_1016_j_applthermaleng_2024_124703
crossref_primary_10_1016_j_applthermaleng_2025_125617
crossref_primary_10_1016_j_csite_2024_104060
crossref_primary_10_1007_s10973_025_14092_0
crossref_primary_10_1016_j_ijheatfluidflow_2024_109726
crossref_primary_10_1007_s10973_024_13555_0
crossref_primary_10_1016_j_applthermaleng_2024_123213
crossref_primary_10_1016_j_applthermaleng_2024_124347
crossref_primary_10_1016_j_rineng_2024_103596
crossref_primary_10_1016_j_applthermaleng_2024_124863
crossref_primary_10_1016_j_cscee_2025_101094
crossref_primary_10_1016_j_csite_2024_105712
crossref_primary_10_1016_j_csite_2024_104744
crossref_primary_10_1142_S0129183124501262
crossref_primary_10_1016_j_energy_2024_130595
crossref_primary_10_1038_s41598_025_92303_2
crossref_primary_10_1016_j_ijheatfluidflow_2024_109639
crossref_primary_10_1080_10407782_2024_2393397
crossref_primary_10_1016_j_pnucene_2024_105484
crossref_primary_10_1016_j_colsurfa_2024_135614
crossref_primary_10_1080_01496395_2024_2366889
crossref_primary_10_1016_j_ijft_2024_100972
crossref_primary_10_1016_j_rineng_2024_103687
crossref_primary_10_32604_fhmt_2024_060166
crossref_primary_10_1016_j_est_2024_113876
crossref_primary_10_1038_s41598_024_57374_7
crossref_primary_10_3390_pr12010222
crossref_primary_10_1007_s10973_024_13369_0
crossref_primary_10_1016_j_anucene_2024_110587
crossref_primary_10_1016_j_applthermaleng_2024_124489
crossref_primary_10_1016_j_csite_2024_104525
crossref_primary_10_1038_s41598_024_70716_9
crossref_primary_10_1007_s10973_024_13055_1
crossref_primary_10_1007_s10973_024_13032_8
crossref_primary_10_1016_j_csite_2024_105613
Cites_doi 10.1016/j.applthermaleng.2016.11.153
10.1016/j.pnucene.2020.103494
10.1016/j.cplett.2007.07.046
10.1016/j.jtice.2021.08.028
10.1016/j.icheatmasstransfer.2022.106520
10.1016/j.pnucene.2021.103796
10.1016/j.pnucene.2022.104526
10.1016/j.icheatmasstransfer.2012.09.004
10.1016/j.anucene.2016.07.008
10.1016/j.rser.2012.11.021
10.1134/S1810232817020114
10.1016/j.ijheatmasstransfer.2017.08.114
10.1016/j.ijthermalsci.2021.107126
10.1016/j.anucene.2022.109283
10.1016/j.expthermflusci.2006.06.009
10.1016/j.ijthermalsci.2019.106051
10.1016/j.ijheatmasstransfer.2020.120070
10.1016/j.pnucene.2021.103723
10.1016/j.renene.2021.06.049
10.1016/j.csite.2022.102284
10.2514/2.6486
10.1038/s41598-023-36672-6
10.1016/j.anucene.2020.107508
10.1016/j.applthermaleng.2020.115863
10.1016/j.cep.2020.108043
10.1007/s10652-018-9637-1
10.1016/j.pnucene.2020.103614
10.1007/s10973-021-10998-7
10.1016/j.enconman.2014.05.013
10.1016/j.ijheatmasstransfer.2012.04.030
10.1063/1.858424
10.1080/08916159808946559
10.1016/j.rser.2010.11.035
10.1016/j.csite.2021.100948
10.1016/j.applthermaleng.2022.118388
10.1016/j.pnucene.2016.05.007
10.1016/j.anucene.2021.108375
10.1021/i160003a005
10.1016/j.enconman.2009.12.003
10.1016/j.ijheatmasstransfer.2015.06.068
10.1016/j.anucene.2019.03.018
10.1016/j.ijthermalsci.2022.107598
10.1016/j.applthermaleng.2015.07.009
10.1016/j.ijheatmasstransfer.2013.06.011
10.1016/j.ijthermalsci.2021.106892
10.1016/j.csite.2015.08.001
10.1016/j.applthermaleng.2019.01.113
10.1016/j.csite.2023.103187
10.2298/TSCI0802027V
10.1016/j.pnucene.2015.11.008
10.1007/s10973-023-12241-x
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.csite.2023.103864
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-157X
ExternalDocumentID oai_doaj_org_article_c96addeac45d42739e115a8ccd5a926f
10_1016_j_csite_2023_103864
GroupedDBID 0R~
457
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
AAYXX
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
O9-
OK1
RIG
ROL
SSZ
ID FETCH-LOGICAL-c360t-ef0f9d401aa485348fde957647bbe8a5cb7fa99b7ddd2278e04fe6cda6f44e9a3
IEDL.DBID DOA
ISSN 2214-157X
IngestDate Wed Aug 27 01:16:22 EDT 2025
Tue Jul 01 02:28:43 EDT 2025
Thu Apr 24 22:52:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-ef0f9d401aa485348fde957647bbe8a5cb7fa99b7ddd2278e04fe6cda6f44e9a3
OpenAccessLink https://doaj.org/article/c96addeac45d42739e115a8ccd5a926f
ParticipantIDs doaj_primary_oai_doaj_org_article_c96addeac45d42739e115a8ccd5a926f
crossref_citationtrail_10_1016_j_csite_2023_103864
crossref_primary_10_1016_j_csite_2023_103864
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-00
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-00
PublicationDecade 2020
PublicationTitle Case studies in thermal engineering
PublicationYear 2024
Publisher Elsevier
Publisher_xml – name: Elsevier
References Jahanmir (10.1016/j.csite.2023.103864_bib46) 2012; 39
Rahnama (10.1016/j.csite.2023.103864_bib20) 2021; 138
Minea (10.1016/j.csite.2023.103864_bib30) 2017; 26
Zhang (10.1016/j.csite.2023.103864_bib53) 2007; 31
Tang (10.1016/j.csite.2023.103864_bib16) 2015; 90
Amini (10.1016/j.csite.2023.103864_bib11) 2015; 6
Mousavi (10.1016/j.csite.2023.103864_bib27) 2023
Barzegar Gerdroodbary (10.1016/j.csite.2023.103864_bib49) 2023; 49
Khuwaileh (10.1016/j.csite.2023.103864_bib31) 2020; 144
Nanan (10.1016/j.csite.2023.103864_bib5) 2017; 114
Ghazanfari (10.1016/j.csite.2023.103864_bib45) 2020; 28
Wang (10.1016/j.csite.2023.103864_bib15) 2022; 37
Incropera (10.1016/j.csite.2023.103864_bib58) 1996
Kaood (10.1016/j.csite.2023.103864_bib29) 2021; 177
Ghazanfari (10.1016/j.csite.2023.103864_bib42) 2019; 28
Amini (10.1016/j.csite.2023.103864_bib43) 2023; 13
Tan (10.1016/j.csite.2023.103864_bib7) 2012; 55
Ozden (10.1016/j.csite.2023.103864_bib38) 2010; 51
Chen (10.1016/j.csite.2023.103864_bib56) 2007; 444
Yakhot (10.1016/j.csite.2023.103864_bib48) 1992; 4
Liu (10.1016/j.csite.2023.103864_bib8) 2013; 19
Ghazanfari (10.1016/j.csite.2023.103864_bib37) 2016; 91
Gu (10.1016/j.csite.2023.103864_bib17) 2020; 159
Yang (10.1016/j.csite.2023.103864_bib4) 2019; 152
Kaood (10.1016/j.csite.2023.103864_bib12) 2022; 139
Jahanmir (10.1016/j.csite.2023.103864_bib40) 2012; 39
Wei (10.1016/j.csite.2023.103864_bib34) 2021; 25
Li (10.1016/j.csite.2023.103864_bib19) 2022; 210
Ghazanfari (10.1016/j.csite.2023.103864_bib9) 2023; 155
Al-Tohamy (10.1016/j.csite.2023.103864_bib13) 2023; 148
Kaood (10.1016/j.csite.2023.103864_bib28) 2020; 154
Wang (10.1016/j.csite.2023.103864_bib54) 1999; 13
Pak (10.1016/j.csite.2023.103864_bib55) 1998; 11
Talebi (10.1016/j.csite.2023.103864_bib1) 2021; 170
Luo (10.1016/j.csite.2023.103864_bib18) 2021; 164
Ghorbanali (10.1016/j.csite.2023.103864_bib22) 2020; 129
Al-Farhany (10.1016/j.csite.2023.103864_bib21) 2021; 135
Peyghambarzadeh (10.1016/j.csite.2023.103864_bib35) 2014; 86
Wei (10.1016/j.csite.2023.103864_bib41) 2019; 131
Abdollahzadeh (10.1016/j.csite.2023.103864_bib39) 2017; 115
Tan (10.1016/j.csite.2023.103864_bib14) 2013; 65
Saidur (10.1016/j.csite.2023.103864_bib24) 2011; 15
Velagapudi (10.1016/j.csite.2023.103864_bib50) 2008; 12
Ghazanfari (10.1016/j.csite.2023.103864_bib51) 2016; 87
Feizabadi (10.1016/j.csite.2023.103864_bib10) 2019; 145
Rahnama (10.1016/j.csite.2023.103864_bib25) 2021; 161
Hemmat Esfe (10.1016/j.csite.2023.103864_bib32) 2022; 177
Nakhchi (10.1016/j.csite.2023.103864_bib3) 2020; 180
Fadodun (10.1016/j.csite.2023.103864_bib33) 2022; 178
Shaheed (10.1016/j.csite.2023.103864_bib47) 2019; 19
Hamilton (10.1016/j.csite.2023.103864_bib52) 1962; 1
Hassan (10.1016/j.csite.2023.103864_bib2) 2022; 147
Zheng (10.1016/j.csite.2023.103864_bib6) 2015; 90
Husain (10.1016/j.csite.2023.103864_bib23) 2021; 133
Ghazanfari (10.1016/j.csite.2023.103864_bib44) 2020; 29
Hozien (10.1016/j.csite.2023.103864_bib36) 2021; 128
Hadad (10.1016/j.csite.2023.103864_bib26) 2016; 97
References_xml – volume: 114
  start-page: 130
  issue: 5
  year: 2017
  ident: 10.1016/j.csite.2023.103864_bib5
  article-title: Flow and thermal mechanisms in a heat exchanger tube inserted with twisted cross-baffle turbulators
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.11.153
– volume: 129
  year: 2020
  ident: 10.1016/j.csite.2023.103864_bib22
  article-title: Investigation of a nanofluid-based natural circulation loop
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2020.103494
– volume: 444
  start-page: 333
  year: 2007
  ident: 10.1016/j.csite.2023.103864_bib56
  article-title: Rheological behaviour of ethylene glycol based titania nanofluids
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.07.046
– volume: 128
  start-page: 237
  year: 2021
  ident: 10.1016/j.csite.2023.103864_bib36
  article-title: Experimental study on heat transfer and pressure drop characteristics utilizing three types of water based nanofluids in a helical coil under isothermal boundary condition
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2021.08.028
– volume: 139
  year: 2022
  ident: 10.1016/j.csite.2023.103864_bib12
  article-title: Numerical investigation of turbulent entropy production rate in conical tubes fitted with a twisted-tape insert
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2022.106520
– volume: 138
  year: 2021
  ident: 10.1016/j.csite.2023.103864_bib20
  article-title: Nanofluid application for heat transfer, safety, and natural circulation enhancement in the NuScale nuclear reactor as a small modular reactor using computational fluid dynamic (CFD) modeling via neutronic and thermal-hydraulics coupling
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2021.103796
– volume: 155
  year: 2023
  ident: 10.1016/j.csite.2023.103864_bib9
  article-title: Numerical study on the thermal performance of the shell and tube heat exchanger using twisted tubes and Al2O3 nanoparticles
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2022.104526
– volume: 39
  start-page: 1654
  year: 2012
  ident: 10.1016/j.csite.2023.103864_bib46
  article-title: Twisted bundle heat exchangers performance evaluation by CFD (CJ12/5054)
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2012.09.004
– volume: 97
  start-page: 179
  year: 2016
  ident: 10.1016/j.csite.2023.103864_bib26
  article-title: Twofold application of nanofluids as the primary coolant and reactivity controller in a PWR reactor: case study VVER-1000 in normal operation
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2016.07.008
– volume: 19
  start-page: 64
  year: 2013
  ident: 10.1016/j.csite.2023.103864_bib8
  article-title: A comprehensive review on passive heat transfer enhancements in pipe exchangers
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.11.021
– volume: 26
  start-page: 291
  year: 2017
  ident: 10.1016/j.csite.2023.103864_bib30
  article-title: Studies on Al2O3, CuO, and TiO2 water-based nanofluids: a comparative approach in laminar and turbulent flow
  publication-title: J. Eng. Thermophys.
  doi: 10.1134/S1810232817020114
– volume: 115
  start-page: 1288
  year: 2017
  ident: 10.1016/j.csite.2023.103864_bib39
  article-title: Assessment of RANS turbulence models for numerical study of laminar-turbulent transition in convection heat transfer
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2017.08.114
– volume: 170
  year: 2021
  ident: 10.1016/j.csite.2023.103864_bib1
  article-title: Assessment of thermal behavior of variable step twist in the elliptical spiral
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2021.107126
– volume: 177
  year: 2022
  ident: 10.1016/j.csite.2023.103864_bib32
  article-title: A novel experimental and statistical study on ethylene glycol-based nanofluid enriched by MWCNT and CuO nanoparticles
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2022.109283
– volume: 31
  start-page: 593
  issue: 6
  year: 2007
  ident: 10.1016/j.csite.2023.103864_bib53
  article-title: Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2006.06.009
– volume: 145
  year: 2019
  ident: 10.1016/j.csite.2023.103864_bib10
  article-title: Experimental evaluation of thermal performance and entropy generation inside a twisted U-tube equipped with twisted-tape inserts
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2019.106051
– volume: 29
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.csite.2023.103864_bib44
  article-title: Modeling and simulation of flow and uranium isotopes separation in gas centrifuges using implicit coupled density-based solver in OpenFOAM
  publication-title: European J. Comput. Mech.
– volume: 159
  year: 2020
  ident: 10.1016/j.csite.2023.103864_bib17
  article-title: Influence of alternating V-rows tube layout on thermal-hydraulic characteristics of twisted elliptical tube heat exchangers
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2020.120070
– start-page: 239
  year: 2023
  ident: 10.1016/j.csite.2023.103864_bib27
  article-title: Applications of nanotechnology in the harvesting of solar energy
– volume: 135
  year: 2021
  ident: 10.1016/j.csite.2023.103864_bib21
  article-title: Study of mixed convection in two layers of saturated porous medium and nanofluid with rotating circular cylinder
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2021.103723
– volume: 28
  start-page: 541
  issue: 6
  year: 2020
  ident: 10.1016/j.csite.2023.103864_bib45
  article-title: Numerical simulation using a modified solver within OpenFOAM for compressible viscous flows
  publication-title: European J. Comput. Mech.
– volume: 177
  start-page: 1045
  year: 2021
  ident: 10.1016/j.csite.2023.103864_bib29
  article-title: Performance analysis and particle swarm optimization of molten salt-based nanofluids in parabolic trough concentrators
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.06.049
– volume: 37
  year: 2022
  ident: 10.1016/j.csite.2023.103864_bib15
  article-title: Thermodynamic characteristics of a novel combination of three-start twisted tube and oval dimples
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2022.102284
– volume: 13
  start-page: 474
  year: 1999
  ident: 10.1016/j.csite.2023.103864_bib54
  article-title: Thermal conductivity of nanoparticle -fluid mixture
  publication-title: J. Thermophys. Heat Tran.
  doi: 10.2514/2.6486
– volume: 13
  start-page: 9483
  issue: 1
  year: 2023
  ident: 10.1016/j.csite.2023.103864_bib43
  article-title: Computational fluid dynamics simulation of two-phase flow patterns in a serpentine microfluidic device
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-36672-6
– volume: 144
  year: 2020
  ident: 10.1016/j.csite.2023.103864_bib31
  article-title: On the performance of nanofluids in APR 1400 PLUS7 assembly: neutronics
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2020.107508
– volume: 180
  year: 2020
  ident: 10.1016/j.csite.2023.103864_bib3
  article-title: Experimental investigation of heat transfer enhancement of a heat exchanger tube equipped with double-cut twisted tapes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115863
– volume: 39
  start-page: 1654
  year: 2012
  ident: 10.1016/j.csite.2023.103864_bib40
  article-title: Twisted bundle heat exchangers performance evaluation by CFD (CJ12/5054)
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2012.09.004
– year: 1996
  ident: 10.1016/j.csite.2023.103864_bib58
– volume: 154
  year: 2020
  ident: 10.1016/j.csite.2023.103864_bib28
  article-title: Thermo-hydraulic performance of nanofluids flow in various internally corrugated tubes
  publication-title: Chem. Eng. Proces. - Process Intensificat.
  doi: 10.1016/j.cep.2020.108043
– volume: 19
  start-page: 543
  year: 2019
  ident: 10.1016/j.csite.2023.103864_bib47
  article-title: A comparison of standard k–ε and realizable k–ε turbulence models in curved and confuent channels
  publication-title: Environ. Fluid Mech.
  doi: 10.1007/s10652-018-9637-1
– volume: 133
  year: 2021
  ident: 10.1016/j.csite.2023.103864_bib23
  article-title: Wall boiling of Al2O3-water nanofluid: effect of nanoparticle concentration
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2020.103614
– volume: 147
  start-page: 6847
  issue: 12
  year: 2022
  ident: 10.1016/j.csite.2023.103864_bib2
  article-title: Numerical investigation and multi-criteria optimization of the thermal–hydraulic characteristics of turbulent flow in conical tubes fitted with twisted tape insert
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-021-10998-7
– volume: 86
  start-page: 28
  year: 2014
  ident: 10.1016/j.csite.2023.103864_bib35
  article-title: Performance of water based CuO and Al2O3 nanofluids in a Cu–Be alloy heat sink with rectangular microchannels
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.05.013
– volume: 55
  start-page: 4701
  year: 2012
  ident: 10.1016/j.csite.2023.103864_bib7
  article-title: Experimental and numerical study of convective heat transfer and fluid flow in twisted oval tubes
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2012.04.030
– volume: 4
  start-page: 1510
  issue: 7
  year: 1992
  ident: 10.1016/j.csite.2023.103864_bib48
  article-title: Development of turbulence models for shear flows by a double expansion technique
  publication-title: Phys. Fluid. Fluid Dynam.
  doi: 10.1063/1.858424
– volume: 11
  start-page: 151
  issue: 2
  year: 1998
  ident: 10.1016/j.csite.2023.103864_bib55
  article-title: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles
  publication-title: Exp. Heat Trans. Int. J.
  doi: 10.1080/08916159808946559
– volume: 15
  start-page: 1646
  issue: 3
  year: 2011
  ident: 10.1016/j.csite.2023.103864_bib24
  article-title: A review on applications and challenges of nanofluids
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.11.035
– volume: 28
  start-page: 541
  issue: 6
  year: 2019
  ident: 10.1016/j.csite.2023.103864_bib42
  article-title: Numerical simulation using a modified solver within OpenFOAM for compressible viscous flows
  publication-title: European J. Comput. Mech.
– volume: 25
  year: 2021
  ident: 10.1016/j.csite.2023.103864_bib34
  article-title: Effect of volume fraction and size of Al2O3 nanoparticles in thermal, frictional and economic performance of circumferential corrugated helical tube
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.100948
– volume: 210
  year: 2022
  ident: 10.1016/j.csite.2023.103864_bib19
  article-title: Analysis of heat transfer characteristics and entransy evaluation of high viscosity fluid in a novel twisted tube
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118388
– volume: 91
  start-page: 285
  year: 2016
  ident: 10.1016/j.csite.2023.103864_bib37
  article-title: Effects of water based Al2O3, TiO2, and CuO nanofluids as the coolant as the coolant
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2016.05.007
– volume: 161
  year: 2021
  ident: 10.1016/j.csite.2023.103864_bib25
  article-title: Predicting and optimizing the thermal-hydraulic, natural circulation, and neutronics parameters in the NuScale nuclear reactor using nanofluid as a coolant via machine learning methods through GA, PSO and HPSOGA algorithms
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2021.108375
– volume: 1
  start-page: 187
  year: 1962
  ident: 10.1016/j.csite.2023.103864_bib52
  article-title: Thermal conductivity of heterogeneous two-component systems
  publication-title: Ind. Eng. Chem. Fund.
  doi: 10.1021/i160003a005
– volume: 51
  start-page: 1004
  year: 2010
  ident: 10.1016/j.csite.2023.103864_bib38
  article-title: Shell side CFD analysis of a small shell-and-tube heat exchanger
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2009.12.003
– volume: 90
  start-page: 523
  year: 2015
  ident: 10.1016/j.csite.2023.103864_bib16
  article-title: Experimental and numerical investigation of convective heat transfer and fluid flow in twisted spiral tube
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2015.06.068
– volume: 131
  start-page: 23
  year: 2019
  ident: 10.1016/j.csite.2023.103864_bib41
  article-title: Assessment of different turbulence models on the large scale internal heated water pool natural convection simulation
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2019.03.018
– volume: 178
  year: 2022
  ident: 10.1016/j.csite.2023.103864_bib33
  article-title: Investigation of the entropy production rate of ferrosoferric oxide/water nanofluid in outward corrugated pipes using a two-phase mixture model
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2022.107598
– volume: 90
  start-page: 232
  year: 2015
  ident: 10.1016/j.csite.2023.103864_bib6
  article-title: A numerical study on heat transfer enhancement and the flow structure in a heat exchanger tube with discrete double inclined ribs
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.07.009
– volume: 65
  start-page: 244
  year: 2013
  ident: 10.1016/j.csite.2023.103864_bib14
  article-title: 3D numerical simulation on the shell side heat transfer and pressure drop performances of twisted oval tube heat exchanger
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2013.06.011
– volume: 164
  year: 2021
  ident: 10.1016/j.csite.2023.103864_bib18
  article-title: Thermal performance enhancement of a double-tube heat exchanger with novel twisted annulus formed by counter-twisted oval tubes
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2021.106892
– volume: 6
  start-page: 104
  year: 2015
  ident: 10.1016/j.csite.2023.103864_bib11
  article-title: Heat transfer of swirling impinging jets ejected from Nozzles with twisted tapes utilizing CFD technique
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2015.08.001
– volume: 152
  start-page: 559
  year: 2019
  ident: 10.1016/j.csite.2023.103864_bib4
  article-title: Geometric optimization of shell and tube heat exchanger with interstitial twisted tapes outside the tubes applying CFD techniques
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.01.113
– volume: 49
  year: 2023
  ident: 10.1016/j.csite.2023.103864_bib49
  article-title: The efficacy of magnetic force on thermal performance of ferrofluid in a screw tube
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2023.103187
– volume: 12
  start-page: 27
  issue: 2
  year: 2008
  ident: 10.1016/j.csite.2023.103864_bib50
  article-title: Empirical correlations to predict thermophysical and heat transfer characteristics of nanofluids
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI0802027V
– volume: 87
  start-page: 67
  year: 2016
  ident: 10.1016/j.csite.2023.103864_bib51
  article-title: Thermalehydraulic modeling of water/Al2O3 nanofluid as the coolant in annular fuels for a typical VVER-1000 core
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2015.11.008
– volume: 148
  start-page: 7795
  issue: 15
  year: 2023
  ident: 10.1016/j.csite.2023.103864_bib13
  article-title: Hydrothermal performance of a turbulent nanofluid with different nanoparticle shapes in a duct fitted with various configurations of coiled-wire inserts
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-023-12241-x
SSID ssj0001738144
Score 2.5215602
Snippet This study investigates the influence of nanofluids on heat exchanger efficiency using 3-D computational fluid dynamics (CFD). The objective is to optimize the...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 103864
SubjectTerms CFD
Heat exchanger performance
Nanofluids
Pressure drop
Twisted tube
Title Enhancing heat transfer in a heat exchanger: CFD study of twisted tube and nanofluid (Al2O3, Cu, CuO, and TiO2) effects
URI https://doaj.org/article/c96addeac45d42739e115a8ccd5a926f
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sAAUiPS5OLEbG2hKgx0aaVukZ9QVLmoSlR-PraTVmGBhSEZHOdknS_-7pzzdwjdZJLKNGQsyGTCAhAkCVgGcZBFgndDnbFM-GyLVzKawsssmTVKfbmcsIoeuFLcvaDEfYJMQCLBYi1V1oexEoSVTSOi3eprMa8RTPndldQiEcCGZsgndAn_O9aVC_es4AR-QFGDsd9Dy_AA7dc-Ie5VYzlEO8ocob0GU-AxWj-Zd8eMYd6wWz1x4f1NtcJzg1nVpL7qQ7wPeDB8xJ43Fi81LtZuJiUuSq4wMxIbZpZ6Uc4lvu0tonHcwYPSXeOOfzyZj6M7XOd5nKDp8GkyGAV1zYRAxCQsAqVDTaUNmhgDi8SQaamojSkg5VxlLBE81YxSnkop3SlYFYJWREhGNICiLD5FLbM06gxhqykVcmk9LuhCSlMqGZAo5CSOBBAgbRRt1JeLmlDc1bVY5JvMsY_c6zx3Os8rnbdRZ_vSZ8Wn8Xv3vpuXbVdHhu0brInktYnkf5nI-X8IuUC7dlxQ7b5colaxKtWV9UcKfu1Nz96fZ_1v2X_euQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+heat+transfer+in+a+heat+exchanger%3A+CFD+study+of+twisted+tube+and+nanofluid+%28Al2O3%2C+Cu%2C+CuO%2C+and+TiO2%29+effects&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Valiyollah+Ghazanfari&rft.au=Armin+Taheri&rft.au=Younes+Amini&rft.au=Fatemeh+Mansourzade&rft.date=2024-01-01&rft.pub=Elsevier&rft.eissn=2214-157X&rft.volume=53&rft.spage=103864&rft_id=info:doi/10.1016%2Fj.csite.2023.103864&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c96addeac45d42739e115a8ccd5a926f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon