Enhancing heat transfer in a heat exchanger: CFD study of twisted tube and nanofluid (Al2O3, Cu, CuO, and TiO2) effects
This study investigates the influence of nanofluids on heat exchanger efficiency using 3-D computational fluid dynamics (CFD). The objective is to optimize the performance of twisted tubes by analyzing various pitch lengths (P = 180, 135, 90, 67.5, and 45 mm). The method's accuracy is validated...
Saved in:
Published in | Case studies in thermal engineering Vol. 53; p. 103864 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study investigates the influence of nanofluids on heat exchanger efficiency using 3-D computational fluid dynamics (CFD). The objective is to optimize the performance of twisted tubes by analyzing various pitch lengths (P = 180, 135, 90, 67.5, and 45 mm). The method's accuracy is validated by comparing experimental and numerical data from previous studies. The analysis focuses on key parameters such as heat transfer factors, outlet temperatures, and pressure drops, encompassing a wide range of flow rates (0.5 kg/s to 2 kg/s). The findings demonstrate that using nanofluids in twisted tubes significantly enhances heat transfer while slightly increasing pressure drop. Specifically, when compared to the smooth tube device with six baffles, employing 0.1 vol% Cu and 0.15 vol% Al2O3 nanoparticles in the twisted tube with a pitch length of 45 mm leads to heat transfer improvements of 1.04 and 1.12 times, respectively. Moreover, eliminating baffles favoring the optimized twisted tube configuration results in a notable reduction in pressure drop by approximately 1.55 times. These results highlight the potential of nanofluid implementation in enhancing heat exchanger efficiency and offer valuable insights for designing and optimizing heat transfer systems in various industrial applications. |
---|---|
AbstractList | This study investigates the influence of nanofluids on heat exchanger efficiency using 3-D computational fluid dynamics (CFD). The objective is to optimize the performance of twisted tubes by analyzing various pitch lengths (P = 180, 135, 90, 67.5, and 45 mm). The method's accuracy is validated by comparing experimental and numerical data from previous studies. The analysis focuses on key parameters such as heat transfer factors, outlet temperatures, and pressure drops, encompassing a wide range of flow rates (0.5 kg/s to 2 kg/s). The findings demonstrate that using nanofluids in twisted tubes significantly enhances heat transfer while slightly increasing pressure drop. Specifically, when compared to the smooth tube device with six baffles, employing 0.1 vol% Cu and 0.15 vol% Al2O3 nanoparticles in the twisted tube with a pitch length of 45 mm leads to heat transfer improvements of 1.04 and 1.12 times, respectively. Moreover, eliminating baffles favoring the optimized twisted tube configuration results in a notable reduction in pressure drop by approximately 1.55 times. These results highlight the potential of nanofluid implementation in enhancing heat exchanger efficiency and offer valuable insights for designing and optimizing heat transfer systems in various industrial applications. |
ArticleNumber | 103864 |
Author | Amini, Younes Ghazanfari, Valiyollah Taheri, Armin Mansourzade, Fatemeh |
Author_xml | – sequence: 1 givenname: Valiyollah surname: Ghazanfari fullname: Ghazanfari, Valiyollah – sequence: 2 givenname: Armin surname: Taheri fullname: Taheri, Armin – sequence: 3 givenname: Younes surname: Amini fullname: Amini, Younes – sequence: 4 givenname: Fatemeh surname: Mansourzade fullname: Mansourzade, Fatemeh |
BookMark | eNp9kUtrWzEQhUVIIWmaX5CNli3Yrl73oe6Mm4fB4I0D2Ym50siRudEtkoybf99ru4XSRRdixJk5h2G-j-QyDhEJueNsxhmvv-5mNoeCM8GEHBXZ1uqCXAvB1ZRXzcvlX_8rcpvzjjHGG9lypa7J4T6-QrQhbukrQqElQcweEw2RwlnCn3Yc2WL6RhcP32kue_dOB0_LIeSCjpZ9hxSioxHi4Pt9cPTzvBdrOaGL_fGtJ6f2JqzFF4reoy35E_ngoc94-7vekOeH-83iabpaPy4X89XUypqVKXrmtVOMA6i2kqr1DnXV1KrpOmyhsl3jQeuucc4J0bTIlMfaOqi9UqhB3pDlOdcNsDM_UniD9G4GCOYkDGlrIJVgezRW1-AcglWVU6KRGjmvoLXWVaBF7ccsfc6yacg5oTc2FChhiOPVQm84M0cgZmdOQMwRiDkDGb3yH--fXf7n-gXKEZLa |
CitedBy_id | crossref_primary_10_1016_j_csite_2024_104751 crossref_primary_10_1007_s10973_024_13531_8 crossref_primary_10_1016_j_rineng_2024_102509 crossref_primary_10_1016_j_rineng_2024_101934 crossref_primary_10_1007_s10973_024_13616_4 crossref_primary_10_1016_j_cej_2024_156204 crossref_primary_10_1063_5_0249271 crossref_primary_10_1007_s10973_024_13294_2 crossref_primary_10_1016_j_rineng_2024_102150 crossref_primary_10_1016_j_csite_2024_105397 crossref_primary_10_1016_j_cherd_2024_04_058 crossref_primary_10_3390_pr12050870 crossref_primary_10_1016_j_rineng_2024_102851 crossref_primary_10_1016_j_csite_2024_105472 crossref_primary_10_1016_j_applthermaleng_2024_124703 crossref_primary_10_1016_j_applthermaleng_2025_125617 crossref_primary_10_1016_j_csite_2024_104060 crossref_primary_10_1007_s10973_025_14092_0 crossref_primary_10_1016_j_ijheatfluidflow_2024_109726 crossref_primary_10_1007_s10973_024_13555_0 crossref_primary_10_1016_j_applthermaleng_2024_123213 crossref_primary_10_1016_j_applthermaleng_2024_124347 crossref_primary_10_1016_j_rineng_2024_103596 crossref_primary_10_1016_j_applthermaleng_2024_124863 crossref_primary_10_1016_j_cscee_2025_101094 crossref_primary_10_1016_j_csite_2024_105712 crossref_primary_10_1016_j_csite_2024_104744 crossref_primary_10_1142_S0129183124501262 crossref_primary_10_1016_j_energy_2024_130595 crossref_primary_10_1038_s41598_025_92303_2 crossref_primary_10_1016_j_ijheatfluidflow_2024_109639 crossref_primary_10_1080_10407782_2024_2393397 crossref_primary_10_1016_j_pnucene_2024_105484 crossref_primary_10_1016_j_colsurfa_2024_135614 crossref_primary_10_1080_01496395_2024_2366889 crossref_primary_10_1016_j_ijft_2024_100972 crossref_primary_10_1016_j_rineng_2024_103687 crossref_primary_10_32604_fhmt_2024_060166 crossref_primary_10_1016_j_est_2024_113876 crossref_primary_10_1038_s41598_024_57374_7 crossref_primary_10_3390_pr12010222 crossref_primary_10_1007_s10973_024_13369_0 crossref_primary_10_1016_j_anucene_2024_110587 crossref_primary_10_1016_j_applthermaleng_2024_124489 crossref_primary_10_1016_j_csite_2024_104525 crossref_primary_10_1038_s41598_024_70716_9 crossref_primary_10_1007_s10973_024_13055_1 crossref_primary_10_1007_s10973_024_13032_8 crossref_primary_10_1016_j_csite_2024_105613 |
Cites_doi | 10.1016/j.applthermaleng.2016.11.153 10.1016/j.pnucene.2020.103494 10.1016/j.cplett.2007.07.046 10.1016/j.jtice.2021.08.028 10.1016/j.icheatmasstransfer.2022.106520 10.1016/j.pnucene.2021.103796 10.1016/j.pnucene.2022.104526 10.1016/j.icheatmasstransfer.2012.09.004 10.1016/j.anucene.2016.07.008 10.1016/j.rser.2012.11.021 10.1134/S1810232817020114 10.1016/j.ijheatmasstransfer.2017.08.114 10.1016/j.ijthermalsci.2021.107126 10.1016/j.anucene.2022.109283 10.1016/j.expthermflusci.2006.06.009 10.1016/j.ijthermalsci.2019.106051 10.1016/j.ijheatmasstransfer.2020.120070 10.1016/j.pnucene.2021.103723 10.1016/j.renene.2021.06.049 10.1016/j.csite.2022.102284 10.2514/2.6486 10.1038/s41598-023-36672-6 10.1016/j.anucene.2020.107508 10.1016/j.applthermaleng.2020.115863 10.1016/j.cep.2020.108043 10.1007/s10652-018-9637-1 10.1016/j.pnucene.2020.103614 10.1007/s10973-021-10998-7 10.1016/j.enconman.2014.05.013 10.1016/j.ijheatmasstransfer.2012.04.030 10.1063/1.858424 10.1080/08916159808946559 10.1016/j.rser.2010.11.035 10.1016/j.csite.2021.100948 10.1016/j.applthermaleng.2022.118388 10.1016/j.pnucene.2016.05.007 10.1016/j.anucene.2021.108375 10.1021/i160003a005 10.1016/j.enconman.2009.12.003 10.1016/j.ijheatmasstransfer.2015.06.068 10.1016/j.anucene.2019.03.018 10.1016/j.ijthermalsci.2022.107598 10.1016/j.applthermaleng.2015.07.009 10.1016/j.ijheatmasstransfer.2013.06.011 10.1016/j.ijthermalsci.2021.106892 10.1016/j.csite.2015.08.001 10.1016/j.applthermaleng.2019.01.113 10.1016/j.csite.2023.103187 10.2298/TSCI0802027V 10.1016/j.pnucene.2015.11.008 10.1007/s10973-023-12241-x |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1016/j.csite.2023.103864 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_c96addeac45d42739e115a8ccd5a926f 10_1016_j_csite_2023_103864 |
GroupedDBID | 0R~ 457 5VS AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO AAYXX ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV CITATION EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E O9- OK1 RIG ROL SSZ |
ID | FETCH-LOGICAL-c360t-ef0f9d401aa485348fde957647bbe8a5cb7fa99b7ddd2278e04fe6cda6f44e9a3 |
IEDL.DBID | DOA |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 01:16:22 EDT 2025 Tue Jul 01 02:28:43 EDT 2025 Thu Apr 24 22:52:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-ef0f9d401aa485348fde957647bbe8a5cb7fa99b7ddd2278e04fe6cda6f44e9a3 |
OpenAccessLink | https://doaj.org/article/c96addeac45d42739e115a8ccd5a926f |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c96addeac45d42739e115a8ccd5a926f crossref_citationtrail_10_1016_j_csite_2023_103864 crossref_primary_10_1016_j_csite_2023_103864 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-00 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-00 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2024 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Jahanmir (10.1016/j.csite.2023.103864_bib46) 2012; 39 Rahnama (10.1016/j.csite.2023.103864_bib20) 2021; 138 Minea (10.1016/j.csite.2023.103864_bib30) 2017; 26 Zhang (10.1016/j.csite.2023.103864_bib53) 2007; 31 Tang (10.1016/j.csite.2023.103864_bib16) 2015; 90 Amini (10.1016/j.csite.2023.103864_bib11) 2015; 6 Mousavi (10.1016/j.csite.2023.103864_bib27) 2023 Barzegar Gerdroodbary (10.1016/j.csite.2023.103864_bib49) 2023; 49 Khuwaileh (10.1016/j.csite.2023.103864_bib31) 2020; 144 Nanan (10.1016/j.csite.2023.103864_bib5) 2017; 114 Ghazanfari (10.1016/j.csite.2023.103864_bib45) 2020; 28 Wang (10.1016/j.csite.2023.103864_bib15) 2022; 37 Incropera (10.1016/j.csite.2023.103864_bib58) 1996 Kaood (10.1016/j.csite.2023.103864_bib29) 2021; 177 Ghazanfari (10.1016/j.csite.2023.103864_bib42) 2019; 28 Amini (10.1016/j.csite.2023.103864_bib43) 2023; 13 Tan (10.1016/j.csite.2023.103864_bib7) 2012; 55 Ozden (10.1016/j.csite.2023.103864_bib38) 2010; 51 Chen (10.1016/j.csite.2023.103864_bib56) 2007; 444 Yakhot (10.1016/j.csite.2023.103864_bib48) 1992; 4 Liu (10.1016/j.csite.2023.103864_bib8) 2013; 19 Ghazanfari (10.1016/j.csite.2023.103864_bib37) 2016; 91 Gu (10.1016/j.csite.2023.103864_bib17) 2020; 159 Yang (10.1016/j.csite.2023.103864_bib4) 2019; 152 Kaood (10.1016/j.csite.2023.103864_bib12) 2022; 139 Jahanmir (10.1016/j.csite.2023.103864_bib40) 2012; 39 Wei (10.1016/j.csite.2023.103864_bib34) 2021; 25 Li (10.1016/j.csite.2023.103864_bib19) 2022; 210 Ghazanfari (10.1016/j.csite.2023.103864_bib9) 2023; 155 Al-Tohamy (10.1016/j.csite.2023.103864_bib13) 2023; 148 Kaood (10.1016/j.csite.2023.103864_bib28) 2020; 154 Wang (10.1016/j.csite.2023.103864_bib54) 1999; 13 Pak (10.1016/j.csite.2023.103864_bib55) 1998; 11 Talebi (10.1016/j.csite.2023.103864_bib1) 2021; 170 Luo (10.1016/j.csite.2023.103864_bib18) 2021; 164 Ghorbanali (10.1016/j.csite.2023.103864_bib22) 2020; 129 Al-Farhany (10.1016/j.csite.2023.103864_bib21) 2021; 135 Peyghambarzadeh (10.1016/j.csite.2023.103864_bib35) 2014; 86 Wei (10.1016/j.csite.2023.103864_bib41) 2019; 131 Abdollahzadeh (10.1016/j.csite.2023.103864_bib39) 2017; 115 Tan (10.1016/j.csite.2023.103864_bib14) 2013; 65 Saidur (10.1016/j.csite.2023.103864_bib24) 2011; 15 Velagapudi (10.1016/j.csite.2023.103864_bib50) 2008; 12 Ghazanfari (10.1016/j.csite.2023.103864_bib51) 2016; 87 Feizabadi (10.1016/j.csite.2023.103864_bib10) 2019; 145 Rahnama (10.1016/j.csite.2023.103864_bib25) 2021; 161 Hemmat Esfe (10.1016/j.csite.2023.103864_bib32) 2022; 177 Nakhchi (10.1016/j.csite.2023.103864_bib3) 2020; 180 Fadodun (10.1016/j.csite.2023.103864_bib33) 2022; 178 Shaheed (10.1016/j.csite.2023.103864_bib47) 2019; 19 Hamilton (10.1016/j.csite.2023.103864_bib52) 1962; 1 Hassan (10.1016/j.csite.2023.103864_bib2) 2022; 147 Zheng (10.1016/j.csite.2023.103864_bib6) 2015; 90 Husain (10.1016/j.csite.2023.103864_bib23) 2021; 133 Ghazanfari (10.1016/j.csite.2023.103864_bib44) 2020; 29 Hozien (10.1016/j.csite.2023.103864_bib36) 2021; 128 Hadad (10.1016/j.csite.2023.103864_bib26) 2016; 97 |
References_xml | – volume: 114 start-page: 130 issue: 5 year: 2017 ident: 10.1016/j.csite.2023.103864_bib5 article-title: Flow and thermal mechanisms in a heat exchanger tube inserted with twisted cross-baffle turbulators publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.11.153 – volume: 129 year: 2020 ident: 10.1016/j.csite.2023.103864_bib22 article-title: Investigation of a nanofluid-based natural circulation loop publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2020.103494 – volume: 444 start-page: 333 year: 2007 ident: 10.1016/j.csite.2023.103864_bib56 article-title: Rheological behaviour of ethylene glycol based titania nanofluids publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.07.046 – volume: 128 start-page: 237 year: 2021 ident: 10.1016/j.csite.2023.103864_bib36 article-title: Experimental study on heat transfer and pressure drop characteristics utilizing three types of water based nanofluids in a helical coil under isothermal boundary condition publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2021.08.028 – volume: 139 year: 2022 ident: 10.1016/j.csite.2023.103864_bib12 article-title: Numerical investigation of turbulent entropy production rate in conical tubes fitted with a twisted-tape insert publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2022.106520 – volume: 138 year: 2021 ident: 10.1016/j.csite.2023.103864_bib20 article-title: Nanofluid application for heat transfer, safety, and natural circulation enhancement in the NuScale nuclear reactor as a small modular reactor using computational fluid dynamic (CFD) modeling via neutronic and thermal-hydraulics coupling publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2021.103796 – volume: 155 year: 2023 ident: 10.1016/j.csite.2023.103864_bib9 article-title: Numerical study on the thermal performance of the shell and tube heat exchanger using twisted tubes and Al2O3 nanoparticles publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2022.104526 – volume: 39 start-page: 1654 year: 2012 ident: 10.1016/j.csite.2023.103864_bib46 article-title: Twisted bundle heat exchangers performance evaluation by CFD (CJ12/5054) publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2012.09.004 – volume: 97 start-page: 179 year: 2016 ident: 10.1016/j.csite.2023.103864_bib26 article-title: Twofold application of nanofluids as the primary coolant and reactivity controller in a PWR reactor: case study VVER-1000 in normal operation publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2016.07.008 – volume: 19 start-page: 64 year: 2013 ident: 10.1016/j.csite.2023.103864_bib8 article-title: A comprehensive review on passive heat transfer enhancements in pipe exchangers publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.11.021 – volume: 26 start-page: 291 year: 2017 ident: 10.1016/j.csite.2023.103864_bib30 article-title: Studies on Al2O3, CuO, and TiO2 water-based nanofluids: a comparative approach in laminar and turbulent flow publication-title: J. Eng. Thermophys. doi: 10.1134/S1810232817020114 – volume: 115 start-page: 1288 year: 2017 ident: 10.1016/j.csite.2023.103864_bib39 article-title: Assessment of RANS turbulence models for numerical study of laminar-turbulent transition in convection heat transfer publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2017.08.114 – volume: 170 year: 2021 ident: 10.1016/j.csite.2023.103864_bib1 article-title: Assessment of thermal behavior of variable step twist in the elliptical spiral publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2021.107126 – volume: 177 year: 2022 ident: 10.1016/j.csite.2023.103864_bib32 article-title: A novel experimental and statistical study on ethylene glycol-based nanofluid enriched by MWCNT and CuO nanoparticles publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2022.109283 – volume: 31 start-page: 593 issue: 6 year: 2007 ident: 10.1016/j.csite.2023.103864_bib53 article-title: Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2006.06.009 – volume: 145 year: 2019 ident: 10.1016/j.csite.2023.103864_bib10 article-title: Experimental evaluation of thermal performance and entropy generation inside a twisted U-tube equipped with twisted-tape inserts publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2019.106051 – volume: 29 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.csite.2023.103864_bib44 article-title: Modeling and simulation of flow and uranium isotopes separation in gas centrifuges using implicit coupled density-based solver in OpenFOAM publication-title: European J. Comput. Mech. – volume: 159 year: 2020 ident: 10.1016/j.csite.2023.103864_bib17 article-title: Influence of alternating V-rows tube layout on thermal-hydraulic characteristics of twisted elliptical tube heat exchangers publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2020.120070 – start-page: 239 year: 2023 ident: 10.1016/j.csite.2023.103864_bib27 article-title: Applications of nanotechnology in the harvesting of solar energy – volume: 135 year: 2021 ident: 10.1016/j.csite.2023.103864_bib21 article-title: Study of mixed convection in two layers of saturated porous medium and nanofluid with rotating circular cylinder publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2021.103723 – volume: 28 start-page: 541 issue: 6 year: 2020 ident: 10.1016/j.csite.2023.103864_bib45 article-title: Numerical simulation using a modified solver within OpenFOAM for compressible viscous flows publication-title: European J. Comput. Mech. – volume: 177 start-page: 1045 year: 2021 ident: 10.1016/j.csite.2023.103864_bib29 article-title: Performance analysis and particle swarm optimization of molten salt-based nanofluids in parabolic trough concentrators publication-title: Renew. Energy doi: 10.1016/j.renene.2021.06.049 – volume: 37 year: 2022 ident: 10.1016/j.csite.2023.103864_bib15 article-title: Thermodynamic characteristics of a novel combination of three-start twisted tube and oval dimples publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2022.102284 – volume: 13 start-page: 474 year: 1999 ident: 10.1016/j.csite.2023.103864_bib54 article-title: Thermal conductivity of nanoparticle -fluid mixture publication-title: J. Thermophys. Heat Tran. doi: 10.2514/2.6486 – volume: 13 start-page: 9483 issue: 1 year: 2023 ident: 10.1016/j.csite.2023.103864_bib43 article-title: Computational fluid dynamics simulation of two-phase flow patterns in a serpentine microfluidic device publication-title: Sci. Rep. doi: 10.1038/s41598-023-36672-6 – volume: 144 year: 2020 ident: 10.1016/j.csite.2023.103864_bib31 article-title: On the performance of nanofluids in APR 1400 PLUS7 assembly: neutronics publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2020.107508 – volume: 180 year: 2020 ident: 10.1016/j.csite.2023.103864_bib3 article-title: Experimental investigation of heat transfer enhancement of a heat exchanger tube equipped with double-cut twisted tapes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115863 – volume: 39 start-page: 1654 year: 2012 ident: 10.1016/j.csite.2023.103864_bib40 article-title: Twisted bundle heat exchangers performance evaluation by CFD (CJ12/5054) publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2012.09.004 – year: 1996 ident: 10.1016/j.csite.2023.103864_bib58 – volume: 154 year: 2020 ident: 10.1016/j.csite.2023.103864_bib28 article-title: Thermo-hydraulic performance of nanofluids flow in various internally corrugated tubes publication-title: Chem. Eng. Proces. - Process Intensificat. doi: 10.1016/j.cep.2020.108043 – volume: 19 start-page: 543 year: 2019 ident: 10.1016/j.csite.2023.103864_bib47 article-title: A comparison of standard k–ε and realizable k–ε turbulence models in curved and confuent channels publication-title: Environ. Fluid Mech. doi: 10.1007/s10652-018-9637-1 – volume: 133 year: 2021 ident: 10.1016/j.csite.2023.103864_bib23 article-title: Wall boiling of Al2O3-water nanofluid: effect of nanoparticle concentration publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2020.103614 – volume: 147 start-page: 6847 issue: 12 year: 2022 ident: 10.1016/j.csite.2023.103864_bib2 article-title: Numerical investigation and multi-criteria optimization of the thermal–hydraulic characteristics of turbulent flow in conical tubes fitted with twisted tape insert publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-021-10998-7 – volume: 86 start-page: 28 year: 2014 ident: 10.1016/j.csite.2023.103864_bib35 article-title: Performance of water based CuO and Al2O3 nanofluids in a Cu–Be alloy heat sink with rectangular microchannels publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.05.013 – volume: 55 start-page: 4701 year: 2012 ident: 10.1016/j.csite.2023.103864_bib7 article-title: Experimental and numerical study of convective heat transfer and fluid flow in twisted oval tubes publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2012.04.030 – volume: 4 start-page: 1510 issue: 7 year: 1992 ident: 10.1016/j.csite.2023.103864_bib48 article-title: Development of turbulence models for shear flows by a double expansion technique publication-title: Phys. Fluid. Fluid Dynam. doi: 10.1063/1.858424 – volume: 11 start-page: 151 issue: 2 year: 1998 ident: 10.1016/j.csite.2023.103864_bib55 article-title: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles publication-title: Exp. Heat Trans. Int. J. doi: 10.1080/08916159808946559 – volume: 15 start-page: 1646 issue: 3 year: 2011 ident: 10.1016/j.csite.2023.103864_bib24 article-title: A review on applications and challenges of nanofluids publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.11.035 – volume: 28 start-page: 541 issue: 6 year: 2019 ident: 10.1016/j.csite.2023.103864_bib42 article-title: Numerical simulation using a modified solver within OpenFOAM for compressible viscous flows publication-title: European J. Comput. Mech. – volume: 25 year: 2021 ident: 10.1016/j.csite.2023.103864_bib34 article-title: Effect of volume fraction and size of Al2O3 nanoparticles in thermal, frictional and economic performance of circumferential corrugated helical tube publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.100948 – volume: 210 year: 2022 ident: 10.1016/j.csite.2023.103864_bib19 article-title: Analysis of heat transfer characteristics and entransy evaluation of high viscosity fluid in a novel twisted tube publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.118388 – volume: 91 start-page: 285 year: 2016 ident: 10.1016/j.csite.2023.103864_bib37 article-title: Effects of water based Al2O3, TiO2, and CuO nanofluids as the coolant as the coolant publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2016.05.007 – volume: 161 year: 2021 ident: 10.1016/j.csite.2023.103864_bib25 article-title: Predicting and optimizing the thermal-hydraulic, natural circulation, and neutronics parameters in the NuScale nuclear reactor using nanofluid as a coolant via machine learning methods through GA, PSO and HPSOGA algorithms publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2021.108375 – volume: 1 start-page: 187 year: 1962 ident: 10.1016/j.csite.2023.103864_bib52 article-title: Thermal conductivity of heterogeneous two-component systems publication-title: Ind. Eng. Chem. Fund. doi: 10.1021/i160003a005 – volume: 51 start-page: 1004 year: 2010 ident: 10.1016/j.csite.2023.103864_bib38 article-title: Shell side CFD analysis of a small shell-and-tube heat exchanger publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2009.12.003 – volume: 90 start-page: 523 year: 2015 ident: 10.1016/j.csite.2023.103864_bib16 article-title: Experimental and numerical investigation of convective heat transfer and fluid flow in twisted spiral tube publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2015.06.068 – volume: 131 start-page: 23 year: 2019 ident: 10.1016/j.csite.2023.103864_bib41 article-title: Assessment of different turbulence models on the large scale internal heated water pool natural convection simulation publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2019.03.018 – volume: 178 year: 2022 ident: 10.1016/j.csite.2023.103864_bib33 article-title: Investigation of the entropy production rate of ferrosoferric oxide/water nanofluid in outward corrugated pipes using a two-phase mixture model publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2022.107598 – volume: 90 start-page: 232 year: 2015 ident: 10.1016/j.csite.2023.103864_bib6 article-title: A numerical study on heat transfer enhancement and the flow structure in a heat exchanger tube with discrete double inclined ribs publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.07.009 – volume: 65 start-page: 244 year: 2013 ident: 10.1016/j.csite.2023.103864_bib14 article-title: 3D numerical simulation on the shell side heat transfer and pressure drop performances of twisted oval tube heat exchanger publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2013.06.011 – volume: 164 year: 2021 ident: 10.1016/j.csite.2023.103864_bib18 article-title: Thermal performance enhancement of a double-tube heat exchanger with novel twisted annulus formed by counter-twisted oval tubes publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2021.106892 – volume: 6 start-page: 104 year: 2015 ident: 10.1016/j.csite.2023.103864_bib11 article-title: Heat transfer of swirling impinging jets ejected from Nozzles with twisted tapes utilizing CFD technique publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2015.08.001 – volume: 152 start-page: 559 year: 2019 ident: 10.1016/j.csite.2023.103864_bib4 article-title: Geometric optimization of shell and tube heat exchanger with interstitial twisted tapes outside the tubes applying CFD techniques publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.01.113 – volume: 49 year: 2023 ident: 10.1016/j.csite.2023.103864_bib49 article-title: The efficacy of magnetic force on thermal performance of ferrofluid in a screw tube publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.103187 – volume: 12 start-page: 27 issue: 2 year: 2008 ident: 10.1016/j.csite.2023.103864_bib50 article-title: Empirical correlations to predict thermophysical and heat transfer characteristics of nanofluids publication-title: Therm. Sci. doi: 10.2298/TSCI0802027V – volume: 87 start-page: 67 year: 2016 ident: 10.1016/j.csite.2023.103864_bib51 article-title: Thermalehydraulic modeling of water/Al2O3 nanofluid as the coolant in annular fuels for a typical VVER-1000 core publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2015.11.008 – volume: 148 start-page: 7795 issue: 15 year: 2023 ident: 10.1016/j.csite.2023.103864_bib13 article-title: Hydrothermal performance of a turbulent nanofluid with different nanoparticle shapes in a duct fitted with various configurations of coiled-wire inserts publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-023-12241-x |
SSID | ssj0001738144 |
Score | 2.5215602 |
Snippet | This study investigates the influence of nanofluids on heat exchanger efficiency using 3-D computational fluid dynamics (CFD). The objective is to optimize the... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 103864 |
SubjectTerms | CFD Heat exchanger performance Nanofluids Pressure drop Twisted tube |
Title | Enhancing heat transfer in a heat exchanger: CFD study of twisted tube and nanofluid (Al2O3, Cu, CuO, and TiO2) effects |
URI | https://doaj.org/article/c96addeac45d42739e115a8ccd5a926f |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sAAUiPS5OLEbG2hKgx0aaVukZ9QVLmoSlR-PraTVmGBhSEZHOdknS_-7pzzdwjdZJLKNGQsyGTCAhAkCVgGcZBFgndDnbFM-GyLVzKawsssmTVKfbmcsIoeuFLcvaDEfYJMQCLBYi1V1oexEoSVTSOi3eprMa8RTPndldQiEcCGZsgndAn_O9aVC_es4AR-QFGDsd9Dy_AA7dc-Ie5VYzlEO8ocob0GU-AxWj-Zd8eMYd6wWz1x4f1NtcJzg1nVpL7qQ7wPeDB8xJ43Fi81LtZuJiUuSq4wMxIbZpZ6Uc4lvu0tonHcwYPSXeOOfzyZj6M7XOd5nKDp8GkyGAV1zYRAxCQsAqVDTaUNmhgDi8SQaamojSkg5VxlLBE81YxSnkop3SlYFYJWREhGNICiLD5FLbM06gxhqykVcmk9LuhCSlMqGZAo5CSOBBAgbRRt1JeLmlDc1bVY5JvMsY_c6zx3Os8rnbdRZ_vSZ8Wn8Xv3vpuXbVdHhu0brInktYnkf5nI-X8IuUC7dlxQ7b5colaxKtWV9UcKfu1Nz96fZ_1v2X_euQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+heat+transfer+in+a+heat+exchanger%3A+CFD+study+of+twisted+tube+and+nanofluid+%28Al2O3%2C+Cu%2C+CuO%2C+and+TiO2%29+effects&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Valiyollah+Ghazanfari&rft.au=Armin+Taheri&rft.au=Younes+Amini&rft.au=Fatemeh+Mansourzade&rft.date=2024-01-01&rft.pub=Elsevier&rft.eissn=2214-157X&rft.volume=53&rft.spage=103864&rft_id=info:doi/10.1016%2Fj.csite.2023.103864&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c96addeac45d42739e115a8ccd5a926f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |