A Dictionary Learning Algorithm Based on Dictionary Reconstruction and Its Application in Face Recognition

In recent years, dictionary learning has received more and more attention in the study of face recognition. However, most dictionary learning algorithms directly use the original training samples to learn the dictionary, ignoring noise existing in the training samples. For example, there are differe...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2020; no. 2020; pp. 1 - 10
Main Authors Zou, Yongjie, Liu, Wenjie, Zhang, Yongjun, Zheng, Shijun, Zhang, Xuexue
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In recent years, dictionary learning has received more and more attention in the study of face recognition. However, most dictionary learning algorithms directly use the original training samples to learn the dictionary, ignoring noise existing in the training samples. For example, there are differences between different images of the same subject due to changes in illumination, expression, etc. To address the above problems, this paper proposes the dictionary relearning algorithm (DRLA) based on locality constraint and label embedding, which can effectively reduce the influence of noise on the dictionary learning algorithm. In our proposed dictionary learning algorithm, first, the initial dictionary and coding coefficient matrix are directly obtained from the training samples, and then the original training samples are reconstructed by the product of the initial dictionary and coding coefficient matrix. Finally, the dictionary learning algorithm is reapplied to obtain a new dictionary and coding coefficient matrix, and the newly obtained dictionary and coding coefficient matrix are used for subsequent image classification. The dictionary reconstruction method can partially eliminate noise in the original training samples. Therefore, the proposed algorithm can obtain more robust classification results. The experimental results demonstrate that the proposed algorithm performs better in recognition accuracy than some state-of-the-art algorithms.
ISSN:1024-123X
1563-5147
DOI:10.1155/2020/8964321