An Inverse Result of Approximation by Sampling Kantorovich Series

In the present paper, an inverse result of approximation, i.e. a saturation theorem for the sampling Kantorovich operators, is derived in the case of uniform approximation for uniformly continuous and bounded functions on the whole real line. In particular, we prove that the best possible order of a...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Edinburgh Mathematical Society Vol. 62; no. 1; pp. 265 - 280
Main Authors Costarelli, Danilo, Vinti, Gianluca
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the present paper, an inverse result of approximation, i.e. a saturation theorem for the sampling Kantorovich operators, is derived in the case of uniform approximation for uniformly continuous and bounded functions on the whole real line. In particular, we prove that the best possible order of approximation that can be achieved by the above sampling series is the order one, otherwise the function being approximated turns out to be a constant. The above result is proved by exploiting a suitable representation formula which relates the sampling Kantorovich series with the well-known generalized sampling operators introduced by Butzer. At the end, some other applications of such representation formulas are presented, together with a discussion concerning the kernels of the above operators for which such an inverse result occurs.
AbstractList In the present paper, an inverse result of approximation, i.e. a saturation theorem for the sampling Kantorovich operators, is derived in the case of uniform approximation for uniformly continuous and bounded functions on the whole real line. In particular, we prove that the best possible order of approximation that can be achieved by the above sampling series is the order one, otherwise the function being approximated turns out to be a constant. The above result is proved by exploiting a suitable representation formula which relates the sampling Kantorovich series with the well-known generalized sampling operators introduced by Butzer. At the end, some other applications of such representation formulas are presented, together with a discussion concerning the kernels of the above operators for which such an inverse result occurs.
Author Costarelli, Danilo
Vinti, Gianluca
Author_xml – sequence: 1
  givenname: Danilo
  orcidid: 0000-0001-8834-8877
  surname: Costarelli
  fullname: Costarelli, Danilo
  email: danilo.costarelli@unipg.it
  organization: Department of Mathematics and Computer Science, University of Perugia, 1 Via Vanvitelli, 06123 Perugia, Italy (danilo.costarelli@unipg.it; gianluca.vinti@unipg.it)
– sequence: 2
  givenname: Gianluca
  surname: Vinti
  fullname: Vinti, Gianluca
  email: danilo.costarelli@unipg.it
  organization: Department of Mathematics and Computer Science, University of Perugia, 1 Via Vanvitelli, 06123 Perugia, Italy (danilo.costarelli@unipg.it; gianluca.vinti@unipg.it)
BookMark eNp9kE9LAzEQxYNUsK1-AG8Bz6uZZHezPZbin2JBsHpestNsTdkma7It9tub2oKg6GkO834z770B6VlnNSGXwK6BgbyZMwaCjSCDgjEmUn5C-pDmaSIKMeqR_n6d7PdnZBDCKmqkzKBPxmNLp3arfdD0WYdN01FX03Hbevdh1qozztJqR-dq3TbGLumjsp3zbmvwjc61Nzqck9NaNUFfHOeQvN7dvkwektnT_XQyniUoctYlesEVokJV6UxXOUpZI6-URpCcKZmpVBZQ1RitZxJHC84qzDnwGjKUoFEMydXhbrT2vtGhK1du4218WfKYnAsBBUSVPKjQuxC8rks03VeMzivTlMDKfV_lr74iCT_I1scG_O5fRhwZta68WSz1t6m_qU-o431h
CitedBy_id crossref_primary_10_1007_s00025_019_1044_5
crossref_primary_10_1007_s00025_021_01520_4
crossref_primary_10_1016_j_amc_2022_127152
crossref_primary_10_1007_s13398_020_00936_x
crossref_primary_10_1515_ans_2022_0023
crossref_primary_10_1016_j_amc_2019_124623
crossref_primary_10_1007_s40574_020_00256_3
crossref_primary_10_33205_cma_876890
crossref_primary_10_1016_j_fss_2025_109332
crossref_primary_10_1142_S0219530519500155
crossref_primary_10_1007_s13398_022_01367_6
crossref_primary_10_1007_s13398_024_01571_6
crossref_primary_10_3390_math7030259
crossref_primary_10_1002_mma_10330
crossref_primary_10_1002_mma_7420
crossref_primary_10_1007_s43037_020_00071_0
crossref_primary_10_1002_mma_9202
crossref_primary_10_1007_s13398_020_00805_7
crossref_primary_10_1515_dema_2022_0014
crossref_primary_10_1007_s13398_023_01535_2
crossref_primary_10_1016_j_amc_2020_125046
crossref_primary_10_1016_j_jat_2019_03_001
crossref_primary_10_1007_s41980_024_00868_x
crossref_primary_10_1007_s00025_021_01383_9
crossref_primary_10_1016_j_cagd_2021_102062
crossref_primary_10_33205_cma_484500
crossref_primary_10_3390_app13095594
crossref_primary_10_1016_j_eswa_2023_122350
crossref_primary_10_1007_s13398_024_01605_z
crossref_primary_10_3390_sym13081450
crossref_primary_10_3934_mfc_2021031
crossref_primary_10_1016_j_fss_2021_03_003
crossref_primary_10_1016_j_jmaa_2023_127740
crossref_primary_10_1007_s12215_020_00544_z
crossref_primary_10_1016_j_amc_2019_02_076
crossref_primary_10_1007_s13324_019_00334_6
crossref_primary_10_1016_j_avsg_2019_05_002
crossref_primary_10_1016_j_jmaa_2021_125913
crossref_primary_10_1007_s00009_019_1315_0
crossref_primary_10_1007_s00009_023_02459_2
crossref_primary_10_1007_s00521_018_03998_6
crossref_primary_10_3390_axioms12121124
crossref_primary_10_1007_s00025_020_01241_0
crossref_primary_10_1002_mma_5838
crossref_primary_10_1007_s00041_022_09943_5
crossref_primary_10_1002_mana_202100117
Cites_doi 10.1216/JIE-2014-26-4-455
10.1007/978-3-319-34189-7
10.1002/sapm1969483265
10.1007/BF03549524
10.1016/j.amc.2017.08.058
10.1016/j.jat.2016.05.001
10.1016/j.cagd.2012.07.005
10.1016/0021-9045(70)90058-4
10.1016/j.jat.2015.10.001
10.1007/BF03549462
10.1016/j.jat.2014.06.004
10.1080/01630563.2013.767833
10.1016/j.cagd.2012.03.011
10.1080/01630563.2015.1040888
10.1007/s11075-010-9418-5
10.1016/j.ndteint.2014.10.001
10.1007/BF03549509
10.1007/BF03549542
10.1080/01630563.2011.652270
10.1007/s00025-016-0546-7
10.1109/TIT.2009.2034793
10.1016/0021-9991(85)90006-3
10.1016/j.jmaa.2017.01.066
10.1016/0771-050X(81)90008-5
10.1016/j.cam.2012.02.028
10.1007/s10114-011-0227-0
10.1007/BF03549552
10.1007/978-0-387-70914-7
10.1007/978-3-0348-7448-9
10.1109/TSP.2007.914346
10.1093/oso/9780198596998.001.0001
10.1002/pamm.200810937
10.1216/JIE-2014-26-3-345
10.1080/00036811.2010.499506
10.1080/00036811.2012.698267
ContentType Journal Article
Copyright Copyright © Edinburgh Mathematical Society 2018
Copyright_xml – notice: Copyright © Edinburgh Mathematical Society 2018
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0013091518000342
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate D. Costarelli and G. Vinti
An inverse result of approximation by Sw
EISSN 1464-3839
EndPage 280
ExternalDocumentID 10_1017_S0013091518000342
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
123
29O
3V.
4.4
5VS
6OB
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABEFU
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTAH
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFS
ACGOD
ACIMK
ACIPV
ACIWK
ACMRT
ACNCT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOJD
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
FRP
GNUQQ
HCIFZ
HG-
HST
HZ~
H~9
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OHT
OK1
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNI
ROL
RR0
RZO
S6-
S6U
SAAAG
T9M
TR2
TWZ
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
XOL
YNT
ZCG
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
~V1
AAKNA
AATMM
AAYXX
ABGDZ
ABHFL
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACOZI
ACRPL
ADNMO
AEMFK
AFZFC
AGQPQ
AHDLI
AKMAY
AMVHM
ANOYL
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c360t-ed2accacabe5eb6c77fc2baec1720a75a4781bfc34257c9d20bc6212f15c71ec3
IEDL.DBID BENPR
ISSN 0013-0915
IngestDate Fri Jul 25 19:36:01 EDT 2025
Tue Jul 01 03:48:13 EDT 2025
Thu Apr 24 23:02:06 EDT 2025
Wed Mar 13 05:47:42 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords saturation theorem
central B-splines
sampling Kantorovich series
41A30
order of approximation
47A58
generalized sampling operators
inverse results
Primary 41A25
41A05
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-ed2accacabe5eb6c77fc2baec1720a75a4781bfc34257c9d20bc6212f15c71ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8834-8877
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/0974FFC764B0E44E9261C1704352E828/S0013091518000342a.pdf/div-class-title-an-inverse-result-of-approximation-by-sampling-kantorovich-series-div.pdf
PQID 2309233181
PQPubID 41713
PageCount 16
ParticipantIDs proquest_journals_2309233181
crossref_citationtrail_10_1017_S0013091518000342
crossref_primary_10_1017_S0013091518000342
cambridge_journals_10_1017_S0013091518000342
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190200
2019-02-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 20190200
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Proceedings of the Edinburgh Mathematical Society
PublicationTitleAlternate Proceedings of the Edinburgh Mathematical Society
PublicationYear 2019
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0013091518000342_ref37
S0013091518000342_ref8
S0013091518000342_ref9
S0013091518000342_ref35
S0013091518000342_ref7
S0013091518000342_ref14
S0013091518000342_ref36
S0013091518000342_ref39
S0013091518000342_ref18
Costarelli (S0013091518000342_ref19) 2011; 9
Coroianu (S0013091518000342_ref17) 2012; 11
S0013091518000342_ref4
Coroianu (S0013091518000342_ref15) 2010; 9
S0013091518000342_ref5
Bardaro (S0013091518000342_ref6) 2007; 6
Unser (S0013091518000342_ref42) 1997
S0013091518000342_ref40
S0013091518000342_ref41
Asdrubali (S0013091518000342_ref2) 2018; 317
S0013091518000342_ref22
S0013091518000342_ref23
Coroianu (S0013091518000342_ref16) 2011; 10
S0013091518000342_ref20
S0013091518000342_ref21
S0013091518000342_ref26
S0013091518000342_ref24
S0013091518000342_ref25
Kivinukk (S0013091518000342_ref31) 2009; 8
S0013091518000342_ref28
S0013091518000342_ref29
Wang (S0013091518000342_ref44) 2013; 92
Bardaro (S0013091518000342_ref3) 2010; 62
Higgins (S0013091518000342_ref30) 1996
Ries (S0013091518000342_ref38) 1984
Butzer (S0013091518000342_ref12) 1993
Alavi (S0013091518000342_ref1) 2013; 2013
Cluni (S0013091518000342_ref13) 2015; 19
Vinti (S0013091518000342_ref43) 2017
S0013091518000342_ref11
S0013091518000342_ref33
Do (S0013091518000342_ref27) 2008; 56
S0013091518000342_ref34
S0013091518000342_ref10
S0013091518000342_ref32
References_xml – ident: S0013091518000342_ref22
  doi: 10.1216/JIE-2014-26-4-455
– ident: S0013091518000342_ref9
  doi: 10.1007/978-3-319-34189-7
– ident: S0013091518000342_ref28
  doi: 10.1002/sapm1969483265
– volume: 9
  start-page: 59
  year: 2010
  ident: S0013091518000342_ref15
  article-title: Approximation by nonlinear generalized sampling operators of max-product kind
  publication-title: Sampl. Theory Signal Image Process.
  doi: 10.1007/BF03549524
– volume: 317
  start-page: 160
  year: 2018
  ident: S0013091518000342_ref2
  article-title: Detection of thermal bridges from thermographic images by means of image processing approximation algorithms
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2017.08.058
– ident: S0013091518000342_ref25
  doi: 10.1016/j.jat.2016.05.001
– ident: S0013091518000342_ref39
  doi: 10.1016/j.cagd.2012.07.005
– volume: 19
  start-page: 602
  year: 2015
  ident: S0013091518000342_ref13
  article-title: Applications of sampling Kantorovich operators to thermographic images for seismic engineering
  publication-title: J. Comput. Anal. Appl.
– ident: S0013091518000342_ref34
  doi: 10.1016/0021-9045(70)90058-4
– ident: S0013091518000342_ref37
  doi: 10.1016/j.jat.2015.10.001
– volume: 6
  start-page: 29
  year: 2007
  ident: S0013091518000342_ref6
  article-title: Kantorovich-type generalized sampling series in the setting of Orlicz spaces
  publication-title: Sampl. Theory Signal Image Process.
  doi: 10.1007/BF03549462
– start-page: 157
  volume-title: Linear prediction by samples from the past
  year: 1993
  ident: S0013091518000342_ref12
– start-page: 422
  volume-title: Ten good reasons for using spline wavelets
  year: 1997
  ident: S0013091518000342_ref42
– volume: 62
  start-page: 247
  year: 2010
  ident: S0013091518000342_ref3
  article-title: Voronovskaja formulae for Kantorovich generalized sampling series
  publication-title: Int. J. Pure Appl. Math
– ident: S0013091518000342_ref18
  doi: 10.1016/j.jat.2014.06.004
– ident: S0013091518000342_ref20
  doi: 10.1080/01630563.2013.767833
– volume: 9
  start-page: 445
  year: 2011
  ident: S0013091518000342_ref19
  publication-title: Boll. Unione Mat. Ital.
– ident: S0013091518000342_ref33
  doi: 10.1016/j.cagd.2012.03.011
– ident: S0013091518000342_ref23
  doi: 10.1080/01630563.2015.1040888
– ident: S0013091518000342_ref41
  doi: 10.1007/s11075-010-9418-5
– ident: S0013091518000342_ref14
  doi: 10.1016/j.ndteint.2014.10.001
– volume: 8
  start-page: 77
  year: 2009
  ident: S0013091518000342_ref31
  article-title: Interpolating generalized Shannon sampling operators, their norms and approximation properties
  publication-title: Sampl. Theory Signal Image Process.
  doi: 10.1007/BF03549509
– volume: 10
  start-page: 211
  year: 2011
  ident: S0013091518000342_ref16
  article-title: Approximation by max-product sampling operators based on sinc-type kernels
  publication-title: Sampl. Theory Signal Image Process.
  doi: 10.1007/BF03549542
– ident: S0013091518000342_ref5
  doi: 10.1080/01630563.2011.652270
– ident: S0013091518000342_ref24
  doi: 10.1007/s00025-016-0546-7
– ident: S0013091518000342_ref7
  doi: 10.1109/TIT.2009.2034793
– ident: S0013091518000342_ref35
  doi: 10.1016/0021-9991(85)90006-3
– year: 2017
  ident: S0013091518000342_ref43
  article-title: A general approximation approach for the simultaneous treatment of integral and discrete operators
  publication-title: Adv. Nonlinear Stud.
– ident: S0013091518000342_ref26
  doi: 10.1016/j.jmaa.2017.01.066
– ident: S0013091518000342_ref36
  doi: 10.1016/0771-050X(81)90008-5
– ident: S0013091518000342_ref29
  doi: 10.1016/j.cam.2012.02.028
– ident: S0013091518000342_ref4
  doi: 10.1007/s10114-011-0227-0
– volume: 11
  start-page: 113
  year: 2012
  ident: S0013091518000342_ref17
  article-title: Saturation results for the truncated max-product sampling operators based on sinc and Fejér-type kernels
  publication-title: Sampl. Theory Signal Image Process.
  doi: 10.1007/BF03549552
– volume: 2013
  year: 2013
  ident: S0013091518000342_ref1
  article-title: Applying cubic B-Spline quasi-interpolation to solve 1D wave equations in polar coordinates
  publication-title: ISRN Comput. Math.
– ident: S0013091518000342_ref10
  doi: 10.1007/978-0-387-70914-7
– ident: S0013091518000342_ref11
  doi: 10.1007/978-3-0348-7448-9
– start-page: 746
  volume-title: Approximation by generalized sampling series
  year: 1984
  ident: S0013091518000342_ref38
– volume: 56
  start-page: 2334
  year: 2008
  ident: S0013091518000342_ref27
  article-title: A theory for sampling signals from a union of subspaces
  publication-title: IEEE Trans. Signal. Process.
  doi: 10.1109/TSP.2007.914346
– volume-title: Sampling theory in Fourier and signal analysis: foundations
  year: 1996
  ident: S0013091518000342_ref30
  doi: 10.1093/oso/9780198596998.001.0001
– ident: S0013091518000342_ref40
  doi: 10.1002/pamm.200810937
– ident: S0013091518000342_ref21
  doi: 10.1216/JIE-2014-26-3-345
– ident: S0013091518000342_ref8
  doi: 10.1080/00036811.2010.499506
– ident: S0013091518000342_ref32
– volume: 92
  start-page: 1682
  year: 2013
  ident: S0013091518000342_ref44
  article-title: A numerical method for solving KdV equation with multilevel B-spline quasi-interpolation
  publication-title: Appl. Anal.
  doi: 10.1080/00036811.2012.698267
SSID ssj0007751
Score 2.3770306
Snippet In the present paper, an inverse result of approximation, i.e. a saturation theorem for the sampling Kantorovich operators, is derived in the case of uniform...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 265
SubjectTerms Approximation
Continuity (mathematics)
Mathematical analysis
Operators (mathematics)
Representations
Sampling
Title An Inverse Result of Approximation by Sampling Kantorovich Series
URI https://www.cambridge.org/core/product/identifier/S0013091518000342/type/journal_article
https://www.proquest.com/docview/2309233181
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA62vehBfGK1lhw8iYv7aJLdk6zSWpQWqRZ6K8kkq0LZ1u4W9N-b7KsWodfNBpbJ7Jcvk5lvELpSKuLE5rYFVHiWRj9qBdIjGgw5D5Q-Y3gdU-A8GNL-uPM0IZMi4JYUaZUlJmZALedgYuS3miprLqI90LlbfFmma5S5XS1aaNRQQ0Owrw9fjfvu8GVUYTFjxKl6GAQOKe81M9Foc2mnnzl-ptLi_lVX2NylNkE623l6B2i_oIw4zNf4EO2o-AjtDSq91eQYhWGMjWLGMlF4pJLVLMXzCIdGL_z7My9OxOIHv3KTPx6_42fTOtgEE-ADm_iYSk7QuNd9e-hbRXMECzxqp5aSLtfWBy4UUYICYxG4givQjMTmjHBTQyoi8MxPCYF0bQFUGylyCDBHgXeK6vE8VmcIB75NhK1HfAUdNwo4EClpIBlIKknEmuimMsy0cPFkmqeHsek_OzaRXdpuCoXQuOl3Mds25bqasshVNra93CoXZP01a_c43z58gXY15wnyxOsWqqfLlbrUvCIVbVTze4_twoV-ATbzx9k
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VGIAB8RTl6QEWREQedVwPCFVAKZR2gCKxBfvsABJKgRRB_xS_ETtpAgipG2scW9b5893ZvvsOYEfrWFBXuA6GMnCM9gsdrgJqlKEQXJszRlCzCc6dbti6qV3c0tsKfBa5MDasstCJmaJWfbR35AfGVTa-iEGgd_T84tiqUfZ1tSihkcOirYfv5siWHp6fmPXd9f3mae-45YyqCjgYhO7A0coXZtoopKZahshYjL4UGo0pdwWjwiZfyhgDi2bkynclhkbBxx5F5mkMzLgTMFULAm53VL15Vmp-xqhXVkzgHi1eUTOKavtEaL559YwTxv_J5fDbJv42CZmda87D3MhBJY0cUQtQ0ckizHZKdtd0CRqNhFh-jtdUkyudvj0NSD8mDctO_vGYp0ISOSTXwkarJ_ekbQsV26sLfCD2Nk6ny3DzL0Jbgcmkn-hVILzuUumalrrGmh9zgVSpkCuGKlQ0ZlXYLwUTjTZUGuXBaCz6I8cquIXsIhzRmtvqGk_juuyVXZ5zTo9xP28UC_I9m28wro1v3obpVq9zGV2ed9vrMGO8LZ6HfG_A5OD1TW8aj2YgtzIYEbj7b9x-ARnyBQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Inverse+Result+of+Approximation+by+Sampling+Kantorovich+Series&rft.jtitle=Proceedings+of+the+Edinburgh+Mathematical+Society&rft.au=Costarelli%2C+Danilo&rft.au=Vinti%2C+Gianluca&rft.date=2019-02-01&rft.pub=Cambridge+University+Press&rft.issn=0013-0915&rft.eissn=1464-3839&rft.volume=62&rft.issue=1&rft.spage=265&rft.epage=280&rft_id=info:doi/10.1017%2FS0013091518000342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-0915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-0915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-0915&client=summon