BANet: A bilateral attention network for extracting changed buildings between remote sensing imagery and cadastral maps
Up-to-date cadastral maps are vital to local governments in administrating real estate in cities. With its growing availability, remote sensing imagery is the cost-effective data for updating semantic contents on cadastral maps. In this study, we address the problem of updating buildings on cadastra...
Saved in:
Published in | International journal of applied earth observation and geoinformation Vol. 139; p. 104486 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Up-to-date cadastral maps are vital to local governments in administrating real estate in cities. With its growing availability, remote sensing imagery is the cost-effective data for updating semantic contents on cadastral maps. In this study, we address the problem of updating buildings on cadastral maps, as city renewal is mainly characterized by new construction and demolition. While previous works focus on extracting all buildings from remote sensing images, we argue that these methods not only disregard preliminary information on cadastral maps but also fail to preserve building priors in unchanged areas on cadastral maps. Therefore, we focus on the task of extracting changed buildings (i.e., newly built and demolished buildings) from remote sensing images and cadastral maps. To address this task, we create an image-map building change detection (IMBCD) dataset, formed by around 27K pairs of remote sensing images and maps and their corresponding changed buildings in six distinct geographical areas across the globe. Accordingly, we propose a Bilateral Attention Network (BANet), introducing a novel attention mechanism: changed-first (CF) attention and non-changed-first (NCF) attention. This bilateral attention mechanism helps to refine the uncertain areas between changed and non-changed regions. Extensive experiments on our IMBCD dataset showcase the superior performance of BANet. Specifically, our BANet outperforms state-of-the-art models with F1 scores of 90.00% and 63.00% for the IMBCD-WHU and IMBCD-Inria datasets. This confirms that the leverage of bilateral attention blocks (BAB) can boost performance.
•We extract changed buildings between remote sensing images and cadastral maps.•We propose a dataset, IMBCD, for building change detection.•We propose a novel network, BANet, for building change detection. |
---|---|
AbstractList | Up-to-date cadastral maps are vital to local governments in administrating real estate in cities. With its growing availability, remote sensing imagery is the cost-effective data for updating semantic contents on cadastral maps. In this study, we address the problem of updating buildings on cadastral maps, as city renewal is mainly characterized by new construction and demolition. While previous works focus on extracting all buildings from remote sensing images, we argue that these methods not only disregard preliminary information on cadastral maps but also fail to preserve building priors in unchanged areas on cadastral maps. Therefore, we focus on the task of extracting changed buildings (i.e., newly built and demolished buildings) from remote sensing images and cadastral maps. To address this task, we create an image-map building change detection (IMBCD) dataset, formed by around 27K pairs of remote sensing images and maps and their corresponding changed buildings in six distinct geographical areas across the globe. Accordingly, we propose a Bilateral Attention Network (BANet), introducing a novel attention mechanism: changed-first (CF) attention and non-changed-first (NCF) attention. This bilateral attention mechanism helps to refine the uncertain areas between changed and non-changed regions. Extensive experiments on our IMBCD dataset showcase the superior performance of BANet. Specifically, our BANet outperforms state-of-the-art models with F1 scores of 90.00% and 63.00% for the IMBCD-WHU and IMBCD-Inria datasets. This confirms that the leverage of bilateral attention blocks (BAB) can boost performance. Up-to-date cadastral maps are vital to local governments in administrating real estate in cities. With its growing availability, remote sensing imagery is the cost-effective data for updating semantic contents on cadastral maps. In this study, we address the problem of updating buildings on cadastral maps, as city renewal is mainly characterized by new construction and demolition. While previous works focus on extracting all buildings from remote sensing images, we argue that these methods not only disregard preliminary information on cadastral maps but also fail to preserve building priors in unchanged areas on cadastral maps. Therefore, we focus on the task of extracting changed buildings (i.e., newly built and demolished buildings) from remote sensing images and cadastral maps. To address this task, we create an image-map building change detection (IMBCD) dataset, formed by around 27K pairs of remote sensing images and maps and their corresponding changed buildings in six distinct geographical areas across the globe. Accordingly, we propose a Bilateral Attention Network (BANet), introducing a novel attention mechanism: changed-first (CF) attention and non-changed-first (NCF) attention. This bilateral attention mechanism helps to refine the uncertain areas between changed and non-changed regions. Extensive experiments on our IMBCD dataset showcase the superior performance of BANet. Specifically, our BANet outperforms state-of-the-art models with F1 scores of 90.00% and 63.00% for the IMBCD-WHU and IMBCD-Inria datasets. This confirms that the leverage of bilateral attention blocks (BAB) can boost performance. •We extract changed buildings between remote sensing images and cadastral maps.•We propose a dataset, IMBCD, for building change detection.•We propose a novel network, BANet, for building change detection. |
ArticleNumber | 104486 |
Author | Li, Qingyu Zhu, Xiao Xiang Shi, Yilei Mou, Lichao |
Author_xml | – sequence: 1 givenname: Qingyu orcidid: 0000-0003-1067-1222 surname: Li fullname: Li, Qingyu email: qingyu.li@tum.de organization: Data Science in Earth Observation, Technical University of Munich, Munich, 80333, Germany – sequence: 2 givenname: Lichao surname: Mou fullname: Mou, Lichao email: lichao.mou@tum.de organization: Data Science in Earth Observation, Technical University of Munich, Munich, 80333, Germany – sequence: 3 givenname: Yilei surname: Shi fullname: Shi, Yilei email: yilei.shi@tum.de organization: School of Engineering and Design, Technical University of Munich, Munich, 80333, Germany – sequence: 4 givenname: Xiao Xiang orcidid: 0000-0001-5530-3613 surname: Zhu fullname: Zhu, Xiao Xiang email: xiaoxiang.zhu@tum.de organization: Data Science in Earth Observation, Technical University of Munich, Munich, 80333, Germany |
BookMark | eNp9kMtOxDAMRbMAiecHsMsPzNC06SOwGhAvCcGGfeQ6bknpJCgJr78nwyCWrCxbvsfX94DtOO-IsRNRLEUhmtNpOcG4LIuyzr2UXbPD9kXdqEUnq3KPHcQ4FYVo26bbZx8XqwdKZ3zFeztDogAzh5TIJesdd5Q-fHjhgw-cPlMATNaNHJ_BjWR4_2ZnkweR93mRyPFAa5-IR3Jxs2jXMFL44uAMRzAQ04a_htd4xHYHmCMd_9ZD9nR99XR5u7h_vLm7XN0vsGqKtKAWO9MRGkWU9ULJupVV01elqgz1aigl1bIGBY0kaFSJVAMMZYUoSQ3VIbvbYo2HSb-GbCh8aQ9W_wx8GDWEZHEmTfUgFNbQtW2Rr2A_IFSthHwPWqQys8SWhcHHGGj444lCb4LXk87B603weht81pxvNZR_fLcUdERLDsnYQJiyC_uP-htPspJx |
Cites_doi | 10.3390/rs12101662 10.1109/TGRS.2018.2858817 10.3390/rs13183750 10.1016/j.cities.2020.102905 10.3390/rs13245094 10.3390/rs12213537 10.1016/j.rse.2021.112589 10.1109/TGRS.2023.3335359 10.1109/TGRS.2023.3276703 10.1016/j.isprsjprs.2023.05.011 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jag.2025.104486 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Open Access Full Text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
ExternalDocumentID | oai_doaj_org_article_e5f19c5a8770457cbfca374a743a7ce2 10_1016_j_jag_2025_104486 S1569843225001335 |
GroupedDBID | 29J 4.4 5GY 6I. AAFTH AAHBH AALRI AAQXK AATTM AAXKI AAXUO AAYWO ABFYP ABJNI ABLST ABQEM ABQYD ABWVN ACLVX ACRLP ACRPL ACSBN ADBBV ADMUD ADNMO ADVLN AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AGYEJ AHEUO AIIUN AIKHN AITUG AKIFW ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AZFZN BKOJK BLECG BNPGV EBS EFJIC EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY M41 O-L P-8 P-9 P2P R2- RIG ROL SES SPC SSE SSH SSJ ~02 AAYXX CITATION EFKBS |
ID | FETCH-LOGICAL-c360t-e7c8d8ecd9eeada19457436b3293deb9f24e545a9a64ea692ce5aaf23cc4e9f3 |
IEDL.DBID | AIKHN |
ISSN | 1569-8432 |
IngestDate | Wed Aug 27 01:10:26 EDT 2025 Wed Aug 20 07:43:42 EDT 2025 Sat Jun 28 18:16:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Bilateral attention Building change detection Cadastral map Remote sensing imagery |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-e7c8d8ecd9eeada19457436b3293deb9f24e545a9a64ea692ce5aaf23cc4e9f3 |
ORCID | 0000-0001-5530-3613 0000-0003-1067-1222 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1569843225001335 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e5f19c5a8770457cbfca374a743a7ce2 crossref_primary_10_1016_j_jag_2025_104486 elsevier_sciencedirect_doi_10_1016_j_jag_2025_104486 |
PublicationCentury | 2000 |
PublicationDate | May 2025 2025-05-00 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Lei, Geng, Ning, Lv, Gong, Jin, Nandi (b12) 2023; 61 Chen, He, Zhu, Guo, Sun, Deng, Li (b1) 2023; 61 Li, Yan, Sun, Xin (b18) 2022; 60 Zhao, Zhang, Pang, Lu, Zhang (b35) 2020 Chen, Yang, Stiefelhagen (b3) 2021 Li, Shi, Auer, Roschlaub, Möst, Schmitt, Glock, Zhu (b16) 2020; 12 Zhang, Liu, Shi, Yang, Reiß, Peng, Fu, Wang, Stiefelhagen (b33) 2023 Guo, Shi, Marinoni, Du, Zhang (b7) 2021; 264 Revaud, Heo, Rezende, You, Jeong (b22) 2019 Zhou, Yang, Lei, Wan, Yu (b38) 2022 Xu, Li, Xu, Zhang, Guo (b30) 2023; 61 Henssen, J., 1995. Basic principles of the main cadastral systems in the world. In: Proceedings of the One Day Seminar Held During the Annual Meeting of Commission. vol. 7. Varghese, Gubbi, Ramaswamy, Balamuralidhar (b26) 2018 Liao, Hu, Yuan, Li, Liu, Liu, Fu, Ding, Zhu (b19) 2023; 201 Shao, Du, Chen, Li (b23) 2021; 13 Shen, Lu, Chen, Wei, Xie, Yue, Chen, Lv, Jiang (b24) 2021; 13 Wang, Du, Tan, Ding, Liu, Pan, Han (b27) 2022; 112 Zhang, Tian, Xing, Yue, Li, Yin, Xia, Jin, Zhang (b34) 2022; 60 Kraff, Wurm, Taubenböck (b11) 2020; 107 Wu, Du, Zhang (b28) 2023 Xu, Xu, Cui, Zheng, Yang (b31) 2022 Maggiori, Tarabalka, Charpiat, Alliez (b20) 2017 Zhou, Xu, Hang, Zhang, Liu (b37) 2023 Zorzi, Bazrafkan, Habenschuss, Fraundorfer (b39) 2022 Li, Mou, Hua, Shi, Zhu (b15) 2022; 111 Dai, Xia, Weng, Hu, Lin, Qian (b5) 2023 Feng, Jiang, Xu, Zheng (b6) 2023; 61 OpenStreetMap contributors (b21) 2017 Ji, Wei, Lu (b9) 2018; 57 Chen, Shi (b2) 2020; 12 Li, Taubenböck, Shi, Auer, Roschlaub, Glock, Kruspe, Zhu (b17) 2022; 112 Chen, Zhu, Papandreou, Schroff, Adam (b4) 2018 Yuan, Chen, Wang (b32) 2020 Jiang, Li, Chen, Zheng, Zhao, Wu (b10) 2022 Li, Mou, Hua, Shi, Zhu (b14) 2021; 60 Zheng, Li, Fang, Zhang, Feng, Wan, Liu (b36) 2023 Shu, Pan, Zhang, Wang (b25) 2022; 112 Li, Liu, Wang, Xiao (b13) 2023 Xie, Wang, Yu, Anandkumar, Alvarez, Luo (b29) 2021 Xu (10.1016/j.jag.2025.104486_b31) 2022 Li (10.1016/j.jag.2025.104486_b15) 2022; 111 Feng (10.1016/j.jag.2025.104486_b6) 2023; 61 Guo (10.1016/j.jag.2025.104486_b7) 2021; 264 Wu (10.1016/j.jag.2025.104486_b28) 2023 Chen (10.1016/j.jag.2025.104486_b3) 2021 Lei (10.1016/j.jag.2025.104486_b12) 2023; 61 Shao (10.1016/j.jag.2025.104486_b23) 2021; 13 Chen (10.1016/j.jag.2025.104486_b4) 2018 Wang (10.1016/j.jag.2025.104486_b27) 2022; 112 Dai (10.1016/j.jag.2025.104486_b5) 2023 Liao (10.1016/j.jag.2025.104486_b19) 2023; 201 Shu (10.1016/j.jag.2025.104486_b25) 2022; 112 Zhou (10.1016/j.jag.2025.104486_b38) 2022 Zorzi (10.1016/j.jag.2025.104486_b39) 2022 Chen (10.1016/j.jag.2025.104486_b1) 2023; 61 Kraff (10.1016/j.jag.2025.104486_b11) 2020; 107 Li (10.1016/j.jag.2025.104486_b14) 2021; 60 Li (10.1016/j.jag.2025.104486_b13) 2023 Ji (10.1016/j.jag.2025.104486_b9) 2018; 57 Revaud (10.1016/j.jag.2025.104486_b22) 2019 Li (10.1016/j.jag.2025.104486_b17) 2022; 112 OpenStreetMap contributors (10.1016/j.jag.2025.104486_b21) 2017 Xu (10.1016/j.jag.2025.104486_b30) 2023; 61 Zhang (10.1016/j.jag.2025.104486_b33) 2023 Zhao (10.1016/j.jag.2025.104486_b35) 2020 Zhang (10.1016/j.jag.2025.104486_b34) 2022; 60 Xie (10.1016/j.jag.2025.104486_b29) 2021 10.1016/j.jag.2025.104486_b8 Jiang (10.1016/j.jag.2025.104486_b10) 2022 Shen (10.1016/j.jag.2025.104486_b24) 2021; 13 Zheng (10.1016/j.jag.2025.104486_b36) 2023 Maggiori (10.1016/j.jag.2025.104486_b20) 2017 Varghese (10.1016/j.jag.2025.104486_b26) 2018 Li (10.1016/j.jag.2025.104486_b18) 2022; 60 Zhou (10.1016/j.jag.2025.104486_b37) 2023 Yuan (10.1016/j.jag.2025.104486_b32) 2020 Chen (10.1016/j.jag.2025.104486_b2) 2020; 12 Li (10.1016/j.jag.2025.104486_b16) 2020; 12 |
References_xml | – volume: 112 year: 2022 ident: b17 article-title: Identification of undocumented buildings in cadastral data using remote sensing: Construction period, morphology, and landscape publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 201 start-page: 138 year: 2023 end-page: 152 ident: b19 article-title: BCE-Net: Reliable building footprints change extraction based on historical map and up-to-date images using contrastive learning publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2023 ident: b36 article-title: Utilizing bounding box annotations for weakly supervised building extraction from remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2019 ident: b22 article-title: Did it change? Learning to detect point-of-interest changes for proactive map updates publication-title: CVPR – volume: 112 year: 2022 ident: b25 article-title: DPCC-Net: Dual-perspective change contextual network for change detection in high-resolution remote sensing images publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2022 ident: b39 article-title: PolyWorld: Polygonal building extraction with graph neural networks in satellite images publication-title: CVPR – volume: 57 start-page: 574 year: 2018 end-page: 586 ident: b9 article-title: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2023 ident: b28 article-title: Fully convolutional change detection framework with generative adversarial network for unsupervised, weakly supervised and regional supervised change detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 61 start-page: 1 year: 2023 end-page: 15 ident: b1 article-title: Memory-contrastive unsupervised domain adaptation for building extraction of high-resolution remote sensing imagery publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2020 ident: b32 article-title: Object-contextual representations for semantic segmentation publication-title: ECCV – volume: 61 start-page: 1 year: 2023 end-page: 15 ident: b6 article-title: Change detection on remote sensing images using dual-branch multilevel intertemporal network publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Henssen, J., 1995. Basic principles of the main cadastral systems in the world. In: Proceedings of the One Day Seminar Held During the Annual Meeting of Commission. vol. 7. – year: 2020 ident: b35 article-title: A single stream network for robust and real-time RGB-D salient object detection publication-title: ECCV – volume: 111 year: 2022 ident: b15 article-title: CrossGeoNet: A framework for building footprint generation of label-Scarce Geographical Regions publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 12 start-page: 3537 year: 2020 ident: b16 article-title: Detection of undocumented building constructions from official geodata using a convolutional neural network publication-title: Remote. Sens. – volume: 60 start-page: 1 year: 2022 end-page: 18 ident: b18 article-title: A densely attentive refinement network for change detection based on very-high-resolution bitemporal remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2018 ident: b4 article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation publication-title: ECCV – volume: 60 start-page: 1 year: 2021 end-page: 17 ident: b14 article-title: Building footprint generation through convolutional neural networks with attraction field representation publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2023 ident: b33 article-title: Delivering arbitrary-modal semantic segmentation publication-title: CVPR – year: 2017 ident: b21 article-title: Planet dump – year: 2021 ident: b29 article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers publication-title: NIPS – volume: 264 year: 2021 ident: b7 article-title: Deep building footprint update network: A semi-supervised method for updating existing building footprint from bi-temporal remote sensing images publication-title: Remote Sens. Environ. – year: 2022 ident: b10 article-title: Uni6D: A unified cnn framework without projection breakdown for 6D pose estimation publication-title: CVPR – volume: 112 year: 2022 ident: b27 article-title: A high-resolution feature difference attention network for the application of building change detection publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 13 start-page: 5094 year: 2021 ident: b24 article-title: S2looking: A satellite side-looking dataset for building change detection publication-title: Remote. Sens. – volume: 60 start-page: 1 year: 2022 end-page: 13 ident: b34 article-title: ADHR-CDNet: Attentive differential high-resolution change detection network for remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 61 start-page: 1 year: 2023 end-page: 14 ident: b12 article-title: Ultralightweight spatial–spectral feature cooperation network for change detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 13 start-page: 3750 year: 2021 ident: b23 article-title: SUNet: Change detection for heterogeneous remote sensing images from satellite and UAV using a dual-channel fully convolution network publication-title: Remote. Sens. – year: 2022 ident: b31 article-title: CVNet: Contour vibration network for building extraction publication-title: CVPR – volume: 107 year: 2020 ident: b11 article-title: The dynamics of poor urban areas-analyzing morphologic transformations across the globe using earth observation data publication-title: Cities – year: 2022 ident: b38 article-title: PGDENet: Progressive guided fusion and depth enhancement network for RGB-D indoor scene parsing publication-title: IEEE Trans. Multimed. – year: 2023 ident: b5 article-title: Multi-scale location attention network for building and water segmentation of remote sensing image publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2023 ident: b13 article-title: Detecting building changes using multi-modal siamese multi-task networks from very high resolution satellite images publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2021 ident: b3 article-title: DR-TANet: Dynamic receptive temporal attention network for street scene change detection publication-title: IV – volume: 12 start-page: 1662 year: 2020 ident: b2 article-title: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection publication-title: Remote. Sens. – year: 2018 ident: b26 article-title: ChangeNet: A deep learning architecture for visual change detection publication-title: ECCVW – year: 2023 ident: b37 article-title: Mining joint intra-and inter-image context for remote sensing change detection publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2017 ident: b20 article-title: Can semantic labeling methods generalize to any city? The inria aerial image labeling benchmark publication-title: IGARSS – volume: 61 start-page: 1 year: 2023 end-page: 14 ident: b30 article-title: BCTNet: Bi-branch cross-fusion transformer for building footprint extraction publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2023 ident: 10.1016/j.jag.2025.104486_b28 article-title: Fully convolutional change detection framework with generative adversarial network for unsupervised, weakly supervised and regional supervised change detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 112 year: 2022 ident: 10.1016/j.jag.2025.104486_b25 article-title: DPCC-Net: Dual-perspective change contextual network for change detection in high-resolution remote sensing images publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 61 start-page: 1 year: 2023 ident: 10.1016/j.jag.2025.104486_b30 article-title: BCTNet: Bi-branch cross-fusion transformer for building footprint extraction publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 112 year: 2022 ident: 10.1016/j.jag.2025.104486_b17 article-title: Identification of undocumented buildings in cadastral data using remote sensing: Construction period, morphology, and landscape publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 12 start-page: 1662 issue: 10 year: 2020 ident: 10.1016/j.jag.2025.104486_b2 article-title: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection publication-title: Remote. Sens. doi: 10.3390/rs12101662 – volume: 60 start-page: 1 year: 2022 ident: 10.1016/j.jag.2025.104486_b18 article-title: A densely attentive refinement network for change detection based on very-high-resolution bitemporal remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 57 start-page: 574 issue: 1 year: 2018 ident: 10.1016/j.jag.2025.104486_b9 article-title: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2858817 – volume: 13 start-page: 3750 issue: 18 year: 2021 ident: 10.1016/j.jag.2025.104486_b23 article-title: SUNet: Change detection for heterogeneous remote sensing images from satellite and UAV using a dual-channel fully convolution network publication-title: Remote. Sens. doi: 10.3390/rs13183750 – year: 2023 ident: 10.1016/j.jag.2025.104486_b36 article-title: Utilizing bounding box annotations for weakly supervised building extraction from remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 107 year: 2020 ident: 10.1016/j.jag.2025.104486_b11 article-title: The dynamics of poor urban areas-analyzing morphologic transformations across the globe using earth observation data publication-title: Cities doi: 10.1016/j.cities.2020.102905 – volume: 60 start-page: 1 year: 2021 ident: 10.1016/j.jag.2025.104486_b14 article-title: Building footprint generation through convolutional neural networks with attraction field representation publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2022 ident: 10.1016/j.jag.2025.104486_b39 article-title: PolyWorld: Polygonal building extraction with graph neural networks in satellite images – year: 2017 ident: 10.1016/j.jag.2025.104486_b21 – volume: 61 start-page: 1 year: 2023 ident: 10.1016/j.jag.2025.104486_b6 article-title: Change detection on remote sensing images using dual-branch multilevel intertemporal network publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2021 ident: 10.1016/j.jag.2025.104486_b3 article-title: DR-TANet: Dynamic receptive temporal attention network for street scene change detection – year: 2017 ident: 10.1016/j.jag.2025.104486_b20 article-title: Can semantic labeling methods generalize to any city? The inria aerial image labeling benchmark – volume: 13 start-page: 5094 issue: 24 year: 2021 ident: 10.1016/j.jag.2025.104486_b24 article-title: S2looking: A satellite side-looking dataset for building change detection publication-title: Remote. Sens. doi: 10.3390/rs13245094 – year: 2020 ident: 10.1016/j.jag.2025.104486_b32 article-title: Object-contextual representations for semantic segmentation – volume: 60 start-page: 1 year: 2022 ident: 10.1016/j.jag.2025.104486_b34 article-title: ADHR-CDNet: Attentive differential high-resolution change detection network for remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 12 start-page: 3537 issue: 21 year: 2020 ident: 10.1016/j.jag.2025.104486_b16 article-title: Detection of undocumented building constructions from official geodata using a convolutional neural network publication-title: Remote. Sens. doi: 10.3390/rs12213537 – volume: 61 start-page: 1 year: 2023 ident: 10.1016/j.jag.2025.104486_b1 article-title: Memory-contrastive unsupervised domain adaptation for building extraction of high-resolution remote sensing imagery publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 264 year: 2021 ident: 10.1016/j.jag.2025.104486_b7 article-title: Deep building footprint update network: A semi-supervised method for updating existing building footprint from bi-temporal remote sensing images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112589 – year: 2022 ident: 10.1016/j.jag.2025.104486_b10 article-title: Uni6D: A unified cnn framework without projection breakdown for 6D pose estimation – volume: 61 start-page: 1 year: 2023 ident: 10.1016/j.jag.2025.104486_b12 article-title: Ultralightweight spatial–spectral feature cooperation network for change detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2023.3335359 – year: 2020 ident: 10.1016/j.jag.2025.104486_b35 article-title: A single stream network for robust and real-time RGB-D salient object detection – year: 2023 ident: 10.1016/j.jag.2025.104486_b13 article-title: Detecting building changes using multi-modal siamese multi-task networks from very high resolution satellite images publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2023 ident: 10.1016/j.jag.2025.104486_b5 article-title: Multi-scale location attention network for building and water segmentation of remote sensing image publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2023.3276703 – volume: 112 year: 2022 ident: 10.1016/j.jag.2025.104486_b27 article-title: A high-resolution feature difference attention network for the application of building change detection publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2019 ident: 10.1016/j.jag.2025.104486_b22 article-title: Did it change? Learning to detect point-of-interest changes for proactive map updates – ident: 10.1016/j.jag.2025.104486_b8 – year: 2018 ident: 10.1016/j.jag.2025.104486_b26 article-title: ChangeNet: A deep learning architecture for visual change detection – year: 2022 ident: 10.1016/j.jag.2025.104486_b31 article-title: CVNet: Contour vibration network for building extraction – year: 2018 ident: 10.1016/j.jag.2025.104486_b4 article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation – volume: 111 year: 2022 ident: 10.1016/j.jag.2025.104486_b15 article-title: CrossGeoNet: A framework for building footprint generation of label-Scarce Geographical Regions publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2023 ident: 10.1016/j.jag.2025.104486_b37 article-title: Mining joint intra-and inter-image context for remote sensing change detection publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2022 ident: 10.1016/j.jag.2025.104486_b38 article-title: PGDENet: Progressive guided fusion and depth enhancement network for RGB-D indoor scene parsing publication-title: IEEE Trans. Multimed. – volume: 201 start-page: 138 year: 2023 ident: 10.1016/j.jag.2025.104486_b19 article-title: BCE-Net: Reliable building footprints change extraction based on historical map and up-to-date images using contrastive learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2023.05.011 – year: 2021 ident: 10.1016/j.jag.2025.104486_b29 article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers – year: 2023 ident: 10.1016/j.jag.2025.104486_b33 article-title: Delivering arbitrary-modal semantic segmentation |
SSID | ssj0017768 |
Score | 2.4117372 |
Snippet | Up-to-date cadastral maps are vital to local governments in administrating real estate in cities. With its growing availability, remote sensing imagery is the... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 104486 |
SubjectTerms | Bilateral attention Building change detection Cadastral map Deep learning Remote sensing imagery |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iSQ_i1-L6RQ6ehOJumzaJt1WURXBPK-ytTCfTZUWruCviv3fStNqLePFa0qRkJpmX5r0ZIc6sj7IAGA3NQEWKXBGZsjCRNgi-xLYyiRcn30-y8YO6m6WzTqkvzwkL6YHDxF1QWg4tpmC0ZvShsSgREq2AIx9opHr35ZjXHqaa-wOtgwguzWxkVBK395k1s-sR5nwwjFN_v6m8iLoTkerE_Z3A1Ak2t9tiq0GJchS-bkesUbUrNju5A3dF7-ZHosZNmzW63BMfV6MJrS7lSBaLJ_AC4yfpk2jWtEZZBdq3ZKwqeV-uNVLVXAb9r5NFUyV7KRsCl3wjNibJpSe6c8PFs0968SmhchLBQf2nRD7D63JfTG9vptfjqCmvEGGSDVYRaTTOEDpL7E4wtDy9KsmKhBGAo8KWsSLGV2AhUwSZjZFSgDJOEBXZMumJ9eqlogMhkU-6OkVi8IQKXWyNU0rH_N4gdWWZ9cV5O8P5a0iikbfssseczZF7c-TBHH1x5W3w3dDnv64fsFfkjVfkf3lFX6jWgnkDJQJE4K4Wv499-B9jH4kN32VgRR6L9dXbO50wclkVp7WTfgGLk-1I priority: 102 providerName: Directory of Open Access Journals |
Title | BANet: A bilateral attention network for extracting changed buildings between remote sensing imagery and cadastral maps |
URI | https://dx.doi.org/10.1016/j.jag.2025.104486 https://doaj.org/article/e5f19c5a8770457cbfca374a743a7ce2 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gUeEAwmOqDyA09IUdvEju29ddWm8lUhGNLeoot9qTJtWdUWTfz3nBNnlAdeeIx1zofvcvezfb8zwDsboiyiS6ZmIhNJvkxMVZpEG4fhiG1pskBO_rLMFz_kxyt1dQDzngsT0iqj7-98euutY8s4juZ4Xdfj7zzzsEYGgww4JlOP4DDl6DoZwOHsw6fF8mEzQeuOEcfySejQb262aV7XuOJZYqrCZqcMjOq98NRW8d-LUnuR5-IZPI2QUcy6t3oOB9QcwZO9QoJHcHz-h6_GovGH3b6A-7PZknanYibK-gYD2_hGhIqabY6jaLoccMHAVbCTbglTzUp0ZGAvynhk9lbEbC6xIdYsiW3IemfB-jZUwPglsPHCocd22UTc4nr7Ei4vzi_niySetZC4LJ_sEtLOeEPOW2LbwqmVirFFXmYMBzyVtkolMdhCi7kkzG3qSCFWaeacJFtlxzBo7hp6BcLxtFcrR4yknHQ-tcZLqVPuN1G-qvIhvO9HuFh3FTWKPtXsumB1FEEdRaeOIZwFHTwIhmLYbcPdZlVEayhIVVPrFBqtGaBqV1YOMy2RPwC1o3QIstdg8Zdt8a3qfz_75P-6vYbH4apLinwDg93mJ71l4LIrR2yY82-fv46igY7aBYDf3kLwYQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V9gAcEBQqFgr4wAkp2t3Eju3etlWrLW33wiL1Fk3sySpVm652FyH-fceJ0y4HLlwTOx-eycxz_N4Y4KsNWRbRJWMzkokkXyamKk2ijcOwxbY0WRAnX83y6U_5_Vpd78BJr4UJtMoY-7uY3kbreGQYR3O4rOvhD555WCODQwYck6lnsBeqU7Gb703OL6azx8UErTtFHLdPQod-cbOled3ggmeJqQqLnTIoqrfSU1vFfytLbWWes9fwKkJGMeme6g3sULMPL7cKCe7DwemTXo2bxg92_RZ-H09mtDkSE1HWtxjUxrciVNRsOY6i6TjggoGr4CDdCqaahejEwF6UccvstYhsLrEitiyJdWC9c8P6LlTA-COw8cKhx_a3ibjD5fodzM9O5yfTJO61kLgsH20S0s54Q85bYt_CsZWKsUVeZgwHPJW2SiUx2EKLuSTMbepIIVZp5pwkW2UHsNvcN_QehONpr1aOGEk56XxqjZdSp9xvpHxV5QP41o9wsewqahQ91eymYHMUwRxFZ44BHAcbPDYMxbDbA_erRRG9oSBVja1TaLRmgKpdWTnMtER-AdSO0gHI3oLFX77Fl6r_fe8P_9ftCzyfzq8ui8vz2cVHeBHOdATJQ9jdrH7RJwYxm_JzdNIHHnfwxg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BANet%3A+A+bilateral+attention+network+for+extracting+changed+buildings+between+remote+sensing+imagery+and+cadastral+maps&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Li%2C+Qingyu&rft.au=Mou%2C+Lichao&rft.au=Shi%2C+Yilei&rft.au=Zhu%2C+Xiao+Xiang&rft.date=2025-05-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.volume=139&rft_id=info:doi/10.1016%2Fj.jag.2025.104486&rft.externalDocID=S1569843225001335 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |