BANet: A bilateral attention network for extracting changed buildings between remote sensing imagery and cadastral maps

Up-to-date cadastral maps are vital to local governments in administrating real estate in cities. With its growing availability, remote sensing imagery is the cost-effective data for updating semantic contents on cadastral maps. In this study, we address the problem of updating buildings on cadastra...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 139; p. 104486
Main Authors Li, Qingyu, Mou, Lichao, Shi, Yilei, Zhu, Xiao Xiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Up-to-date cadastral maps are vital to local governments in administrating real estate in cities. With its growing availability, remote sensing imagery is the cost-effective data for updating semantic contents on cadastral maps. In this study, we address the problem of updating buildings on cadastral maps, as city renewal is mainly characterized by new construction and demolition. While previous works focus on extracting all buildings from remote sensing images, we argue that these methods not only disregard preliminary information on cadastral maps but also fail to preserve building priors in unchanged areas on cadastral maps. Therefore, we focus on the task of extracting changed buildings (i.e., newly built and demolished buildings) from remote sensing images and cadastral maps. To address this task, we create an image-map building change detection (IMBCD) dataset, formed by around 27K pairs of remote sensing images and maps and their corresponding changed buildings in six distinct geographical areas across the globe. Accordingly, we propose a Bilateral Attention Network (BANet), introducing a novel attention mechanism: changed-first (CF) attention and non-changed-first (NCF) attention. This bilateral attention mechanism helps to refine the uncertain areas between changed and non-changed regions. Extensive experiments on our IMBCD dataset showcase the superior performance of BANet. Specifically, our BANet outperforms state-of-the-art models with F1 scores of 90.00% and 63.00% for the IMBCD-WHU and IMBCD-Inria datasets. This confirms that the leverage of bilateral attention blocks (BAB) can boost performance. •We extract changed buildings between remote sensing images and cadastral maps.•We propose a dataset, IMBCD, for building change detection.•We propose a novel network, BANet, for building change detection.
AbstractList Up-to-date cadastral maps are vital to local governments in administrating real estate in cities. With its growing availability, remote sensing imagery is the cost-effective data for updating semantic contents on cadastral maps. In this study, we address the problem of updating buildings on cadastral maps, as city renewal is mainly characterized by new construction and demolition. While previous works focus on extracting all buildings from remote sensing images, we argue that these methods not only disregard preliminary information on cadastral maps but also fail to preserve building priors in unchanged areas on cadastral maps. Therefore, we focus on the task of extracting changed buildings (i.e., newly built and demolished buildings) from remote sensing images and cadastral maps. To address this task, we create an image-map building change detection (IMBCD) dataset, formed by around 27K pairs of remote sensing images and maps and their corresponding changed buildings in six distinct geographical areas across the globe. Accordingly, we propose a Bilateral Attention Network (BANet), introducing a novel attention mechanism: changed-first (CF) attention and non-changed-first (NCF) attention. This bilateral attention mechanism helps to refine the uncertain areas between changed and non-changed regions. Extensive experiments on our IMBCD dataset showcase the superior performance of BANet. Specifically, our BANet outperforms state-of-the-art models with F1 scores of 90.00% and 63.00% for the IMBCD-WHU and IMBCD-Inria datasets. This confirms that the leverage of bilateral attention blocks (BAB) can boost performance.
Up-to-date cadastral maps are vital to local governments in administrating real estate in cities. With its growing availability, remote sensing imagery is the cost-effective data for updating semantic contents on cadastral maps. In this study, we address the problem of updating buildings on cadastral maps, as city renewal is mainly characterized by new construction and demolition. While previous works focus on extracting all buildings from remote sensing images, we argue that these methods not only disregard preliminary information on cadastral maps but also fail to preserve building priors in unchanged areas on cadastral maps. Therefore, we focus on the task of extracting changed buildings (i.e., newly built and demolished buildings) from remote sensing images and cadastral maps. To address this task, we create an image-map building change detection (IMBCD) dataset, formed by around 27K pairs of remote sensing images and maps and their corresponding changed buildings in six distinct geographical areas across the globe. Accordingly, we propose a Bilateral Attention Network (BANet), introducing a novel attention mechanism: changed-first (CF) attention and non-changed-first (NCF) attention. This bilateral attention mechanism helps to refine the uncertain areas between changed and non-changed regions. Extensive experiments on our IMBCD dataset showcase the superior performance of BANet. Specifically, our BANet outperforms state-of-the-art models with F1 scores of 90.00% and 63.00% for the IMBCD-WHU and IMBCD-Inria datasets. This confirms that the leverage of bilateral attention blocks (BAB) can boost performance. •We extract changed buildings between remote sensing images and cadastral maps.•We propose a dataset, IMBCD, for building change detection.•We propose a novel network, BANet, for building change detection.
ArticleNumber 104486
Author Li, Qingyu
Zhu, Xiao Xiang
Shi, Yilei
Mou, Lichao
Author_xml – sequence: 1
  givenname: Qingyu
  orcidid: 0000-0003-1067-1222
  surname: Li
  fullname: Li, Qingyu
  email: qingyu.li@tum.de
  organization: Data Science in Earth Observation, Technical University of Munich, Munich, 80333, Germany
– sequence: 2
  givenname: Lichao
  surname: Mou
  fullname: Mou, Lichao
  email: lichao.mou@tum.de
  organization: Data Science in Earth Observation, Technical University of Munich, Munich, 80333, Germany
– sequence: 3
  givenname: Yilei
  surname: Shi
  fullname: Shi, Yilei
  email: yilei.shi@tum.de
  organization: School of Engineering and Design, Technical University of Munich, Munich, 80333, Germany
– sequence: 4
  givenname: Xiao Xiang
  orcidid: 0000-0001-5530-3613
  surname: Zhu
  fullname: Zhu, Xiao Xiang
  email: xiaoxiang.zhu@tum.de
  organization: Data Science in Earth Observation, Technical University of Munich, Munich, 80333, Germany
BookMark eNp9kMtOxDAMRbMAiecHsMsPzNC06SOwGhAvCcGGfeQ6bknpJCgJr78nwyCWrCxbvsfX94DtOO-IsRNRLEUhmtNpOcG4LIuyzr2UXbPD9kXdqEUnq3KPHcQ4FYVo26bbZx8XqwdKZ3zFeztDogAzh5TIJesdd5Q-fHjhgw-cPlMATNaNHJ_BjWR4_2ZnkweR93mRyPFAa5-IR3Jxs2jXMFL44uAMRzAQ04a_htd4xHYHmCMd_9ZD9nR99XR5u7h_vLm7XN0vsGqKtKAWO9MRGkWU9ULJupVV01elqgz1aigl1bIGBY0kaFSJVAMMZYUoSQ3VIbvbYo2HSb-GbCh8aQ9W_wx8GDWEZHEmTfUgFNbQtW2Rr2A_IFSthHwPWqQys8SWhcHHGGj444lCb4LXk87B603weht81pxvNZR_fLcUdERLDsnYQJiyC_uP-htPspJx
Cites_doi 10.3390/rs12101662
10.1109/TGRS.2018.2858817
10.3390/rs13183750
10.1016/j.cities.2020.102905
10.3390/rs13245094
10.3390/rs12213537
10.1016/j.rse.2021.112589
10.1109/TGRS.2023.3335359
10.1109/TGRS.2023.3276703
10.1016/j.isprsjprs.2023.05.011
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jag.2025.104486
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID oai_doaj_org_article_e5f19c5a8770457cbfca374a743a7ce2
10_1016_j_jag_2025_104486
S1569843225001335
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAHBH
AALRI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABQEM
ABQYD
ABWVN
ACLVX
ACRLP
ACRPL
ACSBN
ADBBV
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AGYEJ
AHEUO
AIIUN
AIKHN
AITUG
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
BNPGV
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SES
SPC
SSE
SSH
SSJ
~02
AAYXX
CITATION
EFKBS
ID FETCH-LOGICAL-c360t-e7c8d8ecd9eeada19457436b3293deb9f24e545a9a64ea692ce5aaf23cc4e9f3
IEDL.DBID AIKHN
ISSN 1569-8432
IngestDate Wed Aug 27 01:10:26 EDT 2025
Wed Aug 20 07:43:42 EDT 2025
Sat Jun 28 18:16:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Bilateral attention
Building change detection
Cadastral map
Remote sensing imagery
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-e7c8d8ecd9eeada19457436b3293deb9f24e545a9a64ea692ce5aaf23cc4e9f3
ORCID 0000-0001-5530-3613
0000-0003-1067-1222
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1569843225001335
ParticipantIDs doaj_primary_oai_doaj_org_article_e5f19c5a8770457cbfca374a743a7ce2
crossref_primary_10_1016_j_jag_2025_104486
elsevier_sciencedirect_doi_10_1016_j_jag_2025_104486
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Lei, Geng, Ning, Lv, Gong, Jin, Nandi (b12) 2023; 61
Chen, He, Zhu, Guo, Sun, Deng, Li (b1) 2023; 61
Li, Yan, Sun, Xin (b18) 2022; 60
Zhao, Zhang, Pang, Lu, Zhang (b35) 2020
Chen, Yang, Stiefelhagen (b3) 2021
Li, Shi, Auer, Roschlaub, Möst, Schmitt, Glock, Zhu (b16) 2020; 12
Zhang, Liu, Shi, Yang, Reiß, Peng, Fu, Wang, Stiefelhagen (b33) 2023
Guo, Shi, Marinoni, Du, Zhang (b7) 2021; 264
Revaud, Heo, Rezende, You, Jeong (b22) 2019
Zhou, Yang, Lei, Wan, Yu (b38) 2022
Xu, Li, Xu, Zhang, Guo (b30) 2023; 61
Henssen, J., 1995. Basic principles of the main cadastral systems in the world. In: Proceedings of the One Day Seminar Held During the Annual Meeting of Commission. vol. 7.
Varghese, Gubbi, Ramaswamy, Balamuralidhar (b26) 2018
Liao, Hu, Yuan, Li, Liu, Liu, Fu, Ding, Zhu (b19) 2023; 201
Shao, Du, Chen, Li (b23) 2021; 13
Shen, Lu, Chen, Wei, Xie, Yue, Chen, Lv, Jiang (b24) 2021; 13
Wang, Du, Tan, Ding, Liu, Pan, Han (b27) 2022; 112
Zhang, Tian, Xing, Yue, Li, Yin, Xia, Jin, Zhang (b34) 2022; 60
Kraff, Wurm, Taubenböck (b11) 2020; 107
Wu, Du, Zhang (b28) 2023
Xu, Xu, Cui, Zheng, Yang (b31) 2022
Maggiori, Tarabalka, Charpiat, Alliez (b20) 2017
Zhou, Xu, Hang, Zhang, Liu (b37) 2023
Zorzi, Bazrafkan, Habenschuss, Fraundorfer (b39) 2022
Li, Mou, Hua, Shi, Zhu (b15) 2022; 111
Dai, Xia, Weng, Hu, Lin, Qian (b5) 2023
Feng, Jiang, Xu, Zheng (b6) 2023; 61
OpenStreetMap contributors (b21) 2017
Ji, Wei, Lu (b9) 2018; 57
Chen, Shi (b2) 2020; 12
Li, Taubenböck, Shi, Auer, Roschlaub, Glock, Kruspe, Zhu (b17) 2022; 112
Chen, Zhu, Papandreou, Schroff, Adam (b4) 2018
Yuan, Chen, Wang (b32) 2020
Jiang, Li, Chen, Zheng, Zhao, Wu (b10) 2022
Li, Mou, Hua, Shi, Zhu (b14) 2021; 60
Zheng, Li, Fang, Zhang, Feng, Wan, Liu (b36) 2023
Shu, Pan, Zhang, Wang (b25) 2022; 112
Li, Liu, Wang, Xiao (b13) 2023
Xie, Wang, Yu, Anandkumar, Alvarez, Luo (b29) 2021
Xu (10.1016/j.jag.2025.104486_b31) 2022
Li (10.1016/j.jag.2025.104486_b15) 2022; 111
Feng (10.1016/j.jag.2025.104486_b6) 2023; 61
Guo (10.1016/j.jag.2025.104486_b7) 2021; 264
Wu (10.1016/j.jag.2025.104486_b28) 2023
Chen (10.1016/j.jag.2025.104486_b3) 2021
Lei (10.1016/j.jag.2025.104486_b12) 2023; 61
Shao (10.1016/j.jag.2025.104486_b23) 2021; 13
Chen (10.1016/j.jag.2025.104486_b4) 2018
Wang (10.1016/j.jag.2025.104486_b27) 2022; 112
Dai (10.1016/j.jag.2025.104486_b5) 2023
Liao (10.1016/j.jag.2025.104486_b19) 2023; 201
Shu (10.1016/j.jag.2025.104486_b25) 2022; 112
Zhou (10.1016/j.jag.2025.104486_b38) 2022
Zorzi (10.1016/j.jag.2025.104486_b39) 2022
Chen (10.1016/j.jag.2025.104486_b1) 2023; 61
Kraff (10.1016/j.jag.2025.104486_b11) 2020; 107
Li (10.1016/j.jag.2025.104486_b14) 2021; 60
Li (10.1016/j.jag.2025.104486_b13) 2023
Ji (10.1016/j.jag.2025.104486_b9) 2018; 57
Revaud (10.1016/j.jag.2025.104486_b22) 2019
Li (10.1016/j.jag.2025.104486_b17) 2022; 112
OpenStreetMap contributors (10.1016/j.jag.2025.104486_b21) 2017
Xu (10.1016/j.jag.2025.104486_b30) 2023; 61
Zhang (10.1016/j.jag.2025.104486_b33) 2023
Zhao (10.1016/j.jag.2025.104486_b35) 2020
Zhang (10.1016/j.jag.2025.104486_b34) 2022; 60
Xie (10.1016/j.jag.2025.104486_b29) 2021
10.1016/j.jag.2025.104486_b8
Jiang (10.1016/j.jag.2025.104486_b10) 2022
Shen (10.1016/j.jag.2025.104486_b24) 2021; 13
Zheng (10.1016/j.jag.2025.104486_b36) 2023
Maggiori (10.1016/j.jag.2025.104486_b20) 2017
Varghese (10.1016/j.jag.2025.104486_b26) 2018
Li (10.1016/j.jag.2025.104486_b18) 2022; 60
Zhou (10.1016/j.jag.2025.104486_b37) 2023
Yuan (10.1016/j.jag.2025.104486_b32) 2020
Chen (10.1016/j.jag.2025.104486_b2) 2020; 12
Li (10.1016/j.jag.2025.104486_b16) 2020; 12
References_xml – volume: 112
  year: 2022
  ident: b17
  article-title: Identification of undocumented buildings in cadastral data using remote sensing: Construction period, morphology, and landscape
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 201
  start-page: 138
  year: 2023
  end-page: 152
  ident: b19
  article-title: BCE-Net: Reliable building footprints change extraction based on historical map and up-to-date images using contrastive learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2023
  ident: b36
  article-title: Utilizing bounding box annotations for weakly supervised building extraction from remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2019
  ident: b22
  article-title: Did it change? Learning to detect point-of-interest changes for proactive map updates
  publication-title: CVPR
– volume: 112
  year: 2022
  ident: b25
  article-title: DPCC-Net: Dual-perspective change contextual network for change detection in high-resolution remote sensing images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2022
  ident: b39
  article-title: PolyWorld: Polygonal building extraction with graph neural networks in satellite images
  publication-title: CVPR
– volume: 57
  start-page: 574
  year: 2018
  end-page: 586
  ident: b9
  article-title: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2023
  ident: b28
  article-title: Fully convolutional change detection framework with generative adversarial network for unsupervised, weakly supervised and regional supervised change detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 61
  start-page: 1
  year: 2023
  end-page: 15
  ident: b1
  article-title: Memory-contrastive unsupervised domain adaptation for building extraction of high-resolution remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2020
  ident: b32
  article-title: Object-contextual representations for semantic segmentation
  publication-title: ECCV
– volume: 61
  start-page: 1
  year: 2023
  end-page: 15
  ident: b6
  article-title: Change detection on remote sensing images using dual-branch multilevel intertemporal network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Henssen, J., 1995. Basic principles of the main cadastral systems in the world. In: Proceedings of the One Day Seminar Held During the Annual Meeting of Commission. vol. 7.
– year: 2020
  ident: b35
  article-title: A single stream network for robust and real-time RGB-D salient object detection
  publication-title: ECCV
– volume: 111
  year: 2022
  ident: b15
  article-title: CrossGeoNet: A framework for building footprint generation of label-Scarce Geographical Regions
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 12
  start-page: 3537
  year: 2020
  ident: b16
  article-title: Detection of undocumented building constructions from official geodata using a convolutional neural network
  publication-title: Remote. Sens.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 18
  ident: b18
  article-title: A densely attentive refinement network for change detection based on very-high-resolution bitemporal remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2018
  ident: b4
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: ECCV
– volume: 60
  start-page: 1
  year: 2021
  end-page: 17
  ident: b14
  article-title: Building footprint generation through convolutional neural networks with attraction field representation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2023
  ident: b33
  article-title: Delivering arbitrary-modal semantic segmentation
  publication-title: CVPR
– year: 2017
  ident: b21
  article-title: Planet dump
– year: 2021
  ident: b29
  article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers
  publication-title: NIPS
– volume: 264
  year: 2021
  ident: b7
  article-title: Deep building footprint update network: A semi-supervised method for updating existing building footprint from bi-temporal remote sensing images
  publication-title: Remote Sens. Environ.
– year: 2022
  ident: b10
  article-title: Uni6D: A unified cnn framework without projection breakdown for 6D pose estimation
  publication-title: CVPR
– volume: 112
  year: 2022
  ident: b27
  article-title: A high-resolution feature difference attention network for the application of building change detection
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 13
  start-page: 5094
  year: 2021
  ident: b24
  article-title: S2looking: A satellite side-looking dataset for building change detection
  publication-title: Remote. Sens.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 13
  ident: b34
  article-title: ADHR-CDNet: Attentive differential high-resolution change detection network for remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 61
  start-page: 1
  year: 2023
  end-page: 14
  ident: b12
  article-title: Ultralightweight spatial–spectral feature cooperation network for change detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 13
  start-page: 3750
  year: 2021
  ident: b23
  article-title: SUNet: Change detection for heterogeneous remote sensing images from satellite and UAV using a dual-channel fully convolution network
  publication-title: Remote. Sens.
– year: 2022
  ident: b31
  article-title: CVNet: Contour vibration network for building extraction
  publication-title: CVPR
– volume: 107
  year: 2020
  ident: b11
  article-title: The dynamics of poor urban areas-analyzing morphologic transformations across the globe using earth observation data
  publication-title: Cities
– year: 2022
  ident: b38
  article-title: PGDENet: Progressive guided fusion and depth enhancement network for RGB-D indoor scene parsing
  publication-title: IEEE Trans. Multimed.
– year: 2023
  ident: b5
  article-title: Multi-scale location attention network for building and water segmentation of remote sensing image
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2023
  ident: b13
  article-title: Detecting building changes using multi-modal siamese multi-task networks from very high resolution satellite images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2021
  ident: b3
  article-title: DR-TANet: Dynamic receptive temporal attention network for street scene change detection
  publication-title: IV
– volume: 12
  start-page: 1662
  year: 2020
  ident: b2
  article-title: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection
  publication-title: Remote. Sens.
– year: 2018
  ident: b26
  article-title: ChangeNet: A deep learning architecture for visual change detection
  publication-title: ECCVW
– year: 2023
  ident: b37
  article-title: Mining joint intra-and inter-image context for remote sensing change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2017
  ident: b20
  article-title: Can semantic labeling methods generalize to any city? The inria aerial image labeling benchmark
  publication-title: IGARSS
– volume: 61
  start-page: 1
  year: 2023
  end-page: 14
  ident: b30
  article-title: BCTNet: Bi-branch cross-fusion transformer for building footprint extraction
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2023
  ident: 10.1016/j.jag.2025.104486_b28
  article-title: Fully convolutional change detection framework with generative adversarial network for unsupervised, weakly supervised and regional supervised change detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 112
  year: 2022
  ident: 10.1016/j.jag.2025.104486_b25
  article-title: DPCC-Net: Dual-perspective change contextual network for change detection in high-resolution remote sensing images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 61
  start-page: 1
  year: 2023
  ident: 10.1016/j.jag.2025.104486_b30
  article-title: BCTNet: Bi-branch cross-fusion transformer for building footprint extraction
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 112
  year: 2022
  ident: 10.1016/j.jag.2025.104486_b17
  article-title: Identification of undocumented buildings in cadastral data using remote sensing: Construction period, morphology, and landscape
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 12
  start-page: 1662
  issue: 10
  year: 2020
  ident: 10.1016/j.jag.2025.104486_b2
  article-title: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection
  publication-title: Remote. Sens.
  doi: 10.3390/rs12101662
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.jag.2025.104486_b18
  article-title: A densely attentive refinement network for change detection based on very-high-resolution bitemporal remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 57
  start-page: 574
  issue: 1
  year: 2018
  ident: 10.1016/j.jag.2025.104486_b9
  article-title: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2858817
– volume: 13
  start-page: 3750
  issue: 18
  year: 2021
  ident: 10.1016/j.jag.2025.104486_b23
  article-title: SUNet: Change detection for heterogeneous remote sensing images from satellite and UAV using a dual-channel fully convolution network
  publication-title: Remote. Sens.
  doi: 10.3390/rs13183750
– year: 2023
  ident: 10.1016/j.jag.2025.104486_b36
  article-title: Utilizing bounding box annotations for weakly supervised building extraction from remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 107
  year: 2020
  ident: 10.1016/j.jag.2025.104486_b11
  article-title: The dynamics of poor urban areas-analyzing morphologic transformations across the globe using earth observation data
  publication-title: Cities
  doi: 10.1016/j.cities.2020.102905
– volume: 60
  start-page: 1
  year: 2021
  ident: 10.1016/j.jag.2025.104486_b14
  article-title: Building footprint generation through convolutional neural networks with attraction field representation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2022
  ident: 10.1016/j.jag.2025.104486_b39
  article-title: PolyWorld: Polygonal building extraction with graph neural networks in satellite images
– year: 2017
  ident: 10.1016/j.jag.2025.104486_b21
– volume: 61
  start-page: 1
  year: 2023
  ident: 10.1016/j.jag.2025.104486_b6
  article-title: Change detection on remote sensing images using dual-branch multilevel intertemporal network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2021
  ident: 10.1016/j.jag.2025.104486_b3
  article-title: DR-TANet: Dynamic receptive temporal attention network for street scene change detection
– year: 2017
  ident: 10.1016/j.jag.2025.104486_b20
  article-title: Can semantic labeling methods generalize to any city? The inria aerial image labeling benchmark
– volume: 13
  start-page: 5094
  issue: 24
  year: 2021
  ident: 10.1016/j.jag.2025.104486_b24
  article-title: S2looking: A satellite side-looking dataset for building change detection
  publication-title: Remote. Sens.
  doi: 10.3390/rs13245094
– year: 2020
  ident: 10.1016/j.jag.2025.104486_b32
  article-title: Object-contextual representations for semantic segmentation
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.jag.2025.104486_b34
  article-title: ADHR-CDNet: Attentive differential high-resolution change detection network for remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 12
  start-page: 3537
  issue: 21
  year: 2020
  ident: 10.1016/j.jag.2025.104486_b16
  article-title: Detection of undocumented building constructions from official geodata using a convolutional neural network
  publication-title: Remote. Sens.
  doi: 10.3390/rs12213537
– volume: 61
  start-page: 1
  year: 2023
  ident: 10.1016/j.jag.2025.104486_b1
  article-title: Memory-contrastive unsupervised domain adaptation for building extraction of high-resolution remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 264
  year: 2021
  ident: 10.1016/j.jag.2025.104486_b7
  article-title: Deep building footprint update network: A semi-supervised method for updating existing building footprint from bi-temporal remote sensing images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112589
– year: 2022
  ident: 10.1016/j.jag.2025.104486_b10
  article-title: Uni6D: A unified cnn framework without projection breakdown for 6D pose estimation
– volume: 61
  start-page: 1
  year: 2023
  ident: 10.1016/j.jag.2025.104486_b12
  article-title: Ultralightweight spatial–spectral feature cooperation network for change detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2023.3335359
– year: 2020
  ident: 10.1016/j.jag.2025.104486_b35
  article-title: A single stream network for robust and real-time RGB-D salient object detection
– year: 2023
  ident: 10.1016/j.jag.2025.104486_b13
  article-title: Detecting building changes using multi-modal siamese multi-task networks from very high resolution satellite images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2023
  ident: 10.1016/j.jag.2025.104486_b5
  article-title: Multi-scale location attention network for building and water segmentation of remote sensing image
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2023.3276703
– volume: 112
  year: 2022
  ident: 10.1016/j.jag.2025.104486_b27
  article-title: A high-resolution feature difference attention network for the application of building change detection
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2019
  ident: 10.1016/j.jag.2025.104486_b22
  article-title: Did it change? Learning to detect point-of-interest changes for proactive map updates
– ident: 10.1016/j.jag.2025.104486_b8
– year: 2018
  ident: 10.1016/j.jag.2025.104486_b26
  article-title: ChangeNet: A deep learning architecture for visual change detection
– year: 2022
  ident: 10.1016/j.jag.2025.104486_b31
  article-title: CVNet: Contour vibration network for building extraction
– year: 2018
  ident: 10.1016/j.jag.2025.104486_b4
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
– volume: 111
  year: 2022
  ident: 10.1016/j.jag.2025.104486_b15
  article-title: CrossGeoNet: A framework for building footprint generation of label-Scarce Geographical Regions
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2023
  ident: 10.1016/j.jag.2025.104486_b37
  article-title: Mining joint intra-and inter-image context for remote sensing change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2022
  ident: 10.1016/j.jag.2025.104486_b38
  article-title: PGDENet: Progressive guided fusion and depth enhancement network for RGB-D indoor scene parsing
  publication-title: IEEE Trans. Multimed.
– volume: 201
  start-page: 138
  year: 2023
  ident: 10.1016/j.jag.2025.104486_b19
  article-title: BCE-Net: Reliable building footprints change extraction based on historical map and up-to-date images using contrastive learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2023.05.011
– year: 2021
  ident: 10.1016/j.jag.2025.104486_b29
  article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers
– year: 2023
  ident: 10.1016/j.jag.2025.104486_b33
  article-title: Delivering arbitrary-modal semantic segmentation
SSID ssj0017768
Score 2.4117372
Snippet Up-to-date cadastral maps are vital to local governments in administrating real estate in cities. With its growing availability, remote sensing imagery is the...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 104486
SubjectTerms Bilateral attention
Building change detection
Cadastral map
Deep learning
Remote sensing imagery
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iSQ_i1-L6RQ6ehOJumzaJt1WURXBPK-ytTCfTZUWruCviv3fStNqLePFa0qRkJpmX5r0ZIc6sj7IAGA3NQEWKXBGZsjCRNgi-xLYyiRcn30-y8YO6m6WzTqkvzwkL6YHDxF1QWg4tpmC0ZvShsSgREq2AIx9opHr35ZjXHqaa-wOtgwguzWxkVBK395k1s-sR5nwwjFN_v6m8iLoTkerE_Z3A1Ak2t9tiq0GJchS-bkesUbUrNju5A3dF7-ZHosZNmzW63BMfV6MJrS7lSBaLJ_AC4yfpk2jWtEZZBdq3ZKwqeV-uNVLVXAb9r5NFUyV7KRsCl3wjNibJpSe6c8PFs0968SmhchLBQf2nRD7D63JfTG9vptfjqCmvEGGSDVYRaTTOEDpL7E4wtDy9KsmKhBGAo8KWsSLGV2AhUwSZjZFSgDJOEBXZMumJ9eqlogMhkU-6OkVi8IQKXWyNU0rH_N4gdWWZ9cV5O8P5a0iikbfssseczZF7c-TBHH1x5W3w3dDnv64fsFfkjVfkf3lFX6jWgnkDJQJE4K4Wv499-B9jH4kN32VgRR6L9dXbO50wclkVp7WTfgGLk-1I
  priority: 102
  providerName: Directory of Open Access Journals
Title BANet: A bilateral attention network for extracting changed buildings between remote sensing imagery and cadastral maps
URI https://dx.doi.org/10.1016/j.jag.2025.104486
https://doaj.org/article/e5f19c5a8770457cbfca374a743a7ce2
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gUeEAwmOqDyA09IUdvEju29ddWm8lUhGNLeoot9qTJtWdUWTfz3nBNnlAdeeIx1zofvcvezfb8zwDsboiyiS6ZmIhNJvkxMVZpEG4fhiG1pskBO_rLMFz_kxyt1dQDzngsT0iqj7-98euutY8s4juZ4Xdfj7zzzsEYGgww4JlOP4DDl6DoZwOHsw6fF8mEzQeuOEcfySejQb262aV7XuOJZYqrCZqcMjOq98NRW8d-LUnuR5-IZPI2QUcy6t3oOB9QcwZO9QoJHcHz-h6_GovGH3b6A-7PZknanYibK-gYD2_hGhIqabY6jaLoccMHAVbCTbglTzUp0ZGAvynhk9lbEbC6xIdYsiW3IemfB-jZUwPglsPHCocd22UTc4nr7Ei4vzi_niySetZC4LJ_sEtLOeEPOW2LbwqmVirFFXmYMBzyVtkolMdhCi7kkzG3qSCFWaeacJFtlxzBo7hp6BcLxtFcrR4yknHQ-tcZLqVPuN1G-qvIhvO9HuFh3FTWKPtXsumB1FEEdRaeOIZwFHTwIhmLYbcPdZlVEayhIVVPrFBqtGaBqV1YOMy2RPwC1o3QIstdg8Zdt8a3qfz_75P-6vYbH4apLinwDg93mJ71l4LIrR2yY82-fv46igY7aBYDf3kLwYQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V9gAcEBQqFgr4wAkp2t3Eju3etlWrLW33wiL1Fk3sySpVm652FyH-fceJ0y4HLlwTOx-eycxz_N4Y4KsNWRbRJWMzkokkXyamKk2ijcOwxbY0WRAnX83y6U_5_Vpd78BJr4UJtMoY-7uY3kbreGQYR3O4rOvhD555WCODQwYck6lnsBeqU7Gb703OL6azx8UErTtFHLdPQod-cbOled3ggmeJqQqLnTIoqrfSU1vFfytLbWWes9fwKkJGMeme6g3sULMPL7cKCe7DwemTXo2bxg92_RZ-H09mtDkSE1HWtxjUxrciVNRsOY6i6TjggoGr4CDdCqaahejEwF6UccvstYhsLrEitiyJdWC9c8P6LlTA-COw8cKhx_a3ibjD5fodzM9O5yfTJO61kLgsH20S0s54Q85bYt_CsZWKsUVeZgwHPJW2SiUx2EKLuSTMbepIIVZp5pwkW2UHsNvcN_QehONpr1aOGEk56XxqjZdSp9xvpHxV5QP41o9wsewqahQ91eymYHMUwRxFZ44BHAcbPDYMxbDbA_erRRG9oSBVja1TaLRmgKpdWTnMtER-AdSO0gHI3oLFX77Fl6r_fe8P_9ftCzyfzq8ui8vz2cVHeBHOdATJQ9jdrH7RJwYxm_JzdNIHHnfwxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BANet%3A+A+bilateral+attention+network+for+extracting+changed+buildings+between+remote+sensing+imagery+and+cadastral+maps&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Li%2C+Qingyu&rft.au=Mou%2C+Lichao&rft.au=Shi%2C+Yilei&rft.au=Zhu%2C+Xiao+Xiang&rft.date=2025-05-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.volume=139&rft_id=info:doi/10.1016%2Fj.jag.2025.104486&rft.externalDocID=S1569843225001335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon