Vibration suppression of multi-component floating structures via passive TMDs and Bayesian ascent

This paper aims to achieve vibration suppression for multi-component floating structures under ocean waves. To this end, a multiple-passive-TMD (tuned mass damper) structure is employed, and a numerical model is developed incorporating both the dynamics of a hinged floating foundation and passive TM...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 259; p. 112088
Main Authors Zhang, Xiantao, Lu, Da, Dong, Hongyang, Zhao, Xiaowei, Brennan, Feargal, Liang, Yibo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper aims to achieve vibration suppression for multi-component floating structures under ocean waves. To this end, a multiple-passive-TMD (tuned mass damper) structure is employed, and a numerical model is developed incorporating both the dynamics of a hinged floating foundation and passive TMDs. A data-driven parameter optimization method is developed to search for optimal TMD parameters. This method is built upon Bayesian Ascent (BA) – an advanced sequential searching strategy for optimizing black-box functions, combining the merits of both the Bayesian Optimization method and the gradient-free trust-region algorithm. Simulation results under different wave conditions verify the effectiveness of the BA-based parameter selection method, showing that the resulting passive TMDs can significantly reduce the vibration of the whole floating structure. •A novel data-driven optimization method is designed for vibration suppression.•A multi-component floating structure with TMD modules is modeled and analyzed.•The parameters of TMDs are optimized by a Bayesian-based data-driven method.•The proposed method can reduce vibrations subject to different wave conditions.
AbstractList This paper aims to achieve vibration suppression for multi-component floating structures under ocean waves. To this end, a multiple-passive-TMD (tuned mass damper) structure is employed, and a numerical model is developed incorporating both the dynamics of a hinged floating foundation and passive TMDs. A data-driven parameter optimization method is developed to search for optimal TMD parameters. This method is built upon Bayesian Ascent (BA) – an advanced sequential searching strategy for optimizing black-box functions, combining the merits of both the Bayesian Optimization method and the gradient-free trust-region algorithm. Simulation results under different wave conditions verify the effectiveness of the BA-based parameter selection method, showing that the resulting passive TMDs can significantly reduce the vibration of the whole floating structure. •A novel data-driven optimization method is designed for vibration suppression.•A multi-component floating structure with TMD modules is modeled and analyzed.•The parameters of TMDs are optimized by a Bayesian-based data-driven method.•The proposed method can reduce vibrations subject to different wave conditions.
ArticleNumber 112088
Author Dong, Hongyang
Liang, Yibo
Zhao, Xiaowei
Zhang, Xiantao
Brennan, Feargal
Lu, Da
Author_xml – sequence: 1
  givenname: Xiantao
  surname: Zhang
  fullname: Zhang, Xiantao
  email: zhxt@sjtu.edu.cn
  organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Da
  surname: Lu
  fullname: Lu, Da
  email: nichenrugu@sjtu.edu.cn
  organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Hongyang
  orcidid: 0000-0003-4302-5323
  surname: Dong
  fullname: Dong, Hongyang
  email: hongyang.dong@warwick.ac.uk
  organization: Intelligent Control & Smart Energy (ICSE) Research Group, School of Engineering, University of Warwick, Coventry, UK
– sequence: 4
  givenname: Xiaowei
  surname: Zhao
  fullname: Zhao, Xiaowei
  email: xiaowei.zhao@warwick.ac.uk
  organization: Intelligent Control & Smart Energy (ICSE) Research Group, School of Engineering, University of Warwick, Coventry, UK
– sequence: 5
  givenname: Feargal
  surname: Brennan
  fullname: Brennan, Feargal
  email: feargal.brennan@strath.ac.uk
  organization: Offshore Engineering Institute, University of Strathclyde, Glasgow, UK
– sequence: 6
  givenname: Yibo
  surname: Liang
  fullname: Liang, Yibo
  email: yibo.liang@strath.ac.uk
  organization: Offshore Engineering Institute, University of Strathclyde, Glasgow, UK
BookMark eNqFkE1PAjEQhhuDiYD-BdM_sNh26dJNPKj4mWC8oNdmaKekBLqbtpDw711EL144zRze553MMyC90AQk5JqzEWe8ulmNGoMQMCxHggkx4lwwpc5In6tJWUghVY_0GRN1oRhXF2SQ0ooxVlWs7BP48osI2TeBpm3bRkzpsDeObrbr7AvTbNruXMjUrZsuF5Y05bg1edtF6c4DbaFDdkjn74-JQrD0AfaYPAQKyXTgJTl3sE549TuH5PP5aT59LWYfL2_T-1lhyorlAqUzAuwExm7sajN20qIsHbjSWmkkL1FYaYWs0Y5hAcgUKga1YShNrUpbDsntsdfEJqWIThuffz7LEfxac6YPuvRK_-nSB136qKvDq394G_0G4v40eHcEsXtu5zHqZDwGg9ZHNFnbxp-q-AZ1Mo7R
CitedBy_id crossref_primary_10_1007_s11071_024_10315_5
crossref_primary_10_1016_j_istruc_2022_12_026
Cites_doi 10.1016/j.jsv.2017.12.026
10.1109/TCST.2013.2260825
10.1002/we.426
10.1016/j.renene.2019.01.092
10.1016/j.engstruct.2007.05.007
10.1016/j.apor.2018.08.021
10.1002/we.2453
10.1016/j.renene.2020.05.075
10.1016/j.engstruct.2021.112460
10.1016/j.energy.2018.04.140
10.1016/j.oceaneng.2018.06.058
10.3390/s19051133
10.1016/j.engstruct.2018.12.067
10.1016/j.engstruct.2006.08.026
10.1016/j.renene.2016.08.023
10.1109/TIE.2015.2465894
10.1002/we.2381
10.1007/s11071-017-3503-4
10.1016/j.engstruct.2019.05.077
10.1016/j.oceaneng.2005.01.002
10.1109/TCST.2015.2508007
10.1007/s10898-012-9951-y
10.1061/(ASCE)WW.1943-5460.0000626
10.1016/j.jsv.2008.05.018
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.oceaneng.2022.112088
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1873-5258
ExternalDocumentID 10_1016_j_oceaneng_2022_112088
S0029801822014135
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SET
SEW
SSH
WUQ
ID FETCH-LOGICAL-c360t-e5fc2ad7a4f4f9c4f5de53faf3dd5c513e2d5d259ed4abae08e80a9c0e5c983d3
IEDL.DBID .~1
ISSN 0029-8018
IngestDate Tue Jul 01 02:14:58 EDT 2025
Thu Apr 24 22:51:06 EDT 2025
Fri Feb 23 02:39:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multi-component floating structure
Hydrodynamics
Vibration suppression
Tuned mass damper
Bayesian ascent
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-e5fc2ad7a4f4f9c4f5de53faf3dd5c513e2d5d259ed4abae08e80a9c0e5c983d3
ORCID 0000-0003-4302-5323
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0029801822014135
ParticipantIDs crossref_citationtrail_10_1016_j_oceaneng_2022_112088
crossref_primary_10_1016_j_oceaneng_2022_112088
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2022_112088
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xu, Bi, Han, Li, Du (b18) 2019; 182
Hoang, Fujino, Warnitchai (b5) 2008; 30
Rios, Sahinidis (b14) 2013; 56
Wu, Li (b17) 2020; 23
Zhang, Zhao, Wei (b27) 2020
Yang, He (b19) 2020; 157
Stewart, Lackner (b15) 2013; 21
Zhang, Lu, Gao, Chen (b24) 2018; 164
Zhang, Lu, Liang, Brennan (b25) 2021; 147
Fitzgerald, Sarkar, Staino (b4) 2018; 419
Zhang, Xu, Ding, Zhao, Lu, Wu (b26) 2019; 138
Li, Gao (b9) 2015; 63
Ou, Long, Li, Xiao (b10) 2007; 29
Park, Law (b12) 2016; 24
Jin, Chung, Kwon, Kim (b6) 2021; 241
Patil, Jangid (b13) 2005; 32
Yu, Zhang, Zheng (b22) 2016; 99
Zhou, Zhang, Li (b29) 2022; 45
Zhang, Zheng, Lu, Tian (b28) 2019; 195
Zhang, Han, Zhang (b23) 2017; 89
Faltinsen (b3) 1993
Wen, Dong, Tian, Peng, Zhang, Wei (b16) 2018; 154
Park, Lackner, Pourazarm, Rodríguez Tsouroukdissian, Cross-Whiter (b11) 2019; 22
Yin, Song, Liu (b21) 2019; 19
Lackner, Rotea (b8) 2011; 14
Brochu, Cora, De Freitas (b2) 2010
Alexander, Schilder (b1) 2009; 319
Yang, He, Hu (b20) 2019; 83
Kundu (b7) 2012
Faltinsen (10.1016/j.oceaneng.2022.112088_b3) 1993
Rios (10.1016/j.oceaneng.2022.112088_b14) 2013; 56
Lackner (10.1016/j.oceaneng.2022.112088_b8) 2011; 14
Zhang (10.1016/j.oceaneng.2022.112088_b24) 2018; 164
Alexander (10.1016/j.oceaneng.2022.112088_b1) 2009; 319
Brochu (10.1016/j.oceaneng.2022.112088_b2) 2010
Jin (10.1016/j.oceaneng.2022.112088_b6) 2021; 241
Ou (10.1016/j.oceaneng.2022.112088_b10) 2007; 29
Zhang (10.1016/j.oceaneng.2022.112088_b28) 2019; 195
Hoang (10.1016/j.oceaneng.2022.112088_b5) 2008; 30
Wen (10.1016/j.oceaneng.2022.112088_b16) 2018; 154
Xu (10.1016/j.oceaneng.2022.112088_b18) 2019; 182
Kundu (10.1016/j.oceaneng.2022.112088_b7) 2012
Yang (10.1016/j.oceaneng.2022.112088_b19) 2020; 157
Yang (10.1016/j.oceaneng.2022.112088_b20) 2019; 83
Park (10.1016/j.oceaneng.2022.112088_b11) 2019; 22
Zhang (10.1016/j.oceaneng.2022.112088_b27) 2020
Zhang (10.1016/j.oceaneng.2022.112088_b25) 2021; 147
Li (10.1016/j.oceaneng.2022.112088_b9) 2015; 63
Zhang (10.1016/j.oceaneng.2022.112088_b23) 2017; 89
Zhou (10.1016/j.oceaneng.2022.112088_b29) 2022; 45
Patil (10.1016/j.oceaneng.2022.112088_b13) 2005; 32
Wu (10.1016/j.oceaneng.2022.112088_b17) 2020; 23
Zhang (10.1016/j.oceaneng.2022.112088_b26) 2019; 138
Yu (10.1016/j.oceaneng.2022.112088_b22) 2016; 99
Yin (10.1016/j.oceaneng.2022.112088_b21) 2019; 19
Park (10.1016/j.oceaneng.2022.112088_b12) 2016; 24
Stewart (10.1016/j.oceaneng.2022.112088_b15) 2013; 21
Fitzgerald (10.1016/j.oceaneng.2022.112088_b4) 2018; 419
References_xml – volume: 23
  start-page: 711
  year: 2020
  end-page: 730
  ident: b17
  article-title: Platform stabilization and load reduction of floating offshore wind turbines with tension-leg platform using dynamic vibration absorbers
  publication-title: Wind Energy
– volume: 182
  start-page: 101
  year: 2019
  end-page: 111
  ident: b18
  article-title: Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study
  publication-title: Eng. Struct.
– volume: 195
  start-page: 62
  year: 2019
  end-page: 83
  ident: b28
  article-title: Numerical investigation of the dynamic response and power capture performance of a VLFS with a wave energy conversion unit
  publication-title: Eng. Struct.
– volume: 29
  start-page: 1525
  year: 2007
  end-page: 1538
  ident: b10
  article-title: Vibration control of steel jacket offshore platform structures with damping isolation systems
  publication-title: Eng. Struct.
– volume: 241
  year: 2021
  ident: b6
  article-title: Optimization of tuned mass damper for seismic control of submerged floating tunnel
  publication-title: Eng. Struct.
– volume: 45
  year: 2022
  ident: b29
  article-title: Control performance of active tuned mass damper for mitigating wind-induced vibrations of a 600-m-tall skyscraper
  publication-title: J. Build. Eng.
– volume: 154
  start-page: 508
  year: 2018
  end-page: 521
  ident: b16
  article-title: The power performance of an offshore floating wind turbine in platform pitching motion
  publication-title: Energy
– year: 2010
  ident: b2
  article-title: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning
– volume: 157
  start-page: 678
  year: 2020
  end-page: 694
  ident: b19
  article-title: Coupled modeling and structural vibration control for floating offshore wind turbine
  publication-title: Renew. Energy
– volume: 99
  start-page: 1276
  year: 2016
  end-page: 1286
  ident: b22
  article-title: Numerical study on the performance of a wave energy converter with three hinged bodies
  publication-title: Renew. Energy
– volume: 89
  start-page: 755
  year: 2017
  end-page: 771
  ident: b23
  article-title: Recent advances in vibration control of offshore platforms
  publication-title: Nonlinear Dynam.
– volume: 30
  start-page: 707
  year: 2008
  end-page: 715
  ident: b5
  article-title: Optimal tuned mass damper for seismic applications and practical design formulas
  publication-title: Eng. Struct.
– volume: 319
  start-page: 445
  year: 2009
  end-page: 462
  ident: b1
  article-title: Exploring the performance of a nonlinear tuned mass damper
  publication-title: J. Sound Vib.
– volume: 419
  start-page: 103
  year: 2018
  end-page: 122
  ident: b4
  article-title: Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs)
  publication-title: J. Sound Vib.
– volume: 147
  year: 2021
  ident: b25
  article-title: Feasibility of very large floating structure as offshore wind foundation: effects of hinge numbers on wave loads and induced responses
  publication-title: J. Waterw. Port Coast. Ocean Eng.
– volume: 19
  start-page: 1133
  year: 2019
  ident: b21
  article-title: Vibration suppression of wind/traffic/bridge coupled system using multiple pounding tuned mass dampers (MPTMD)
  publication-title: Sensors
– year: 2020
  ident: b27
  article-title: Reinforcement learning-based structural control of floating wind turbines
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– year: 1993
  ident: b3
  article-title: Sea Loads on Ships and Offshore Structures, Vol. 1
– volume: 63
  start-page: 332
  year: 2015
  end-page: 342
  ident: b9
  article-title: Load mitigation for a floating wind turbine via generalized
  publication-title: IEEE Trans. Ind. Electron.
– volume: 24
  start-page: 1655
  year: 2016
  end-page: 1668
  ident: b12
  article-title: BayesIan ascent: A data-driven optimization scheme for real-time control with application to wind farm power maximization
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 14
  start-page: 373
  year: 2011
  end-page: 388
  ident: b8
  article-title: Passive structural control of offshore wind turbines
  publication-title: Wind Energy
– volume: 83
  start-page: 21
  year: 2019
  end-page: 29
  ident: b20
  article-title: Dynamic modeling and vibration suppression for an offshore wind turbine with a tuned mass damper in floating platform
  publication-title: Appl. Ocean Res.
– volume: 32
  start-page: 1933
  year: 2005
  end-page: 1949
  ident: b13
  article-title: Passive control of offshore jacket platforms
  publication-title: Ocean Eng.
– year: 2012
  ident: b7
  article-title: Vibration Control of Frame Structure Using Multiple Tuned Mass Dampers
– volume: 22
  start-page: 1451
  year: 2019
  end-page: 1471
  ident: b11
  article-title: An investigation on the impacts of passive and semiactive structural control on a fixed bottom and a floating offshore wind turbine
  publication-title: Wind Energy
– volume: 138
  start-page: 1176
  year: 2019
  end-page: 1188
  ident: b26
  article-title: Embedded power take-off in hinged modularized floating platform for wave energy harvesting and pitch motion suppression
  publication-title: Renew. Energy
– volume: 56
  start-page: 1247
  year: 2013
  end-page: 1293
  ident: b14
  article-title: Derivative-free optimization: a review of algorithms and comparison of software implementations
  publication-title: J. Global Optim.
– volume: 21
  start-page: 1090
  year: 2013
  end-page: 1104
  ident: b15
  article-title: Offshore wind turbine load reduction employing optimal passive tuned mass damping systems
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 164
  start-page: 332
  year: 2018
  end-page: 349
  ident: b24
  article-title: A time domain discrete-module-beam-bending-based hydroelasticity method for the transient response of very large floating structures under unsteady external loads
  publication-title: Ocean Eng.
– volume: 419
  start-page: 103
  year: 2018
  ident: 10.1016/j.oceaneng.2022.112088_b4
  article-title: Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs)
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.12.026
– year: 2010
  ident: 10.1016/j.oceaneng.2022.112088_b2
– volume: 21
  start-page: 1090
  issue: 4
  year: 2013
  ident: 10.1016/j.oceaneng.2022.112088_b15
  article-title: Offshore wind turbine load reduction employing optimal passive tuned mass damping systems
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2013.2260825
– volume: 14
  start-page: 373
  issue: 3
  year: 2011
  ident: 10.1016/j.oceaneng.2022.112088_b8
  article-title: Passive structural control of offshore wind turbines
  publication-title: Wind Energy
  doi: 10.1002/we.426
– volume: 138
  start-page: 1176
  year: 2019
  ident: 10.1016/j.oceaneng.2022.112088_b26
  article-title: Embedded power take-off in hinged modularized floating platform for wave energy harvesting and pitch motion suppression
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.01.092
– volume: 30
  start-page: 707
  issue: 3
  year: 2008
  ident: 10.1016/j.oceaneng.2022.112088_b5
  article-title: Optimal tuned mass damper for seismic applications and practical design formulas
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2007.05.007
– volume: 83
  start-page: 21
  year: 2019
  ident: 10.1016/j.oceaneng.2022.112088_b20
  article-title: Dynamic modeling and vibration suppression for an offshore wind turbine with a tuned mass damper in floating platform
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2018.08.021
– volume: 23
  start-page: 711
  issue: 3
  year: 2020
  ident: 10.1016/j.oceaneng.2022.112088_b17
  article-title: Platform stabilization and load reduction of floating offshore wind turbines with tension-leg platform using dynamic vibration absorbers
  publication-title: Wind Energy
  doi: 10.1002/we.2453
– volume: 157
  start-page: 678
  year: 2020
  ident: 10.1016/j.oceaneng.2022.112088_b19
  article-title: Coupled modeling and structural vibration control for floating offshore wind turbine
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.05.075
– year: 2020
  ident: 10.1016/j.oceaneng.2022.112088_b27
  article-title: Reinforcement learning-based structural control of floating wind turbines
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– year: 1993
  ident: 10.1016/j.oceaneng.2022.112088_b3
– year: 2012
  ident: 10.1016/j.oceaneng.2022.112088_b7
– volume: 241
  year: 2021
  ident: 10.1016/j.oceaneng.2022.112088_b6
  article-title: Optimization of tuned mass damper for seismic control of submerged floating tunnel
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.112460
– volume: 154
  start-page: 508
  year: 2018
  ident: 10.1016/j.oceaneng.2022.112088_b16
  article-title: The power performance of an offshore floating wind turbine in platform pitching motion
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.140
– volume: 164
  start-page: 332
  year: 2018
  ident: 10.1016/j.oceaneng.2022.112088_b24
  article-title: A time domain discrete-module-beam-bending-based hydroelasticity method for the transient response of very large floating structures under unsteady external loads
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.06.058
– volume: 19
  start-page: 1133
  issue: 5
  year: 2019
  ident: 10.1016/j.oceaneng.2022.112088_b21
  article-title: Vibration suppression of wind/traffic/bridge coupled system using multiple pounding tuned mass dampers (MPTMD)
  publication-title: Sensors
  doi: 10.3390/s19051133
– volume: 182
  start-page: 101
  year: 2019
  ident: 10.1016/j.oceaneng.2022.112088_b18
  article-title: Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.12.067
– volume: 29
  start-page: 1525
  issue: 7
  year: 2007
  ident: 10.1016/j.oceaneng.2022.112088_b10
  article-title: Vibration control of steel jacket offshore platform structures with damping isolation systems
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2006.08.026
– volume: 99
  start-page: 1276
  year: 2016
  ident: 10.1016/j.oceaneng.2022.112088_b22
  article-title: Numerical study on the performance of a wave energy converter with three hinged bodies
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.08.023
– volume: 63
  start-page: 332
  issue: 1
  year: 2015
  ident: 10.1016/j.oceaneng.2022.112088_b9
  article-title: Load mitigation for a floating wind turbine via generalized H∞ structural control
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2465894
– volume: 22
  start-page: 1451
  issue: 11
  year: 2019
  ident: 10.1016/j.oceaneng.2022.112088_b11
  article-title: An investigation on the impacts of passive and semiactive structural control on a fixed bottom and a floating offshore wind turbine
  publication-title: Wind Energy
  doi: 10.1002/we.2381
– volume: 89
  start-page: 755
  issue: 2
  year: 2017
  ident: 10.1016/j.oceaneng.2022.112088_b23
  article-title: Recent advances in vibration control of offshore platforms
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-017-3503-4
– volume: 195
  start-page: 62
  year: 2019
  ident: 10.1016/j.oceaneng.2022.112088_b28
  article-title: Numerical investigation of the dynamic response and power capture performance of a VLFS with a wave energy conversion unit
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2019.05.077
– volume: 45
  year: 2022
  ident: 10.1016/j.oceaneng.2022.112088_b29
  article-title: Control performance of active tuned mass damper for mitigating wind-induced vibrations of a 600-m-tall skyscraper
  publication-title: J. Build. Eng.
– volume: 32
  start-page: 1933
  issue: 16
  year: 2005
  ident: 10.1016/j.oceaneng.2022.112088_b13
  article-title: Passive control of offshore jacket platforms
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2005.01.002
– volume: 24
  start-page: 1655
  issue: 5
  year: 2016
  ident: 10.1016/j.oceaneng.2022.112088_b12
  article-title: BayesIan ascent: A data-driven optimization scheme for real-time control with application to wind farm power maximization
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2015.2508007
– volume: 56
  start-page: 1247
  issue: 3
  year: 2013
  ident: 10.1016/j.oceaneng.2022.112088_b14
  article-title: Derivative-free optimization: a review of algorithms and comparison of software implementations
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-012-9951-y
– volume: 147
  issue: 3
  year: 2021
  ident: 10.1016/j.oceaneng.2022.112088_b25
  article-title: Feasibility of very large floating structure as offshore wind foundation: effects of hinge numbers on wave loads and induced responses
  publication-title: J. Waterw. Port Coast. Ocean Eng.
  doi: 10.1061/(ASCE)WW.1943-5460.0000626
– volume: 319
  start-page: 445
  issue: 1–2
  year: 2009
  ident: 10.1016/j.oceaneng.2022.112088_b1
  article-title: Exploring the performance of a nonlinear tuned mass damper
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2008.05.018
SSID ssj0006603
Score 2.3481572
Snippet This paper aims to achieve vibration suppression for multi-component floating structures under ocean waves. To this end, a multiple-passive-TMD (tuned mass...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112088
SubjectTerms Bayesian ascent
Hydrodynamics
Multi-component floating structure
Tuned mass damper
Vibration suppression
Title Vibration suppression of multi-component floating structures via passive TMDs and Bayesian ascent
URI https://dx.doi.org/10.1016/j.oceaneng.2022.112088
Volume 259
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvaggWhXro-zBa9o0u5tmj7VaqmK9tNJb2O5DKiUNtBW8-NudyUMrCD14TNgJw-xkHvDNN4Rci44NoQ6QHteGe5xx50nT5h78HEjmrVVbZQDZYTgY84eJmFRIr5yFQVhlEfvzmJ5F6-JNq7BmK53NcMY3kBBfIcMhWJHhoDnnHfTy5ucPzCMMfVbCPPD0xpTwWxNShEps8gp9YhDgNI2fbWD5I0FtJJ3-ITkoqkXazRU6IhWb1MjeBodgjew_49cL4uljol6w_0Vr0-U6LVCuCV04mkEHPYSQL0CZFXXzhULMM80pZNdwlL7PFE2hnIYQSEdPt0uqEkNv1IfFUUuqMuanEzLu3416A69Yo-BpFvorzwqnA2U6ijvupOZOGCuYU44ZI7RoMxsYYaANsoarqbJ-ZCNfSe1boWXEDDsl1QQ0OyM0jISNJERENsU6zErGQxe6QEfOl1B71okobRfrgmMcV13M4xJM9haXNo_R5nFu8zppfculOcvGVglZXk38y19iSAVbZM__IXtBdvEpR5ldkirckL2CsmQ1bWR-1yA73fvHwfALS57kYw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HnyA-MS3e_Aam2Z30-zRJ_VVL1W8he0-pEXSgq3gv3cm2UgFwYPXJBOG2d1vZuGbbwBOZNulWAeoSBgrIsGFj5RtiQgPB4l5G93SJUG2m3aexO2LfJmDi7oXhmiVAfsrTC_ROjxphmg2x4MB9fgmCvEVMxyRFbmchwVSp5INWDi7uet0vwE5TWNeMz3IYKZReHiKWUIXrnjFq2KSUENNXA5h-SVHzeSd6zVYDQUjO6t8Woc5V2zA8oyM4AasPNLfg_b0JuhnugJTwNn7dByIrgUbeVayByNikY_QmQnzbyNNtGdWqchO8VP2MdBsjBU1oiDrPVy-M11Ydq4_HXVbMl2KP23B0_VV76IThUkKkeFpPImc9CbRtq2FF14Z4aV1knvtubXSyBZ3iZUWb0LOCt3XLs5cFmtlYieNyrjl29Ao0LMdYGkmXaYQFHmfSjGnuEh96hOT-Vhh-bkLso5dboLMOE27eMtrPtkwr2OeU8zzKua70Py2G1dCG39aqHpp8h9bJsds8Ift3j9sj2Gx03u4z-9vunf7sERvKtLZATRwtdwhVimT_lHYhV8efucU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibration+suppression+of+multi-component+floating+structures+via+passive+TMDs+and+Bayesian+ascent&rft.jtitle=Ocean+engineering&rft.au=Zhang%2C+Xiantao&rft.au=Lu%2C+Da&rft.au=Dong%2C+Hongyang&rft.au=Zhao%2C+Xiaowei&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=259&rft_id=info:doi/10.1016%2Fj.oceaneng.2022.112088&rft.externalDocID=S0029801822014135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon