Vibration suppression of multi-component floating structures via passive TMDs and Bayesian ascent
This paper aims to achieve vibration suppression for multi-component floating structures under ocean waves. To this end, a multiple-passive-TMD (tuned mass damper) structure is employed, and a numerical model is developed incorporating both the dynamics of a hinged floating foundation and passive TM...
Saved in:
Published in | Ocean engineering Vol. 259; p. 112088 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper aims to achieve vibration suppression for multi-component floating structures under ocean waves. To this end, a multiple-passive-TMD (tuned mass damper) structure is employed, and a numerical model is developed incorporating both the dynamics of a hinged floating foundation and passive TMDs. A data-driven parameter optimization method is developed to search for optimal TMD parameters. This method is built upon Bayesian Ascent (BA) – an advanced sequential searching strategy for optimizing black-box functions, combining the merits of both the Bayesian Optimization method and the gradient-free trust-region algorithm. Simulation results under different wave conditions verify the effectiveness of the BA-based parameter selection method, showing that the resulting passive TMDs can significantly reduce the vibration of the whole floating structure.
•A novel data-driven optimization method is designed for vibration suppression.•A multi-component floating structure with TMD modules is modeled and analyzed.•The parameters of TMDs are optimized by a Bayesian-based data-driven method.•The proposed method can reduce vibrations subject to different wave conditions. |
---|---|
AbstractList | This paper aims to achieve vibration suppression for multi-component floating structures under ocean waves. To this end, a multiple-passive-TMD (tuned mass damper) structure is employed, and a numerical model is developed incorporating both the dynamics of a hinged floating foundation and passive TMDs. A data-driven parameter optimization method is developed to search for optimal TMD parameters. This method is built upon Bayesian Ascent (BA) – an advanced sequential searching strategy for optimizing black-box functions, combining the merits of both the Bayesian Optimization method and the gradient-free trust-region algorithm. Simulation results under different wave conditions verify the effectiveness of the BA-based parameter selection method, showing that the resulting passive TMDs can significantly reduce the vibration of the whole floating structure.
•A novel data-driven optimization method is designed for vibration suppression.•A multi-component floating structure with TMD modules is modeled and analyzed.•The parameters of TMDs are optimized by a Bayesian-based data-driven method.•The proposed method can reduce vibrations subject to different wave conditions. |
ArticleNumber | 112088 |
Author | Dong, Hongyang Liang, Yibo Zhao, Xiaowei Zhang, Xiantao Brennan, Feargal Lu, Da |
Author_xml | – sequence: 1 givenname: Xiantao surname: Zhang fullname: Zhang, Xiantao email: zhxt@sjtu.edu.cn organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Da surname: Lu fullname: Lu, Da email: nichenrugu@sjtu.edu.cn organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Hongyang orcidid: 0000-0003-4302-5323 surname: Dong fullname: Dong, Hongyang email: hongyang.dong@warwick.ac.uk organization: Intelligent Control & Smart Energy (ICSE) Research Group, School of Engineering, University of Warwick, Coventry, UK – sequence: 4 givenname: Xiaowei surname: Zhao fullname: Zhao, Xiaowei email: xiaowei.zhao@warwick.ac.uk organization: Intelligent Control & Smart Energy (ICSE) Research Group, School of Engineering, University of Warwick, Coventry, UK – sequence: 5 givenname: Feargal surname: Brennan fullname: Brennan, Feargal email: feargal.brennan@strath.ac.uk organization: Offshore Engineering Institute, University of Strathclyde, Glasgow, UK – sequence: 6 givenname: Yibo surname: Liang fullname: Liang, Yibo email: yibo.liang@strath.ac.uk organization: Offshore Engineering Institute, University of Strathclyde, Glasgow, UK |
BookMark | eNqFkE1PAjEQhhuDiYD-BdM_sNh26dJNPKj4mWC8oNdmaKekBLqbtpDw711EL144zRze553MMyC90AQk5JqzEWe8ulmNGoMQMCxHggkx4lwwpc5In6tJWUghVY_0GRN1oRhXF2SQ0ooxVlWs7BP48osI2TeBpm3bRkzpsDeObrbr7AvTbNruXMjUrZsuF5Y05bg1edtF6c4DbaFDdkjn74-JQrD0AfaYPAQKyXTgJTl3sE549TuH5PP5aT59LWYfL2_T-1lhyorlAqUzAuwExm7sajN20qIsHbjSWmkkL1FYaYWs0Y5hAcgUKga1YShNrUpbDsntsdfEJqWIThuffz7LEfxac6YPuvRK_-nSB136qKvDq394G_0G4v40eHcEsXtu5zHqZDwGg9ZHNFnbxp-q-AZ1Mo7R |
CitedBy_id | crossref_primary_10_1007_s11071_024_10315_5 crossref_primary_10_1016_j_istruc_2022_12_026 |
Cites_doi | 10.1016/j.jsv.2017.12.026 10.1109/TCST.2013.2260825 10.1002/we.426 10.1016/j.renene.2019.01.092 10.1016/j.engstruct.2007.05.007 10.1016/j.apor.2018.08.021 10.1002/we.2453 10.1016/j.renene.2020.05.075 10.1016/j.engstruct.2021.112460 10.1016/j.energy.2018.04.140 10.1016/j.oceaneng.2018.06.058 10.3390/s19051133 10.1016/j.engstruct.2018.12.067 10.1016/j.engstruct.2006.08.026 10.1016/j.renene.2016.08.023 10.1109/TIE.2015.2465894 10.1002/we.2381 10.1007/s11071-017-3503-4 10.1016/j.engstruct.2019.05.077 10.1016/j.oceaneng.2005.01.002 10.1109/TCST.2015.2508007 10.1007/s10898-012-9951-y 10.1061/(ASCE)WW.1943-5460.0000626 10.1016/j.jsv.2008.05.018 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2022.112088 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 1873-5258 |
ExternalDocumentID | 10_1016_j_oceaneng_2022_112088 S0029801822014135 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET SEW SSH WUQ |
ID | FETCH-LOGICAL-c360t-e5fc2ad7a4f4f9c4f5de53faf3dd5c513e2d5d259ed4abae08e80a9c0e5c983d3 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Tue Jul 01 02:14:58 EDT 2025 Thu Apr 24 22:51:06 EDT 2025 Fri Feb 23 02:39:44 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-component floating structure Hydrodynamics Vibration suppression Tuned mass damper Bayesian ascent |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-e5fc2ad7a4f4f9c4f5de53faf3dd5c513e2d5d259ed4abae08e80a9c0e5c983d3 |
ORCID | 0000-0003-4302-5323 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0029801822014135 |
ParticipantIDs | crossref_citationtrail_10_1016_j_oceaneng_2022_112088 crossref_primary_10_1016_j_oceaneng_2022_112088 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2022_112088 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 2022-09-00 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Xu, Bi, Han, Li, Du (b18) 2019; 182 Hoang, Fujino, Warnitchai (b5) 2008; 30 Rios, Sahinidis (b14) 2013; 56 Wu, Li (b17) 2020; 23 Zhang, Zhao, Wei (b27) 2020 Yang, He (b19) 2020; 157 Stewart, Lackner (b15) 2013; 21 Zhang, Lu, Gao, Chen (b24) 2018; 164 Zhang, Lu, Liang, Brennan (b25) 2021; 147 Fitzgerald, Sarkar, Staino (b4) 2018; 419 Zhang, Xu, Ding, Zhao, Lu, Wu (b26) 2019; 138 Li, Gao (b9) 2015; 63 Ou, Long, Li, Xiao (b10) 2007; 29 Park, Law (b12) 2016; 24 Jin, Chung, Kwon, Kim (b6) 2021; 241 Patil, Jangid (b13) 2005; 32 Yu, Zhang, Zheng (b22) 2016; 99 Zhou, Zhang, Li (b29) 2022; 45 Zhang, Zheng, Lu, Tian (b28) 2019; 195 Zhang, Han, Zhang (b23) 2017; 89 Faltinsen (b3) 1993 Wen, Dong, Tian, Peng, Zhang, Wei (b16) 2018; 154 Park, Lackner, Pourazarm, Rodríguez Tsouroukdissian, Cross-Whiter (b11) 2019; 22 Yin, Song, Liu (b21) 2019; 19 Lackner, Rotea (b8) 2011; 14 Brochu, Cora, De Freitas (b2) 2010 Alexander, Schilder (b1) 2009; 319 Yang, He, Hu (b20) 2019; 83 Kundu (b7) 2012 Faltinsen (10.1016/j.oceaneng.2022.112088_b3) 1993 Rios (10.1016/j.oceaneng.2022.112088_b14) 2013; 56 Lackner (10.1016/j.oceaneng.2022.112088_b8) 2011; 14 Zhang (10.1016/j.oceaneng.2022.112088_b24) 2018; 164 Alexander (10.1016/j.oceaneng.2022.112088_b1) 2009; 319 Brochu (10.1016/j.oceaneng.2022.112088_b2) 2010 Jin (10.1016/j.oceaneng.2022.112088_b6) 2021; 241 Ou (10.1016/j.oceaneng.2022.112088_b10) 2007; 29 Zhang (10.1016/j.oceaneng.2022.112088_b28) 2019; 195 Hoang (10.1016/j.oceaneng.2022.112088_b5) 2008; 30 Wen (10.1016/j.oceaneng.2022.112088_b16) 2018; 154 Xu (10.1016/j.oceaneng.2022.112088_b18) 2019; 182 Kundu (10.1016/j.oceaneng.2022.112088_b7) 2012 Yang (10.1016/j.oceaneng.2022.112088_b19) 2020; 157 Yang (10.1016/j.oceaneng.2022.112088_b20) 2019; 83 Park (10.1016/j.oceaneng.2022.112088_b11) 2019; 22 Zhang (10.1016/j.oceaneng.2022.112088_b27) 2020 Zhang (10.1016/j.oceaneng.2022.112088_b25) 2021; 147 Li (10.1016/j.oceaneng.2022.112088_b9) 2015; 63 Zhang (10.1016/j.oceaneng.2022.112088_b23) 2017; 89 Zhou (10.1016/j.oceaneng.2022.112088_b29) 2022; 45 Patil (10.1016/j.oceaneng.2022.112088_b13) 2005; 32 Wu (10.1016/j.oceaneng.2022.112088_b17) 2020; 23 Zhang (10.1016/j.oceaneng.2022.112088_b26) 2019; 138 Yu (10.1016/j.oceaneng.2022.112088_b22) 2016; 99 Yin (10.1016/j.oceaneng.2022.112088_b21) 2019; 19 Park (10.1016/j.oceaneng.2022.112088_b12) 2016; 24 Stewart (10.1016/j.oceaneng.2022.112088_b15) 2013; 21 Fitzgerald (10.1016/j.oceaneng.2022.112088_b4) 2018; 419 |
References_xml | – volume: 23 start-page: 711 year: 2020 end-page: 730 ident: b17 article-title: Platform stabilization and load reduction of floating offshore wind turbines with tension-leg platform using dynamic vibration absorbers publication-title: Wind Energy – volume: 182 start-page: 101 year: 2019 end-page: 111 ident: b18 article-title: Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study publication-title: Eng. Struct. – volume: 195 start-page: 62 year: 2019 end-page: 83 ident: b28 article-title: Numerical investigation of the dynamic response and power capture performance of a VLFS with a wave energy conversion unit publication-title: Eng. Struct. – volume: 29 start-page: 1525 year: 2007 end-page: 1538 ident: b10 article-title: Vibration control of steel jacket offshore platform structures with damping isolation systems publication-title: Eng. Struct. – volume: 241 year: 2021 ident: b6 article-title: Optimization of tuned mass damper for seismic control of submerged floating tunnel publication-title: Eng. Struct. – volume: 45 year: 2022 ident: b29 article-title: Control performance of active tuned mass damper for mitigating wind-induced vibrations of a 600-m-tall skyscraper publication-title: J. Build. Eng. – volume: 154 start-page: 508 year: 2018 end-page: 521 ident: b16 article-title: The power performance of an offshore floating wind turbine in platform pitching motion publication-title: Energy – year: 2010 ident: b2 article-title: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning – volume: 157 start-page: 678 year: 2020 end-page: 694 ident: b19 article-title: Coupled modeling and structural vibration control for floating offshore wind turbine publication-title: Renew. Energy – volume: 99 start-page: 1276 year: 2016 end-page: 1286 ident: b22 article-title: Numerical study on the performance of a wave energy converter with three hinged bodies publication-title: Renew. Energy – volume: 89 start-page: 755 year: 2017 end-page: 771 ident: b23 article-title: Recent advances in vibration control of offshore platforms publication-title: Nonlinear Dynam. – volume: 30 start-page: 707 year: 2008 end-page: 715 ident: b5 article-title: Optimal tuned mass damper for seismic applications and practical design formulas publication-title: Eng. Struct. – volume: 319 start-page: 445 year: 2009 end-page: 462 ident: b1 article-title: Exploring the performance of a nonlinear tuned mass damper publication-title: J. Sound Vib. – volume: 419 start-page: 103 year: 2018 end-page: 122 ident: b4 article-title: Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs) publication-title: J. Sound Vib. – volume: 147 year: 2021 ident: b25 article-title: Feasibility of very large floating structure as offshore wind foundation: effects of hinge numbers on wave loads and induced responses publication-title: J. Waterw. Port Coast. Ocean Eng. – volume: 19 start-page: 1133 year: 2019 ident: b21 article-title: Vibration suppression of wind/traffic/bridge coupled system using multiple pounding tuned mass dampers (MPTMD) publication-title: Sensors – year: 2020 ident: b27 article-title: Reinforcement learning-based structural control of floating wind turbines publication-title: IEEE Trans. Syst. Man Cybern.: Syst. – year: 1993 ident: b3 article-title: Sea Loads on Ships and Offshore Structures, Vol. 1 – volume: 63 start-page: 332 year: 2015 end-page: 342 ident: b9 article-title: Load mitigation for a floating wind turbine via generalized publication-title: IEEE Trans. Ind. Electron. – volume: 24 start-page: 1655 year: 2016 end-page: 1668 ident: b12 article-title: BayesIan ascent: A data-driven optimization scheme for real-time control with application to wind farm power maximization publication-title: IEEE Trans. Control Syst. Technol. – volume: 14 start-page: 373 year: 2011 end-page: 388 ident: b8 article-title: Passive structural control of offshore wind turbines publication-title: Wind Energy – volume: 83 start-page: 21 year: 2019 end-page: 29 ident: b20 article-title: Dynamic modeling and vibration suppression for an offshore wind turbine with a tuned mass damper in floating platform publication-title: Appl. Ocean Res. – volume: 32 start-page: 1933 year: 2005 end-page: 1949 ident: b13 article-title: Passive control of offshore jacket platforms publication-title: Ocean Eng. – year: 2012 ident: b7 article-title: Vibration Control of Frame Structure Using Multiple Tuned Mass Dampers – volume: 22 start-page: 1451 year: 2019 end-page: 1471 ident: b11 article-title: An investigation on the impacts of passive and semiactive structural control on a fixed bottom and a floating offshore wind turbine publication-title: Wind Energy – volume: 138 start-page: 1176 year: 2019 end-page: 1188 ident: b26 article-title: Embedded power take-off in hinged modularized floating platform for wave energy harvesting and pitch motion suppression publication-title: Renew. Energy – volume: 56 start-page: 1247 year: 2013 end-page: 1293 ident: b14 article-title: Derivative-free optimization: a review of algorithms and comparison of software implementations publication-title: J. Global Optim. – volume: 21 start-page: 1090 year: 2013 end-page: 1104 ident: b15 article-title: Offshore wind turbine load reduction employing optimal passive tuned mass damping systems publication-title: IEEE Trans. Control Syst. Technol. – volume: 164 start-page: 332 year: 2018 end-page: 349 ident: b24 article-title: A time domain discrete-module-beam-bending-based hydroelasticity method for the transient response of very large floating structures under unsteady external loads publication-title: Ocean Eng. – volume: 419 start-page: 103 year: 2018 ident: 10.1016/j.oceaneng.2022.112088_b4 article-title: Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs) publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.12.026 – year: 2010 ident: 10.1016/j.oceaneng.2022.112088_b2 – volume: 21 start-page: 1090 issue: 4 year: 2013 ident: 10.1016/j.oceaneng.2022.112088_b15 article-title: Offshore wind turbine load reduction employing optimal passive tuned mass damping systems publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2013.2260825 – volume: 14 start-page: 373 issue: 3 year: 2011 ident: 10.1016/j.oceaneng.2022.112088_b8 article-title: Passive structural control of offshore wind turbines publication-title: Wind Energy doi: 10.1002/we.426 – volume: 138 start-page: 1176 year: 2019 ident: 10.1016/j.oceaneng.2022.112088_b26 article-title: Embedded power take-off in hinged modularized floating platform for wave energy harvesting and pitch motion suppression publication-title: Renew. Energy doi: 10.1016/j.renene.2019.01.092 – volume: 30 start-page: 707 issue: 3 year: 2008 ident: 10.1016/j.oceaneng.2022.112088_b5 article-title: Optimal tuned mass damper for seismic applications and practical design formulas publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2007.05.007 – volume: 83 start-page: 21 year: 2019 ident: 10.1016/j.oceaneng.2022.112088_b20 article-title: Dynamic modeling and vibration suppression for an offshore wind turbine with a tuned mass damper in floating platform publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2018.08.021 – volume: 23 start-page: 711 issue: 3 year: 2020 ident: 10.1016/j.oceaneng.2022.112088_b17 article-title: Platform stabilization and load reduction of floating offshore wind turbines with tension-leg platform using dynamic vibration absorbers publication-title: Wind Energy doi: 10.1002/we.2453 – volume: 157 start-page: 678 year: 2020 ident: 10.1016/j.oceaneng.2022.112088_b19 article-title: Coupled modeling and structural vibration control for floating offshore wind turbine publication-title: Renew. Energy doi: 10.1016/j.renene.2020.05.075 – year: 2020 ident: 10.1016/j.oceaneng.2022.112088_b27 article-title: Reinforcement learning-based structural control of floating wind turbines publication-title: IEEE Trans. Syst. Man Cybern.: Syst. – year: 1993 ident: 10.1016/j.oceaneng.2022.112088_b3 – year: 2012 ident: 10.1016/j.oceaneng.2022.112088_b7 – volume: 241 year: 2021 ident: 10.1016/j.oceaneng.2022.112088_b6 article-title: Optimization of tuned mass damper for seismic control of submerged floating tunnel publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2021.112460 – volume: 154 start-page: 508 year: 2018 ident: 10.1016/j.oceaneng.2022.112088_b16 article-title: The power performance of an offshore floating wind turbine in platform pitching motion publication-title: Energy doi: 10.1016/j.energy.2018.04.140 – volume: 164 start-page: 332 year: 2018 ident: 10.1016/j.oceaneng.2022.112088_b24 article-title: A time domain discrete-module-beam-bending-based hydroelasticity method for the transient response of very large floating structures under unsteady external loads publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.06.058 – volume: 19 start-page: 1133 issue: 5 year: 2019 ident: 10.1016/j.oceaneng.2022.112088_b21 article-title: Vibration suppression of wind/traffic/bridge coupled system using multiple pounding tuned mass dampers (MPTMD) publication-title: Sensors doi: 10.3390/s19051133 – volume: 182 start-page: 101 year: 2019 ident: 10.1016/j.oceaneng.2022.112088_b18 article-title: Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2018.12.067 – volume: 29 start-page: 1525 issue: 7 year: 2007 ident: 10.1016/j.oceaneng.2022.112088_b10 article-title: Vibration control of steel jacket offshore platform structures with damping isolation systems publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2006.08.026 – volume: 99 start-page: 1276 year: 2016 ident: 10.1016/j.oceaneng.2022.112088_b22 article-title: Numerical study on the performance of a wave energy converter with three hinged bodies publication-title: Renew. Energy doi: 10.1016/j.renene.2016.08.023 – volume: 63 start-page: 332 issue: 1 year: 2015 ident: 10.1016/j.oceaneng.2022.112088_b9 article-title: Load mitigation for a floating wind turbine via generalized H∞ structural control publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2465894 – volume: 22 start-page: 1451 issue: 11 year: 2019 ident: 10.1016/j.oceaneng.2022.112088_b11 article-title: An investigation on the impacts of passive and semiactive structural control on a fixed bottom and a floating offshore wind turbine publication-title: Wind Energy doi: 10.1002/we.2381 – volume: 89 start-page: 755 issue: 2 year: 2017 ident: 10.1016/j.oceaneng.2022.112088_b23 article-title: Recent advances in vibration control of offshore platforms publication-title: Nonlinear Dynam. doi: 10.1007/s11071-017-3503-4 – volume: 195 start-page: 62 year: 2019 ident: 10.1016/j.oceaneng.2022.112088_b28 article-title: Numerical investigation of the dynamic response and power capture performance of a VLFS with a wave energy conversion unit publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2019.05.077 – volume: 45 year: 2022 ident: 10.1016/j.oceaneng.2022.112088_b29 article-title: Control performance of active tuned mass damper for mitigating wind-induced vibrations of a 600-m-tall skyscraper publication-title: J. Build. Eng. – volume: 32 start-page: 1933 issue: 16 year: 2005 ident: 10.1016/j.oceaneng.2022.112088_b13 article-title: Passive control of offshore jacket platforms publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2005.01.002 – volume: 24 start-page: 1655 issue: 5 year: 2016 ident: 10.1016/j.oceaneng.2022.112088_b12 article-title: BayesIan ascent: A data-driven optimization scheme for real-time control with application to wind farm power maximization publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2015.2508007 – volume: 56 start-page: 1247 issue: 3 year: 2013 ident: 10.1016/j.oceaneng.2022.112088_b14 article-title: Derivative-free optimization: a review of algorithms and comparison of software implementations publication-title: J. Global Optim. doi: 10.1007/s10898-012-9951-y – volume: 147 issue: 3 year: 2021 ident: 10.1016/j.oceaneng.2022.112088_b25 article-title: Feasibility of very large floating structure as offshore wind foundation: effects of hinge numbers on wave loads and induced responses publication-title: J. Waterw. Port Coast. Ocean Eng. doi: 10.1061/(ASCE)WW.1943-5460.0000626 – volume: 319 start-page: 445 issue: 1–2 year: 2009 ident: 10.1016/j.oceaneng.2022.112088_b1 article-title: Exploring the performance of a nonlinear tuned mass damper publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2008.05.018 |
SSID | ssj0006603 |
Score | 2.3481572 |
Snippet | This paper aims to achieve vibration suppression for multi-component floating structures under ocean waves. To this end, a multiple-passive-TMD (tuned mass... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 112088 |
SubjectTerms | Bayesian ascent Hydrodynamics Multi-component floating structure Tuned mass damper Vibration suppression |
Title | Vibration suppression of multi-component floating structures via passive TMDs and Bayesian ascent |
URI | https://dx.doi.org/10.1016/j.oceaneng.2022.112088 |
Volume | 259 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvaggWhXro-zBa9o0u5tmj7VaqmK9tNJb2O5DKiUNtBW8-NudyUMrCD14TNgJw-xkHvDNN4Rci44NoQ6QHteGe5xx50nT5h78HEjmrVVbZQDZYTgY84eJmFRIr5yFQVhlEfvzmJ5F6-JNq7BmK53NcMY3kBBfIcMhWJHhoDnnHfTy5ucPzCMMfVbCPPD0xpTwWxNShEps8gp9YhDgNI2fbWD5I0FtJJ3-ITkoqkXazRU6IhWb1MjeBodgjew_49cL4uljol6w_0Vr0-U6LVCuCV04mkEHPYSQL0CZFXXzhULMM80pZNdwlL7PFE2hnIYQSEdPt0uqEkNv1IfFUUuqMuanEzLu3416A69Yo-BpFvorzwqnA2U6ijvupOZOGCuYU44ZI7RoMxsYYaANsoarqbJ-ZCNfSe1boWXEDDsl1QQ0OyM0jISNJERENsU6zErGQxe6QEfOl1B71okobRfrgmMcV13M4xJM9haXNo_R5nFu8zppfculOcvGVglZXk38y19iSAVbZM__IXtBdvEpR5ldkirckL2CsmQ1bWR-1yA73fvHwfALS57kYw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HnyA-MS3e_Aam2Z30-zRJ_VVL1W8he0-pEXSgq3gv3cm2UgFwYPXJBOG2d1vZuGbbwBOZNulWAeoSBgrIsGFj5RtiQgPB4l5G93SJUG2m3aexO2LfJmDi7oXhmiVAfsrTC_ROjxphmg2x4MB9fgmCvEVMxyRFbmchwVSp5INWDi7uet0vwE5TWNeMz3IYKZReHiKWUIXrnjFq2KSUENNXA5h-SVHzeSd6zVYDQUjO6t8Woc5V2zA8oyM4AasPNLfg_b0JuhnugJTwNn7dByIrgUbeVayByNikY_QmQnzbyNNtGdWqchO8VP2MdBsjBU1oiDrPVy-M11Ydq4_HXVbMl2KP23B0_VV76IThUkKkeFpPImc9CbRtq2FF14Z4aV1knvtubXSyBZ3iZUWb0LOCt3XLs5cFmtlYieNyrjl29Ao0LMdYGkmXaYQFHmfSjGnuEh96hOT-Vhh-bkLso5dboLMOE27eMtrPtkwr2OeU8zzKua70Py2G1dCG39aqHpp8h9bJsds8Ift3j9sj2Gx03u4z-9vunf7sERvKtLZATRwtdwhVimT_lHYhV8efucU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibration+suppression+of+multi-component+floating+structures+via+passive+TMDs+and+Bayesian+ascent&rft.jtitle=Ocean+engineering&rft.au=Zhang%2C+Xiantao&rft.au=Lu%2C+Da&rft.au=Dong%2C+Hongyang&rft.au=Zhao%2C+Xiaowei&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=259&rft_id=info:doi/10.1016%2Fj.oceaneng.2022.112088&rft.externalDocID=S0029801822014135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |