3D Bioplotting of Gelatin/Alginate Scaffolds for Tissue Engineering: Influence of Crosslinking Degree and Pore Architecture on Physicochemical Properties
Gelatin/Alginate hydrogels were engineered for bioplotting in tissue engineering. One major drawback of hydrogel scaffolds is the lack of adequate mechanical properties. In this study, using a bioplotter, we constructed the scaffolds with different pore architectures by deposition of gelatin/alginat...
Saved in:
Published in | Journal of materials science & technology Vol. 32; no. 9; pp. 889 - 900 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gelatin/Alginate hydrogels were engineered for bioplotting in tissue engineering. One major drawback of hydrogel scaffolds is the lack of adequate mechanical properties. In this study, using a bioplotter, we constructed the scaffolds with different pore architectures by deposition of gelatin/alginate hydrogels layerby-layer. The scaffolds with different crosslinking degree were obtained by post-crosslinking methods. Their physicochemical properties, as well as cell viability, were assessed. Different crosslinking methods had little influence on scaffold architecture, porosity, pore size and distribution. By contrast, the water absorption ability, degradation rate and mechanical properties of the scaffolds were dramatically affected by treatment with various concentrations of crosslinking agent (glutaraldehyde). The crosslinking process using glutaraldehyde markedly improved the stability and mechanical strength of the hydrogel scaf- folds. Besides the post-processing methods, the pore architecture can also evidently affect the mechanical properties of the scaffolds. The crosslinked gelatin/alginate scaffolds showed a good potential to encap-sulate cells or drugs. |
---|---|
AbstractList | Gelatin/Alginate hydrogels were engineered for bioplotting in tissue engineering. One major drawback of hydrogel scaffolds is the lack of adequate mechanical properties. In this study, using a bioplotter, we constructed the scaffolds with different pore architectures by deposition of gelatin/alginate hydrogels layer-by-layer. The scaffolds with different crosslinking degree were obtained by post-crosslinking methods. Their physicochemical properties, as well as cell viability, were assessed. Different crosslinking methods had little influence on scaffold architecture, porosity, pore size and distribution. By contrast, the water absorption ability, degradation rate and mechanical properties of the scaffolds were dramatically affected by treatment with various concentrations of crosslinking agent (glutaraldehyde). The crosslinking process using glutaraldehyde markedly improved the stability and mechanical strength of the hydrogel scaffolds. Besides the post-processing methods, the pore architecture can also evidently affect the mechanical properties of the scaffolds. The crosslinked gelatin/alginate scaffolds showed a good potential to encapsulate cells or drugs. Gelatin/Alginate hydrogels were engineered for bioplotting in tissue engineering. One major drawback of hydrogel scaffolds is the lack of adequate mechanical properties. In this study, using a bioplotter, we constructed the scaffolds with different pore architectures by deposition of gelatin/alginate hydrogels layerby-layer. The scaffolds with different crosslinking degree were obtained by post-crosslinking methods. Their physicochemical properties, as well as cell viability, were assessed. Different crosslinking methods had little influence on scaffold architecture, porosity, pore size and distribution. By contrast, the water absorption ability, degradation rate and mechanical properties of the scaffolds were dramatically affected by treatment with various concentrations of crosslinking agent (glutaraldehyde). The crosslinking process using glutaraldehyde markedly improved the stability and mechanical strength of the hydrogel scaf- folds. Besides the post-processing methods, the pore architecture can also evidently affect the mechanical properties of the scaffolds. The crosslinked gelatin/alginate scaffolds showed a good potential to encap-sulate cells or drugs. |
Author | Ting Pan Wenjing Song Xiaodong Cao Yingjun Wang |
AuthorAffiliation | Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 5J0006, China Guangdong Province Key Laboratory of Biomedical Engineering,, South China University of Technology, Guangzhou 510006, China |
Author_xml | – sequence: 1 givenname: Ting surname: Pan fullname: Pan, Ting organization: Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China – sequence: 2 givenname: Wenjing surname: Song fullname: Song, Wenjing email: shaner_swj@163.com organization: Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China – sequence: 3 givenname: Xiaodong surname: Cao fullname: Cao, Xiaodong organization: Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China – sequence: 4 givenname: Yingjun surname: Wang fullname: Wang, Yingjun email: imwangyj@163.com organization: Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China |
BookMark | eNp9ksFu3CAQhlGVSk3SvkBPqKde7IDx2kbqZbtJ00iRulLTM8Iw7LJlYQO4Ul6lfZW-U1-hWBvlkENO_Ij5Zpj55wyd-OABofeU1JTQ7mJX7_Yp103RNaE1If0rdEp5SytKu-akaEIWFWGkeYPOUtoRwvrFMJyiP-wSf7bh4ELO1m9wMPganCz6Yuk21ssM-LuSxgSnEzYh4jub0gT4ypdXgFigf39_4xtv3ARewZxhFUNKzvqfc8ZL2EQALL3G6xABL6Pa2gwqT-USPF5vH5JVQW1hb5V0eB3DAWK2kN6i10a6BO8ez3P048vV3eprdfvt-ma1vK0U60iuNJd81Exxarg0pGtpL7Vpx6HvKSN6UC3jvGEcdD8s2DBqyoGpppENKcHjyM7Rx2PeQwz3E6Qs9jYpcE56CFMSdFgUjrR8KKHNMVTNLUYw4hDtXsYHQYmYnRA7MTshZicEoaI4UaDhGaRsLiMOPkdp3cvopyMKpf9fFqJIys5j1jaWEQod7Mv4h8fK2-A398WOp_92fdmIeSvYfwiftgM |
CitedBy_id | crossref_primary_10_1088_1742_6596_1213_4_042020 crossref_primary_10_3390_polym16182560 crossref_primary_10_1039_D0BM02209H crossref_primary_10_3390_gels8090535 crossref_primary_10_1016_j_ijbiomac_2024_130744 crossref_primary_10_1038_s41598_023_40680_x crossref_primary_10_1016_j_supflu_2022_105570 crossref_primary_10_5334_joh_6 crossref_primary_10_1088_1758_5090_ab47eb crossref_primary_10_1016_j_addr_2023_114823 crossref_primary_10_1016_j_mtbio_2024_101198 crossref_primary_10_3389_fbioe_2017_00023 crossref_primary_10_1016_j_jmst_2017_10_003 crossref_primary_10_1039_D0TB02019B crossref_primary_10_1016_j_bioadv_2022_213103 crossref_primary_10_1016_j_bprint_2022_e00223 crossref_primary_10_3390_mi13101726 crossref_primary_10_1126_scirobotics_abk2119 crossref_primary_10_1007_s00289_024_05223_y crossref_primary_10_3390_ma12172669 crossref_primary_10_1002_jbm_a_36333 crossref_primary_10_3390_polym10060664 crossref_primary_10_1016_j_bioactmat_2020_07_016 crossref_primary_10_1016_j_ijbiomac_2020_09_220 crossref_primary_10_1016_j_nanoso_2020_100630 crossref_primary_10_3390_ma14040950 crossref_primary_10_3390_ijms241612976 crossref_primary_10_1007_s42242_023_00236_4 crossref_primary_10_1016_j_msec_2017_05_003 crossref_primary_10_1080_09205063_2022_2110480 crossref_primary_10_3390_gels9110853 crossref_primary_10_1177_0883911520911659 crossref_primary_10_1088_1748_605X_ad51bf crossref_primary_10_1016_j_ijbiomac_2024_136312 crossref_primary_10_1039_D1SM00118C crossref_primary_10_2478_abm_2023_0063 crossref_primary_10_3390_bioengineering10060704 crossref_primary_10_3390_ijms23094486 crossref_primary_10_3390_bioengineering11050415 crossref_primary_10_1007_s42242_023_00249_z crossref_primary_10_1016_j_msec_2021_111866 crossref_primary_10_1016_j_ijbiomac_2023_124167 crossref_primary_10_1002_smll_201805510 crossref_primary_10_1038_s41598_017_04691_9 crossref_primary_10_1039_D1BM00062D crossref_primary_10_34133_2021_9864212 crossref_primary_10_1007_s10965_024_03942_4 crossref_primary_10_1016_j_colsurfb_2017_06_048 crossref_primary_10_1016_j_porgcoat_2019_105442 crossref_primary_10_1038_s41598_019_55034_9 crossref_primary_10_3390_biomedicines9091137 crossref_primary_10_2174_0113816128246888230920060802 crossref_primary_10_1016_j_ijbiomac_2019_10_029 crossref_primary_10_1016_j_indcrop_2024_120325 crossref_primary_10_1016_j_ijbiomac_2020_04_210 crossref_primary_10_1016_j_jmst_2024_04_063 crossref_primary_10_1016_j_ijbiomac_2025_139666 crossref_primary_10_1108_RPJ_01_2021_0011 crossref_primary_10_1016_j_ijbiomac_2019_05_207 crossref_primary_10_5812_ans_85122 crossref_primary_10_3390_gels7030115 crossref_primary_10_15283_ijsc21062 crossref_primary_10_1016_j_ijbiomac_2020_03_095 crossref_primary_10_1016_j_bprint_2024_e00329 crossref_primary_10_1002_ppap_202000110 crossref_primary_10_1016_j_lfs_2023_122035 crossref_primary_10_1002_jbm_b_35216 crossref_primary_10_1016_j_carbpol_2018_10_039 crossref_primary_10_1016_j_supflu_2020_105120 crossref_primary_10_1007_s10853_023_08313_w crossref_primary_10_1016_j_jmrt_2019_08_043 crossref_primary_10_1016_j_bprint_2022_e00254 crossref_primary_10_1016_j_ijbiomac_2024_137104 crossref_primary_10_16984_saufenbilder_1098637 crossref_primary_10_1063_1_5059393 crossref_primary_10_3390_app14198977 crossref_primary_10_1016_j_ijpharm_2023_123020 crossref_primary_10_2478_ebtj_2021_0008 crossref_primary_10_52679_tabcj_2021_0013 crossref_primary_10_1088_1748_605X_ad7565 crossref_primary_10_1080_19475411_2019_1631899 crossref_primary_10_1016_j_ijbiomac_2022_03_185 crossref_primary_10_1016_j_ijbiomac_2022_09_014 crossref_primary_10_1016_j_progpolymsci_2019_03_001 crossref_primary_10_1002_adfm_202301209 crossref_primary_10_1016_j_drudis_2018_09_012 crossref_primary_10_1016_j_eurpolymj_2024_113078 crossref_primary_10_3390_nano10091672 crossref_primary_10_3390_pharmaceutics14010145 crossref_primary_10_3390_app10010292 crossref_primary_10_1016_j_ijpharm_2024_124546 crossref_primary_10_3390_ijms24087611 crossref_primary_10_1002_pat_5976 crossref_primary_10_3390_polym13030366 crossref_primary_10_1039_D2BM01499H crossref_primary_10_1007_s10570_021_03826_6 crossref_primary_10_1002_adem_202300563 crossref_primary_10_1002_jbm_b_35152 crossref_primary_10_3390_ma15031225 crossref_primary_10_3390_ma14226763 crossref_primary_10_1088_1758_5090_ad22ed crossref_primary_10_1007_s00289_022_04348_2 crossref_primary_10_1007_s10856_018_6211_9 crossref_primary_10_1016_j_matchemphys_2024_129887 crossref_primary_10_1039_D2TB01268E crossref_primary_10_1049_enb_2017_0007 crossref_primary_10_1007_s00170_021_08561_7 crossref_primary_10_1021_acsbiomaterials_1c00598 crossref_primary_10_3390_polym14163415 crossref_primary_10_1016_j_ejpb_2023_11_022 crossref_primary_10_1021_acsami_1c20740 crossref_primary_10_1038_s41598_024_69047_6 crossref_primary_10_1039_C7RA04155A crossref_primary_10_1016_j_msec_2022_112658 crossref_primary_10_3390_gels10070477 crossref_primary_10_1038_s41598_021_99579_0 crossref_primary_10_1111_jace_20508 crossref_primary_10_1557_s43577_023_00536_1 crossref_primary_10_1039_D0TB00060D crossref_primary_10_1016_j_bprint_2024_e00361 crossref_primary_10_1016_j_ajps_2019_11_003 crossref_primary_10_3724_SP_J_1123_2022_04019 crossref_primary_10_1016_j_msec_2019_109927 crossref_primary_10_3390_ma15176039 crossref_primary_10_1016_j_bioactmat_2021_08_034 crossref_primary_10_1021_acsami_1c04967 crossref_primary_10_1080_09205063_2024_2321636 crossref_primary_10_1016_j_bioadv_2023_213322 crossref_primary_10_1038_s41598_022_23506_0 crossref_primary_10_1007_s13346_020_00845_x crossref_primary_10_1016_j_jpha_2021_02_001 crossref_primary_10_1016_j_ijbiomac_2022_11_136 crossref_primary_10_1016_j_eng_2020_03_019 crossref_primary_10_1007_s10570_019_02545_3 crossref_primary_10_1016_j_joen_2019_03_004 crossref_primary_10_1021_acsbiomaterials_4c00028 crossref_primary_10_2174_2666145416666221208150926 crossref_primary_10_3390_gels8030147 crossref_primary_10_1016_j_matlet_2020_128189 crossref_primary_10_1016_j_ijbiomac_2024_139211 crossref_primary_10_1007_s00170_022_10506_7 crossref_primary_10_1089_ten_tea_2021_0022 crossref_primary_10_3390_bioengineering9120807 crossref_primary_10_3390_molecules30030649 crossref_primary_10_1016_j_bprint_2020_e00098 crossref_primary_10_1016_j_inoche_2023_110885 crossref_primary_10_1016_j_jmst_2022_07_008 crossref_primary_10_3390_bioengineering10111256 crossref_primary_10_1016_j_carbpol_2021_117771 crossref_primary_10_1088_1758_5090_ab3a5c crossref_primary_10_1007_s10965_019_1761_1 crossref_primary_10_1016_j_ijpharm_2021_121002 crossref_primary_10_3390_polym12051186 crossref_primary_10_1007_s42247_021_00283_6 crossref_primary_10_1016_j_ijbiomac_2023_125150 crossref_primary_10_1002_jbm_b_35260 crossref_primary_10_1016_j_mtbio_2023_100772 |
Cites_doi | 10.1177/0883911506074025 10.1016/j.colsurfb.2007.06.019 10.1016/S0142-9612(02)00235-1 10.1016/j.biomaterials.2006.10.003 10.1016/j.progpolymsci.2011.11.007 10.1016/j.actbio.2012.05.006 10.1002/jbm.a.34326 10.1002/adma.200802106 10.1038/nmat1421 10.1038/nbt.2958 10.1016/j.polymertesting.2014.08.016 10.1021/cm200733s 10.1016/S0142-9612(00)00236-2 10.1177/0883911507079451 10.1126/science.1226340 10.1016/j.msec.2008.04.001 10.1016/j.biomaterials.2005.02.002 10.1002/pi.4648 10.1002/term.1641 10.1023/A:1016189724389 10.1016/j.msec.2013.09.003 10.1007/s10439-014-1207-1 10.1016/j.tibtech.2012.07.005 10.1016/j.biomaterials.2005.07.023 10.1021/bm801463q 10.1016/j.biomaterials.2010.01.111 10.1016/j.actbio.2012.10.047 10.1002/biot.201100017 10.1016/j.biomaterials.2012.04.050 10.1016/j.jallcom.2015.05.006 |
ContentType | Journal Article |
Copyright | 2016 |
Copyright_xml | – notice: 2016 |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.jmst.2016.01.007 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Architecture |
DocumentTitleAlternate | 3D Bioplotting of Gelatin/Alginate Scaffolds for Tissue Engineering: Influence of Crosslinking Degree and Pore Architecture on Physicochemical Properties |
EISSN | 1941-1162 |
EndPage | 900 |
ExternalDocumentID | 10_1016_j_jmst_2016_01_007 S1005030216000086 670051005 |
GroupedDBID | --K --M -02 -0B -SB -S~ .~1 0R~ 1B1 1~. 2B. 2C0 2RA 4.4 457 5GY 5VR 5VS 5XA 5XC 5XL 8P~ 92H 92I 92L 92M 92R 93N 9D9 9DB AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFUIB AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CAJEB CAJUS CCEZO CDRFL CHBEP CQIGP CW9 DU5 EBS EFJIC EFLBG EJD FA0 FDB FIRID FNPLU FYGXN GBLVA HZ~ J1W JUIAU KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OK1 P-8 P-9 P2P PC. Q-- Q38 R-B RIG ROL RT2 S.. SDF SES SPC SPCBC SSM SSZ T5K T8R TCJ TGT U1F U1G U5B U5L W92 ~G- ~WA AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c360t-d9a9bd3c91f9af06417adf4b877130d8c4399239ed78538bd19e3c22a20064bb3 |
IEDL.DBID | .~1 |
ISSN | 1005-0302 |
IngestDate | Fri Jul 11 02:01:55 EDT 2025 Thu Apr 24 22:52:32 EDT 2025 Tue Jul 01 02:19:53 EDT 2025 Fri Feb 23 02:26:32 EST 2024 Wed Feb 14 10:15:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Alginate Tissue engineering Gelatin Scaffolds Bioplotting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-d9a9bd3c91f9af06417adf4b877130d8c4399239ed78538bd19e3c22a20064bb3 |
Notes | 21-1315/TG Bioplotting Tissue engineering Scaffolds Gelatin Alginate Gelatin/Alginate hydrogels were engineered for bioplotting in tissue engineering. One major drawback of hydrogel scaffolds is the lack of adequate mechanical properties. In this study, using a bioplotter, we constructed the scaffolds with different pore architectures by deposition of gelatin/alginate hydrogels layerby-layer. The scaffolds with different crosslinking degree were obtained by post-crosslinking methods. Their physicochemical properties, as well as cell viability, were assessed. Different crosslinking methods had little influence on scaffold architecture, porosity, pore size and distribution. By contrast, the water absorption ability, degradation rate and mechanical properties of the scaffolds were dramatically affected by treatment with various concentrations of crosslinking agent (glutaraldehyde). The crosslinking process using glutaraldehyde markedly improved the stability and mechanical strength of the hydrogel scaf- folds. Besides the post-processing methods, the pore architecture can also evidently affect the mechanical properties of the scaffolds. The crosslinked gelatin/alginate scaffolds showed a good potential to encap-sulate cells or drugs. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1855380498 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1855380498 crossref_primary_10_1016_j_jmst_2016_01_007 crossref_citationtrail_10_1016_j_jmst_2016_01_007 elsevier_sciencedirect_doi_10_1016_j_jmst_2016_01_007 chongqing_primary_670051005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-01 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials science & technology |
PublicationTitleAlternate | Journal of Materials Science & Technology |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Derby (bib0030) 2012; 338 Zhuang, Han, Feng (bib0170) 2008; 28 Grover, Gwynne, Pugh, Hamaia, Farndale, Best, Cameron (bib0130) 2012; 8 Mingen, Yanlei, Hairui, Yongnian, Li, Qiujun, Yakun, Ying (bib0025) 2010; 2 Melchels, Domingos, Klein, Malda, Bartolo, Hutmacher (bib0015) 2012; 37 Zhang, Yan, Wang, Xiong, Lin, Wu, Zhang (bib0080) 2007; 22 Hu, Li, Gao (bib0105) 2011; 6 Murphy, Skardal, Atala (bib0065) 2013; 101 Hu, Zhu, Gao (bib0060) 2009; 21 Fedorovich, Swennen, Girones, Moroni, van Blitterswijk, Schacht, Alblas, Dhert (bib0085) 2009; 10 Skardal, Atala (bib0045) 2015; 43 Moroni, de Wijn, van Blitterswijk (bib0180) 2006; 27 Xu, Bao, Liu, Jin, Luo, Zhong, Zheng (bib0140) 2015; 645 Leong, Lau, Wang (bib0100) 2013; 9 Bose, Roy, Bandyopadhyay (bib0010) 2012; 30 Ganji, Vasheghani-Farahani, Vasheghani-Farahani (bib0165) 2010; 19 Xu, Wang, Yan, Zheng, Xiong, Lin, Wu, Zhang (bib0095) 2007; 22 Murphy, Atala (bib0035) 2014; 32 Xu, Wang, Yan, Yao, Ge (bib0070) 2010; 31 Ma, Mao, Gao (bib0135) 2007; 60 Lee, Ahn, Kim (bib0155) 2012; 24 Landers, Pfister, Hubner, John, Schmelzeisen, Mulhaupt (bib0125) 2002; 37 Karageorgiou, Kaplan (bib0145) 2005; 26 Elsayed, Lekakou, Tomlins (bib0115) 2014; 40 Park, Choi, Shim, Lee, Park, Kim, Doh, Cho (bib0075) 2014; 6 Mygind, Stiehler, Baatrup, Li, Zoua, Flyvbjerg, Kassem, Bunger (bib0020) 2007; 28 Zhang, Su, Fang, Sandhya, Wang (bib0090) 2015; 9 Zeng, Yao, Wang, Chen (bib0150) 2014; 34 Bigi, Cojazzi, Panzavolta, Rubini, Roveri (bib0120) 2001; 22 Lau, Neo, Wang (bib0055) 2014; 63 Billiet, Vandenhaute, Schelfhout, Van Vlierberghe, Dubruel (bib0110) 2012; 33 Hollister (bib0175) 2005; 4 Bigi, Cojazzi, Panzavolta, Roveri, Rubini (bib0160) 2002; 23 Atala, Yoo (bib0040) 2015 Slaughter, Khurshid, Fisher, Khademhosseini, Peppas (bib0050) 2009; 21 Zeng (10.1016/j.jmst.2016.01.007_bib0150) 2014; 34 Murphy (10.1016/j.jmst.2016.01.007_bib0065) 2013; 101 Park (10.1016/j.jmst.2016.01.007_bib0075) 2014; 6 Skardal (10.1016/j.jmst.2016.01.007_bib0045) 2015; 43 Xu (10.1016/j.jmst.2016.01.007_bib0070) 2010; 31 Karageorgiou (10.1016/j.jmst.2016.01.007_bib0145) 2005; 26 Atala (10.1016/j.jmst.2016.01.007_bib0040) 2015 Elsayed (10.1016/j.jmst.2016.01.007_bib0115) 2014; 40 Lee (10.1016/j.jmst.2016.01.007_bib0155) 2012; 24 Moroni (10.1016/j.jmst.2016.01.007_bib0180) 2006; 27 Xu (10.1016/j.jmst.2016.01.007_bib0140) 2015; 645 Leong (10.1016/j.jmst.2016.01.007_bib0100) 2013; 9 Derby (10.1016/j.jmst.2016.01.007_bib0030) 2012; 338 Hu (10.1016/j.jmst.2016.01.007_bib0060) 2009; 21 Melchels (10.1016/j.jmst.2016.01.007_bib0015) 2012; 37 Slaughter (10.1016/j.jmst.2016.01.007_bib0050) 2009; 21 Zhang (10.1016/j.jmst.2016.01.007_bib0090) 2015; 9 Billiet (10.1016/j.jmst.2016.01.007_bib0110) 2012; 33 Landers (10.1016/j.jmst.2016.01.007_bib0125) 2002; 37 Hollister (10.1016/j.jmst.2016.01.007_bib0175) 2005; 4 Grover (10.1016/j.jmst.2016.01.007_bib0130) 2012; 8 Bose (10.1016/j.jmst.2016.01.007_bib0010) 2012; 30 Murphy (10.1016/j.jmst.2016.01.007_bib0035) 2014; 32 Bigi (10.1016/j.jmst.2016.01.007_bib0160) 2002; 23 Zhang (10.1016/j.jmst.2016.01.007_bib0080) 2007; 22 Hu (10.1016/j.jmst.2016.01.007_bib0105) 2011; 6 Ma (10.1016/j.jmst.2016.01.007_bib0135) 2007; 60 Mygind (10.1016/j.jmst.2016.01.007_bib0020) 2007; 28 Bigi (10.1016/j.jmst.2016.01.007_bib0120) 2001; 22 Fedorovich (10.1016/j.jmst.2016.01.007_bib0085) 2009; 10 Zhuang (10.1016/j.jmst.2016.01.007_bib0170) 2008; 28 Lau (10.1016/j.jmst.2016.01.007_bib0055) 2014; 63 Ganji (10.1016/j.jmst.2016.01.007_bib0165) 2010; 19 Xu (10.1016/j.jmst.2016.01.007_bib0095) 2007; 22 Mingen (10.1016/j.jmst.2016.01.007_bib0025) 2010; 2 |
References_xml | – volume: 22 start-page: 19 year: 2007 end-page: 29 ident: bib0080 publication-title: J. Bioact. Compat. Pol – volume: 9 start-page: 6459 year: 2013 end-page: 6467 ident: bib0100 publication-title: Acta Biomater – volume: 33 start-page: 6020 year: 2012 end-page: 6041 ident: bib0110 publication-title: Biomaterials – volume: 31 start-page: 3868 year: 2010 end-page: 3877 ident: bib0070 publication-title: Biomaterials – volume: 338 start-page: 921 year: 2012 end-page: 926 ident: bib0030 publication-title: Science – volume: 10 start-page: 1689 year: 2009 end-page: 1696 ident: bib0085 publication-title: Biomacromolecules – volume: 101 start-page: 272 year: 2013 end-page: 284 ident: bib0065 publication-title: J. Biomed. Mater. Res. A – start-page: 63 year: 2015 end-page: 66 ident: bib0040 publication-title: Manuf. Eng – volume: 37 start-page: 3107 year: 2002 end-page: 3116 ident: bib0125 publication-title: J. Mater. Sci – volume: 27 start-page: 974 year: 2006 end-page: 985 ident: bib0180 publication-title: Biomaterials – volume: 28 start-page: 1036 year: 2007 end-page: 1047 ident: bib0020 publication-title: Biomaterials – volume: 22 start-page: 763 year: 2001 end-page: 768 ident: bib0120 publication-title: Biomaterials – volume: 19 start-page: 375 year: 2010 end-page: 398 ident: bib0165 publication-title: Iran. Polym. J. – volume: 21 start-page: 2164 year: 2009 end-page: 2175 ident: bib0060 publication-title: Prog. Chem – volume: 22 start-page: 363 year: 2007 end-page: 377 ident: bib0095 publication-title: J. Bioact. Compat. Pol – volume: 645 start-page: 137 year: 2015 end-page: 142 ident: bib0140 publication-title: J. Alloy. Compd – volume: 26 start-page: 5474 year: 2005 end-page: 5491 ident: bib0145 publication-title: Biomaterials – volume: 24 start-page: 881 year: 2012 end-page: 891 ident: bib0155 publication-title: Chem. Mater – volume: 23 start-page: 4827 year: 2002 end-page: 4832 ident: bib0160 publication-title: Biomaterials – volume: 4 start-page: 518 year: 2005 end-page: 524 ident: bib0175 publication-title: Nat. Mater – volume: 63 start-page: 1600 year: 2014 end-page: 1607 ident: bib0055 publication-title: Polym. Int – volume: 34 start-page: 168 year: 2014 end-page: 175 ident: bib0150 publication-title: Mat. Sci. Eng. C-Mater – volume: 21 start-page: 3307 year: 2009 end-page: 3329 ident: bib0050 publication-title: Adv. Mater – volume: 6 year: 2014 ident: bib0075 publication-title: Biofabrication – volume: 43 start-page: 730 year: 2015 end-page: 746 ident: bib0045 publication-title: Ann. Biomed. Eng – volume: 37 start-page: 1079 year: 2012 end-page: 1104 ident: bib0015 publication-title: Prog. Polym. Sci – volume: 32 start-page: 773 year: 2014 end-page: 785 ident: bib0035 publication-title: Nat. Biotechnol – volume: 9 start-page: 77 year: 2015 end-page: 84 ident: bib0090 publication-title: J. Tissue Eng. Regen. Med – volume: 8 start-page: 3080 year: 2012 end-page: 3090 ident: bib0130 publication-title: Acta Biomater – volume: 6 start-page: 1388 year: 2011 end-page: 1396 ident: bib0105 publication-title: Biotech. J. – volume: 40 start-page: 106 year: 2014 end-page: 115 ident: bib0115 publication-title: Polym. Test – volume: 60 start-page: 137 year: 2007 end-page: 157 ident: bib0135 publication-title: Colloids Surf. B. Biointerfaces – volume: 30 start-page: 546 year: 2012 end-page: 554 ident: bib0010 publication-title: Trends Biotechnol – volume: 28 start-page: 1462 year: 2008 end-page: 1466 ident: bib0170 publication-title: Mat. Sci. Eng. C-Mater – volume: 2 year: 2010 ident: bib0025 publication-title: Biofabrication – volume: 21 start-page: 2164 year: 2009 ident: 10.1016/j.jmst.2016.01.007_bib0060 publication-title: Prog. Chem – volume: 22 start-page: 19 year: 2007 ident: 10.1016/j.jmst.2016.01.007_bib0080 publication-title: J. Bioact. Compat. Pol doi: 10.1177/0883911506074025 – volume: 60 start-page: 137 year: 2007 ident: 10.1016/j.jmst.2016.01.007_bib0135 publication-title: Colloids Surf. B. Biointerfaces doi: 10.1016/j.colsurfb.2007.06.019 – volume: 23 start-page: 4827 year: 2002 ident: 10.1016/j.jmst.2016.01.007_bib0160 publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00235-1 – volume: 6 year: 2014 ident: 10.1016/j.jmst.2016.01.007_bib0075 publication-title: Biofabrication – volume: 28 start-page: 1036 year: 2007 ident: 10.1016/j.jmst.2016.01.007_bib0020 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.10.003 – volume: 37 start-page: 1079 year: 2012 ident: 10.1016/j.jmst.2016.01.007_bib0015 publication-title: Prog. Polym. Sci doi: 10.1016/j.progpolymsci.2011.11.007 – volume: 8 start-page: 3080 year: 2012 ident: 10.1016/j.jmst.2016.01.007_bib0130 publication-title: Acta Biomater doi: 10.1016/j.actbio.2012.05.006 – volume: 101 start-page: 272 year: 2013 ident: 10.1016/j.jmst.2016.01.007_bib0065 publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.34326 – volume: 21 start-page: 3307 year: 2009 ident: 10.1016/j.jmst.2016.01.007_bib0050 publication-title: Adv. Mater doi: 10.1002/adma.200802106 – volume: 4 start-page: 518 year: 2005 ident: 10.1016/j.jmst.2016.01.007_bib0175 publication-title: Nat. Mater doi: 10.1038/nmat1421 – volume: 32 start-page: 773 year: 2014 ident: 10.1016/j.jmst.2016.01.007_bib0035 publication-title: Nat. Biotechnol doi: 10.1038/nbt.2958 – volume: 40 start-page: 106 year: 2014 ident: 10.1016/j.jmst.2016.01.007_bib0115 publication-title: Polym. Test doi: 10.1016/j.polymertesting.2014.08.016 – volume: 24 start-page: 881 year: 2012 ident: 10.1016/j.jmst.2016.01.007_bib0155 publication-title: Chem. Mater doi: 10.1021/cm200733s – volume: 22 start-page: 763 year: 2001 ident: 10.1016/j.jmst.2016.01.007_bib0120 publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00236-2 – volume: 22 start-page: 363 year: 2007 ident: 10.1016/j.jmst.2016.01.007_bib0095 publication-title: J. Bioact. Compat. Pol doi: 10.1177/0883911507079451 – volume: 338 start-page: 921 year: 2012 ident: 10.1016/j.jmst.2016.01.007_bib0030 publication-title: Science doi: 10.1126/science.1226340 – volume: 28 start-page: 1462 year: 2008 ident: 10.1016/j.jmst.2016.01.007_bib0170 publication-title: Mat. Sci. Eng. C-Mater doi: 10.1016/j.msec.2008.04.001 – volume: 2 year: 2010 ident: 10.1016/j.jmst.2016.01.007_bib0025 publication-title: Biofabrication – volume: 26 start-page: 5474 year: 2005 ident: 10.1016/j.jmst.2016.01.007_bib0145 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.02.002 – volume: 63 start-page: 1600 year: 2014 ident: 10.1016/j.jmst.2016.01.007_bib0055 publication-title: Polym. Int doi: 10.1002/pi.4648 – volume: 9 start-page: 77 year: 2015 ident: 10.1016/j.jmst.2016.01.007_bib0090 publication-title: J. Tissue Eng. Regen. Med doi: 10.1002/term.1641 – volume: 37 start-page: 3107 year: 2002 ident: 10.1016/j.jmst.2016.01.007_bib0125 publication-title: J. Mater. Sci doi: 10.1023/A:1016189724389 – volume: 34 start-page: 168 year: 2014 ident: 10.1016/j.jmst.2016.01.007_bib0150 publication-title: Mat. Sci. Eng. C-Mater doi: 10.1016/j.msec.2013.09.003 – start-page: 63 year: 2015 ident: 10.1016/j.jmst.2016.01.007_bib0040 publication-title: Manuf. Eng – volume: 43 start-page: 730 year: 2015 ident: 10.1016/j.jmst.2016.01.007_bib0045 publication-title: Ann. Biomed. Eng doi: 10.1007/s10439-014-1207-1 – volume: 30 start-page: 546 year: 2012 ident: 10.1016/j.jmst.2016.01.007_bib0010 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2012.07.005 – volume: 19 start-page: 375 year: 2010 ident: 10.1016/j.jmst.2016.01.007_bib0165 publication-title: Iran. Polym. J. – volume: 27 start-page: 974 year: 2006 ident: 10.1016/j.jmst.2016.01.007_bib0180 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.07.023 – volume: 10 start-page: 1689 year: 2009 ident: 10.1016/j.jmst.2016.01.007_bib0085 publication-title: Biomacromolecules doi: 10.1021/bm801463q – volume: 31 start-page: 3868 year: 2010 ident: 10.1016/j.jmst.2016.01.007_bib0070 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.01.111 – volume: 9 start-page: 6459 year: 2013 ident: 10.1016/j.jmst.2016.01.007_bib0100 publication-title: Acta Biomater doi: 10.1016/j.actbio.2012.10.047 – volume: 6 start-page: 1388 year: 2011 ident: 10.1016/j.jmst.2016.01.007_bib0105 publication-title: Biotech. J. doi: 10.1002/biot.201100017 – volume: 33 start-page: 6020 year: 2012 ident: 10.1016/j.jmst.2016.01.007_bib0110 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.04.050 – volume: 645 start-page: 137 year: 2015 ident: 10.1016/j.jmst.2016.01.007_bib0140 publication-title: J. Alloy. Compd doi: 10.1016/j.jallcom.2015.05.006 |
SSID | ssj0037588 |
Score | 2.4829636 |
Snippet | Gelatin/Alginate hydrogels were engineered for bioplotting in tissue engineering. One major drawback of hydrogel scaffolds is the lack of adequate mechanical... |
SourceID | proquest crossref elsevier chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 889 |
SubjectTerms | Alginate Alginates Architecture Bioplotting Crosslinking Gelatin Gelatins Hydrogels Mechanical properties Porosity Scaffolds Tissue engineering 交联度 孔隙结构 明胶 海藻酸钠 理化性质 组织工程支架 细胞存活率 |
Title | 3D Bioplotting of Gelatin/Alginate Scaffolds for Tissue Engineering: Influence of Crosslinking Degree and Pore Architecture on Physicochemical Properties |
URI | http://lib.cqvip.com/qk/84252X/201609/670051005.html https://dx.doi.org/10.1016/j.jmst.2016.01.007 https://www.proquest.com/docview/1855380498 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPZQeqr5QFyiaSr2hdOM4mwe3ZRdYWoGQAImb5fhRLdom231c-R_8W2acZLsglUOPieKR5ZnMfGN_nmHsG8aMSIcFpiU2T4LYchEUIuIBVzbXPReZxF8fO79IRjfxj9ve7QYbtHdhiFbZ-P7ap3tv3bzpNqvZnY7H3Svua5lgjEo88KGy23GckpV_v1_RPATi4fo6HJHUBLF5dv5yvO5-z4lPyRNfupNayr5Gp1P--oNh41-B6pnL9nHo5B172wBI6NdzfM82bPmBvVkrK_iRPYghHI2r6aTypGaoHJx6zlvZ7U-oD8PCwpVWzlUTMwdErXDtlx_WpBzCWdu-hMYPaI5NnwUYWkzSLajSwGU1s9BfO4yAqgTPKtXUisvXIoBL2vCfUeXWT-zm5Ph6MAqaFgyBFkm4CEyu8sIInXOXK4fwhafKuLjIUkxuQ5NpSmcikVuTYtzPCsNzK3QUKdqpiItCbLPNsirtZwYoAVNHxH9O6ThUKjNZ6BKN8M6loRVZh-2u1l5O61Ibki4R9Uh3HcZbbUjdVC-nJhoT2dLU7iRpU5I2ZcglarPDDlZjWoEvfd1rlSyfWKDE4PLiuK-tRUj8Nem8RZW2Ws4lQiFcE0zBsp3_lL3Ltuip5rTtsc3FbGm_IAhaFPveyvfZq_7Zz9HFI1McB4U |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RcKA9IPpSA6XdSr1VVrxe27F7SwM0KRAhESRuq_U-UFBqp0n4MfzbzqxtSCuVQ6-2d7TaWc98s_vNDMBn9BmRDgsMS2yeBrHlIihExAOubK4TF5nUp4-dT9LRVfzjOrnegmGbC0O0ysb21zbdW-vmSa9Zzd5iNutdcl_LBH1U6oFP-gy2qTpV0oHtwfh0NGkNskBIXGfEEU9NEKFn_5HmdftzRZRKnvrqndRVdgftTnnzCz3Hv3zVX1bbu6KTPdhtMCQb1NN8CVu2fAUvNioLvoZ7ccS-zarFvPK8ZlY59t3T3sreYE6tGNaWXWrlXDU3K4bAlU29BtiGlK9s3HYwofFDmmPTaoEdWYzTLVOlYRfV0rLBxn0Eq0rmiaWaunH5cgTsgs78l1S89Q1cnRxPh6Og6cIQaJGG68DkKi-M0Dl3uXKIYHhfGRcXWR_j29BkmiKaSOTW9NH1Z4XhuRU6ihQdVsRFId5Cp6xK-w4YSsDoESGgUzoOlcpMFrpUI8Jz_dCKrAsHD2svF3W1DUl5RAnprgu81YbUTQFz6qMxly1T7VaSNiVpU4Zcoja78OVhTCvwqa-TVsnyj00o0b88Oe5TuyMk_p105aJKW92tJKIhXBOMwrL9_5T9EXZG0_MzeTaenB7Ac3pTU9zeQ2e9vLOHiInWxYdmz_8GTaoKNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Bioplotting+of+Gelatin%2FAlginate+Scaffolds+for+Tissue+Engineering%EF%BC%9A+Influence+of+Crosslinking+Degree+and+Pore+Architecture+on+Physicochemical+Properties&rft.jtitle=%E6%9D%90%E6%96%99%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Ting+Pan+Wenjing+Song+Xiaodong+Cao+Yingjun+Wang&rft.date=2016-09-01&rft.issn=1005-0302&rft.eissn=1941-1162&rft.issue=9&rft.spage=889&rft.epage=900&rft_id=info:doi/10.1016%2Fj.jmst.2016.01.007&rft.externalDocID=670051005 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84252X%2F84252X.jpg |