3D Bioplotting of Gelatin/Alginate Scaffolds for Tissue Engineering: Influence of Crosslinking Degree and Pore Architecture on Physicochemical Properties

Gelatin/Alginate hydrogels were engineered for bioplotting in tissue engineering. One major drawback of hydrogel scaffolds is the lack of adequate mechanical properties. In this study, using a bioplotter, we constructed the scaffolds with different pore architectures by deposition of gelatin/alginat...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science & technology Vol. 32; no. 9; pp. 889 - 900
Main Authors Pan, Ting, Song, Wenjing, Cao, Xiaodong, Wang, Yingjun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gelatin/Alginate hydrogels were engineered for bioplotting in tissue engineering. One major drawback of hydrogel scaffolds is the lack of adequate mechanical properties. In this study, using a bioplotter, we constructed the scaffolds with different pore architectures by deposition of gelatin/alginate hydrogels layerby-layer. The scaffolds with different crosslinking degree were obtained by post-crosslinking methods. Their physicochemical properties, as well as cell viability, were assessed. Different crosslinking methods had little influence on scaffold architecture, porosity, pore size and distribution. By contrast, the water absorption ability, degradation rate and mechanical properties of the scaffolds were dramatically affected by treatment with various concentrations of crosslinking agent (glutaraldehyde). The crosslinking process using glutaraldehyde markedly improved the stability and mechanical strength of the hydrogel scaf- folds. Besides the post-processing methods, the pore architecture can also evidently affect the mechanical properties of the scaffolds. The crosslinked gelatin/alginate scaffolds showed a good potential to encap-sulate cells or drugs.
AbstractList Gelatin/Alginate hydrogels were engineered for bioplotting in tissue engineering. One major drawback of hydrogel scaffolds is the lack of adequate mechanical properties. In this study, using a bioplotter, we constructed the scaffolds with different pore architectures by deposition of gelatin/alginate hydrogels layer-by-layer. The scaffolds with different crosslinking degree were obtained by post-crosslinking methods. Their physicochemical properties, as well as cell viability, were assessed. Different crosslinking methods had little influence on scaffold architecture, porosity, pore size and distribution. By contrast, the water absorption ability, degradation rate and mechanical properties of the scaffolds were dramatically affected by treatment with various concentrations of crosslinking agent (glutaraldehyde). The crosslinking process using glutaraldehyde markedly improved the stability and mechanical strength of the hydrogel scaffolds. Besides the post-processing methods, the pore architecture can also evidently affect the mechanical properties of the scaffolds. The crosslinked gelatin/alginate scaffolds showed a good potential to encapsulate cells or drugs.
Gelatin/Alginate hydrogels were engineered for bioplotting in tissue engineering. One major drawback of hydrogel scaffolds is the lack of adequate mechanical properties. In this study, using a bioplotter, we constructed the scaffolds with different pore architectures by deposition of gelatin/alginate hydrogels layerby-layer. The scaffolds with different crosslinking degree were obtained by post-crosslinking methods. Their physicochemical properties, as well as cell viability, were assessed. Different crosslinking methods had little influence on scaffold architecture, porosity, pore size and distribution. By contrast, the water absorption ability, degradation rate and mechanical properties of the scaffolds were dramatically affected by treatment with various concentrations of crosslinking agent (glutaraldehyde). The crosslinking process using glutaraldehyde markedly improved the stability and mechanical strength of the hydrogel scaf- folds. Besides the post-processing methods, the pore architecture can also evidently affect the mechanical properties of the scaffolds. The crosslinked gelatin/alginate scaffolds showed a good potential to encap-sulate cells or drugs.
Author Ting Pan Wenjing Song Xiaodong Cao Yingjun Wang
AuthorAffiliation Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 5J0006, China Guangdong Province Key Laboratory of Biomedical Engineering,, South China University of Technology, Guangzhou 510006, China
Author_xml – sequence: 1
  givenname: Ting
  surname: Pan
  fullname: Pan, Ting
  organization: Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
– sequence: 2
  givenname: Wenjing
  surname: Song
  fullname: Song, Wenjing
  email: shaner_swj@163.com
  organization: Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
– sequence: 3
  givenname: Xiaodong
  surname: Cao
  fullname: Cao, Xiaodong
  organization: Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
– sequence: 4
  givenname: Yingjun
  surname: Wang
  fullname: Wang, Yingjun
  email: imwangyj@163.com
  organization: Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
BookMark eNp9ksFu3CAQhlGVSk3SvkBPqKde7IDx2kbqZbtJ00iRulLTM8Iw7LJlYQO4Ul6lfZW-U1-hWBvlkENO_Ij5Zpj55wyd-OABofeU1JTQ7mJX7_Yp103RNaE1If0rdEp5SytKu-akaEIWFWGkeYPOUtoRwvrFMJyiP-wSf7bh4ELO1m9wMPganCz6Yuk21ssM-LuSxgSnEzYh4jub0gT4ypdXgFigf39_4xtv3ARewZxhFUNKzvqfc8ZL2EQALL3G6xABL6Pa2gwqT-USPF5vH5JVQW1hb5V0eB3DAWK2kN6i10a6BO8ez3P048vV3eprdfvt-ma1vK0U60iuNJd81Exxarg0pGtpL7Vpx6HvKSN6UC3jvGEcdD8s2DBqyoGpppENKcHjyM7Rx2PeQwz3E6Qs9jYpcE56CFMSdFgUjrR8KKHNMVTNLUYw4hDtXsYHQYmYnRA7MTshZicEoaI4UaDhGaRsLiMOPkdp3cvopyMKpf9fFqJIys5j1jaWEQod7Mv4h8fK2-A398WOp_92fdmIeSvYfwiftgM
CitedBy_id crossref_primary_10_1088_1742_6596_1213_4_042020
crossref_primary_10_3390_polym16182560
crossref_primary_10_1039_D0BM02209H
crossref_primary_10_3390_gels8090535
crossref_primary_10_1016_j_ijbiomac_2024_130744
crossref_primary_10_1038_s41598_023_40680_x
crossref_primary_10_1016_j_supflu_2022_105570
crossref_primary_10_5334_joh_6
crossref_primary_10_1088_1758_5090_ab47eb
crossref_primary_10_1016_j_addr_2023_114823
crossref_primary_10_1016_j_mtbio_2024_101198
crossref_primary_10_3389_fbioe_2017_00023
crossref_primary_10_1016_j_jmst_2017_10_003
crossref_primary_10_1039_D0TB02019B
crossref_primary_10_1016_j_bioadv_2022_213103
crossref_primary_10_1016_j_bprint_2022_e00223
crossref_primary_10_3390_mi13101726
crossref_primary_10_1126_scirobotics_abk2119
crossref_primary_10_1007_s00289_024_05223_y
crossref_primary_10_3390_ma12172669
crossref_primary_10_1002_jbm_a_36333
crossref_primary_10_3390_polym10060664
crossref_primary_10_1016_j_bioactmat_2020_07_016
crossref_primary_10_1016_j_ijbiomac_2020_09_220
crossref_primary_10_1016_j_nanoso_2020_100630
crossref_primary_10_3390_ma14040950
crossref_primary_10_3390_ijms241612976
crossref_primary_10_1007_s42242_023_00236_4
crossref_primary_10_1016_j_msec_2017_05_003
crossref_primary_10_1080_09205063_2022_2110480
crossref_primary_10_3390_gels9110853
crossref_primary_10_1177_0883911520911659
crossref_primary_10_1088_1748_605X_ad51bf
crossref_primary_10_1016_j_ijbiomac_2024_136312
crossref_primary_10_1039_D1SM00118C
crossref_primary_10_2478_abm_2023_0063
crossref_primary_10_3390_bioengineering10060704
crossref_primary_10_3390_ijms23094486
crossref_primary_10_3390_bioengineering11050415
crossref_primary_10_1007_s42242_023_00249_z
crossref_primary_10_1016_j_msec_2021_111866
crossref_primary_10_1016_j_ijbiomac_2023_124167
crossref_primary_10_1002_smll_201805510
crossref_primary_10_1038_s41598_017_04691_9
crossref_primary_10_1039_D1BM00062D
crossref_primary_10_34133_2021_9864212
crossref_primary_10_1007_s10965_024_03942_4
crossref_primary_10_1016_j_colsurfb_2017_06_048
crossref_primary_10_1016_j_porgcoat_2019_105442
crossref_primary_10_1038_s41598_019_55034_9
crossref_primary_10_3390_biomedicines9091137
crossref_primary_10_2174_0113816128246888230920060802
crossref_primary_10_1016_j_ijbiomac_2019_10_029
crossref_primary_10_1016_j_indcrop_2024_120325
crossref_primary_10_1016_j_ijbiomac_2020_04_210
crossref_primary_10_1016_j_jmst_2024_04_063
crossref_primary_10_1016_j_ijbiomac_2025_139666
crossref_primary_10_1108_RPJ_01_2021_0011
crossref_primary_10_1016_j_ijbiomac_2019_05_207
crossref_primary_10_5812_ans_85122
crossref_primary_10_3390_gels7030115
crossref_primary_10_15283_ijsc21062
crossref_primary_10_1016_j_ijbiomac_2020_03_095
crossref_primary_10_1016_j_bprint_2024_e00329
crossref_primary_10_1002_ppap_202000110
crossref_primary_10_1016_j_lfs_2023_122035
crossref_primary_10_1002_jbm_b_35216
crossref_primary_10_1016_j_carbpol_2018_10_039
crossref_primary_10_1016_j_supflu_2020_105120
crossref_primary_10_1007_s10853_023_08313_w
crossref_primary_10_1016_j_jmrt_2019_08_043
crossref_primary_10_1016_j_bprint_2022_e00254
crossref_primary_10_1016_j_ijbiomac_2024_137104
crossref_primary_10_16984_saufenbilder_1098637
crossref_primary_10_1063_1_5059393
crossref_primary_10_3390_app14198977
crossref_primary_10_1016_j_ijpharm_2023_123020
crossref_primary_10_2478_ebtj_2021_0008
crossref_primary_10_52679_tabcj_2021_0013
crossref_primary_10_1088_1748_605X_ad7565
crossref_primary_10_1080_19475411_2019_1631899
crossref_primary_10_1016_j_ijbiomac_2022_03_185
crossref_primary_10_1016_j_ijbiomac_2022_09_014
crossref_primary_10_1016_j_progpolymsci_2019_03_001
crossref_primary_10_1002_adfm_202301209
crossref_primary_10_1016_j_drudis_2018_09_012
crossref_primary_10_1016_j_eurpolymj_2024_113078
crossref_primary_10_3390_nano10091672
crossref_primary_10_3390_pharmaceutics14010145
crossref_primary_10_3390_app10010292
crossref_primary_10_1016_j_ijpharm_2024_124546
crossref_primary_10_3390_ijms24087611
crossref_primary_10_1002_pat_5976
crossref_primary_10_3390_polym13030366
crossref_primary_10_1039_D2BM01499H
crossref_primary_10_1007_s10570_021_03826_6
crossref_primary_10_1002_adem_202300563
crossref_primary_10_1002_jbm_b_35152
crossref_primary_10_3390_ma15031225
crossref_primary_10_3390_ma14226763
crossref_primary_10_1088_1758_5090_ad22ed
crossref_primary_10_1007_s00289_022_04348_2
crossref_primary_10_1007_s10856_018_6211_9
crossref_primary_10_1016_j_matchemphys_2024_129887
crossref_primary_10_1039_D2TB01268E
crossref_primary_10_1049_enb_2017_0007
crossref_primary_10_1007_s00170_021_08561_7
crossref_primary_10_1021_acsbiomaterials_1c00598
crossref_primary_10_3390_polym14163415
crossref_primary_10_1016_j_ejpb_2023_11_022
crossref_primary_10_1021_acsami_1c20740
crossref_primary_10_1038_s41598_024_69047_6
crossref_primary_10_1039_C7RA04155A
crossref_primary_10_1016_j_msec_2022_112658
crossref_primary_10_3390_gels10070477
crossref_primary_10_1038_s41598_021_99579_0
crossref_primary_10_1111_jace_20508
crossref_primary_10_1557_s43577_023_00536_1
crossref_primary_10_1039_D0TB00060D
crossref_primary_10_1016_j_bprint_2024_e00361
crossref_primary_10_1016_j_ajps_2019_11_003
crossref_primary_10_3724_SP_J_1123_2022_04019
crossref_primary_10_1016_j_msec_2019_109927
crossref_primary_10_3390_ma15176039
crossref_primary_10_1016_j_bioactmat_2021_08_034
crossref_primary_10_1021_acsami_1c04967
crossref_primary_10_1080_09205063_2024_2321636
crossref_primary_10_1016_j_bioadv_2023_213322
crossref_primary_10_1038_s41598_022_23506_0
crossref_primary_10_1007_s13346_020_00845_x
crossref_primary_10_1016_j_jpha_2021_02_001
crossref_primary_10_1016_j_ijbiomac_2022_11_136
crossref_primary_10_1016_j_eng_2020_03_019
crossref_primary_10_1007_s10570_019_02545_3
crossref_primary_10_1016_j_joen_2019_03_004
crossref_primary_10_1021_acsbiomaterials_4c00028
crossref_primary_10_2174_2666145416666221208150926
crossref_primary_10_3390_gels8030147
crossref_primary_10_1016_j_matlet_2020_128189
crossref_primary_10_1016_j_ijbiomac_2024_139211
crossref_primary_10_1007_s00170_022_10506_7
crossref_primary_10_1089_ten_tea_2021_0022
crossref_primary_10_3390_bioengineering9120807
crossref_primary_10_3390_molecules30030649
crossref_primary_10_1016_j_bprint_2020_e00098
crossref_primary_10_1016_j_inoche_2023_110885
crossref_primary_10_1016_j_jmst_2022_07_008
crossref_primary_10_3390_bioengineering10111256
crossref_primary_10_1016_j_carbpol_2021_117771
crossref_primary_10_1088_1758_5090_ab3a5c
crossref_primary_10_1007_s10965_019_1761_1
crossref_primary_10_1016_j_ijpharm_2021_121002
crossref_primary_10_3390_polym12051186
crossref_primary_10_1007_s42247_021_00283_6
crossref_primary_10_1016_j_ijbiomac_2023_125150
crossref_primary_10_1002_jbm_b_35260
crossref_primary_10_1016_j_mtbio_2023_100772
Cites_doi 10.1177/0883911506074025
10.1016/j.colsurfb.2007.06.019
10.1016/S0142-9612(02)00235-1
10.1016/j.biomaterials.2006.10.003
10.1016/j.progpolymsci.2011.11.007
10.1016/j.actbio.2012.05.006
10.1002/jbm.a.34326
10.1002/adma.200802106
10.1038/nmat1421
10.1038/nbt.2958
10.1016/j.polymertesting.2014.08.016
10.1021/cm200733s
10.1016/S0142-9612(00)00236-2
10.1177/0883911507079451
10.1126/science.1226340
10.1016/j.msec.2008.04.001
10.1016/j.biomaterials.2005.02.002
10.1002/pi.4648
10.1002/term.1641
10.1023/A:1016189724389
10.1016/j.msec.2013.09.003
10.1007/s10439-014-1207-1
10.1016/j.tibtech.2012.07.005
10.1016/j.biomaterials.2005.07.023
10.1021/bm801463q
10.1016/j.biomaterials.2010.01.111
10.1016/j.actbio.2012.10.047
10.1002/biot.201100017
10.1016/j.biomaterials.2012.04.050
10.1016/j.jallcom.2015.05.006
ContentType Journal Article
Copyright 2016
Copyright_xml – notice: 2016
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.jmst.2016.01.007
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
DocumentTitleAlternate 3D Bioplotting of Gelatin/Alginate Scaffolds for Tissue Engineering: Influence of Crosslinking Degree and Pore Architecture on Physicochemical Properties
EISSN 1941-1162
EndPage 900
ExternalDocumentID 10_1016_j_jmst_2016_01_007
S1005030216000086
670051005
GroupedDBID --K
--M
-02
-0B
-SB
-S~
.~1
0R~
1B1
1~.
2B.
2C0
2RA
4.4
457
5GY
5VR
5VS
5XA
5XC
5XL
8P~
92H
92I
92L
92M
92R
93N
9D9
9DB
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CAJEB
CAJUS
CCEZO
CDRFL
CHBEP
CQIGP
CW9
DU5
EBS
EFJIC
EFLBG
EJD
FA0
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
J1W
JUIAU
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q--
Q38
R-B
RIG
ROL
RT2
S..
SDF
SES
SPC
SPCBC
SSM
SSZ
T5K
T8R
TCJ
TGT
U1F
U1G
U5B
U5L
W92
~G-
~WA
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c360t-d9a9bd3c91f9af06417adf4b877130d8c4399239ed78538bd19e3c22a20064bb3
IEDL.DBID .~1
ISSN 1005-0302
IngestDate Fri Jul 11 02:01:55 EDT 2025
Thu Apr 24 22:52:32 EDT 2025
Tue Jul 01 02:19:53 EDT 2025
Fri Feb 23 02:26:32 EST 2024
Wed Feb 14 10:15:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Alginate
Tissue engineering
Gelatin
Scaffolds
Bioplotting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-d9a9bd3c91f9af06417adf4b877130d8c4399239ed78538bd19e3c22a20064bb3
Notes 21-1315/TG
Bioplotting Tissue engineering Scaffolds Gelatin Alginate
Gelatin/Alginate hydrogels were engineered for bioplotting in tissue engineering. One major drawback of hydrogel scaffolds is the lack of adequate mechanical properties. In this study, using a bioplotter, we constructed the scaffolds with different pore architectures by deposition of gelatin/alginate hydrogels layerby-layer. The scaffolds with different crosslinking degree were obtained by post-crosslinking methods. Their physicochemical properties, as well as cell viability, were assessed. Different crosslinking methods had little influence on scaffold architecture, porosity, pore size and distribution. By contrast, the water absorption ability, degradation rate and mechanical properties of the scaffolds were dramatically affected by treatment with various concentrations of crosslinking agent (glutaraldehyde). The crosslinking process using glutaraldehyde markedly improved the stability and mechanical strength of the hydrogel scaf- folds. Besides the post-processing methods, the pore architecture can also evidently affect the mechanical properties of the scaffolds. The crosslinked gelatin/alginate scaffolds showed a good potential to encap-sulate cells or drugs.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1855380498
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1855380498
crossref_primary_10_1016_j_jmst_2016_01_007
crossref_citationtrail_10_1016_j_jmst_2016_01_007
elsevier_sciencedirect_doi_10_1016_j_jmst_2016_01_007
chongqing_primary_670051005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of materials science & technology
PublicationTitleAlternate Journal of Materials Science & Technology
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Derby (bib0030) 2012; 338
Zhuang, Han, Feng (bib0170) 2008; 28
Grover, Gwynne, Pugh, Hamaia, Farndale, Best, Cameron (bib0130) 2012; 8
Mingen, Yanlei, Hairui, Yongnian, Li, Qiujun, Yakun, Ying (bib0025) 2010; 2
Melchels, Domingos, Klein, Malda, Bartolo, Hutmacher (bib0015) 2012; 37
Zhang, Yan, Wang, Xiong, Lin, Wu, Zhang (bib0080) 2007; 22
Hu, Li, Gao (bib0105) 2011; 6
Murphy, Skardal, Atala (bib0065) 2013; 101
Hu, Zhu, Gao (bib0060) 2009; 21
Fedorovich, Swennen, Girones, Moroni, van Blitterswijk, Schacht, Alblas, Dhert (bib0085) 2009; 10
Skardal, Atala (bib0045) 2015; 43
Moroni, de Wijn, van Blitterswijk (bib0180) 2006; 27
Xu, Bao, Liu, Jin, Luo, Zhong, Zheng (bib0140) 2015; 645
Leong, Lau, Wang (bib0100) 2013; 9
Bose, Roy, Bandyopadhyay (bib0010) 2012; 30
Ganji, Vasheghani-Farahani, Vasheghani-Farahani (bib0165) 2010; 19
Xu, Wang, Yan, Zheng, Xiong, Lin, Wu, Zhang (bib0095) 2007; 22
Murphy, Atala (bib0035) 2014; 32
Xu, Wang, Yan, Yao, Ge (bib0070) 2010; 31
Ma, Mao, Gao (bib0135) 2007; 60
Lee, Ahn, Kim (bib0155) 2012; 24
Landers, Pfister, Hubner, John, Schmelzeisen, Mulhaupt (bib0125) 2002; 37
Karageorgiou, Kaplan (bib0145) 2005; 26
Elsayed, Lekakou, Tomlins (bib0115) 2014; 40
Park, Choi, Shim, Lee, Park, Kim, Doh, Cho (bib0075) 2014; 6
Mygind, Stiehler, Baatrup, Li, Zoua, Flyvbjerg, Kassem, Bunger (bib0020) 2007; 28
Zhang, Su, Fang, Sandhya, Wang (bib0090) 2015; 9
Zeng, Yao, Wang, Chen (bib0150) 2014; 34
Bigi, Cojazzi, Panzavolta, Rubini, Roveri (bib0120) 2001; 22
Lau, Neo, Wang (bib0055) 2014; 63
Billiet, Vandenhaute, Schelfhout, Van Vlierberghe, Dubruel (bib0110) 2012; 33
Hollister (bib0175) 2005; 4
Bigi, Cojazzi, Panzavolta, Roveri, Rubini (bib0160) 2002; 23
Atala, Yoo (bib0040) 2015
Slaughter, Khurshid, Fisher, Khademhosseini, Peppas (bib0050) 2009; 21
Zeng (10.1016/j.jmst.2016.01.007_bib0150) 2014; 34
Murphy (10.1016/j.jmst.2016.01.007_bib0065) 2013; 101
Park (10.1016/j.jmst.2016.01.007_bib0075) 2014; 6
Skardal (10.1016/j.jmst.2016.01.007_bib0045) 2015; 43
Xu (10.1016/j.jmst.2016.01.007_bib0070) 2010; 31
Karageorgiou (10.1016/j.jmst.2016.01.007_bib0145) 2005; 26
Atala (10.1016/j.jmst.2016.01.007_bib0040) 2015
Elsayed (10.1016/j.jmst.2016.01.007_bib0115) 2014; 40
Lee (10.1016/j.jmst.2016.01.007_bib0155) 2012; 24
Moroni (10.1016/j.jmst.2016.01.007_bib0180) 2006; 27
Xu (10.1016/j.jmst.2016.01.007_bib0140) 2015; 645
Leong (10.1016/j.jmst.2016.01.007_bib0100) 2013; 9
Derby (10.1016/j.jmst.2016.01.007_bib0030) 2012; 338
Hu (10.1016/j.jmst.2016.01.007_bib0060) 2009; 21
Melchels (10.1016/j.jmst.2016.01.007_bib0015) 2012; 37
Slaughter (10.1016/j.jmst.2016.01.007_bib0050) 2009; 21
Zhang (10.1016/j.jmst.2016.01.007_bib0090) 2015; 9
Billiet (10.1016/j.jmst.2016.01.007_bib0110) 2012; 33
Landers (10.1016/j.jmst.2016.01.007_bib0125) 2002; 37
Hollister (10.1016/j.jmst.2016.01.007_bib0175) 2005; 4
Grover (10.1016/j.jmst.2016.01.007_bib0130) 2012; 8
Bose (10.1016/j.jmst.2016.01.007_bib0010) 2012; 30
Murphy (10.1016/j.jmst.2016.01.007_bib0035) 2014; 32
Bigi (10.1016/j.jmst.2016.01.007_bib0160) 2002; 23
Zhang (10.1016/j.jmst.2016.01.007_bib0080) 2007; 22
Hu (10.1016/j.jmst.2016.01.007_bib0105) 2011; 6
Ma (10.1016/j.jmst.2016.01.007_bib0135) 2007; 60
Mygind (10.1016/j.jmst.2016.01.007_bib0020) 2007; 28
Bigi (10.1016/j.jmst.2016.01.007_bib0120) 2001; 22
Fedorovich (10.1016/j.jmst.2016.01.007_bib0085) 2009; 10
Zhuang (10.1016/j.jmst.2016.01.007_bib0170) 2008; 28
Lau (10.1016/j.jmst.2016.01.007_bib0055) 2014; 63
Ganji (10.1016/j.jmst.2016.01.007_bib0165) 2010; 19
Xu (10.1016/j.jmst.2016.01.007_bib0095) 2007; 22
Mingen (10.1016/j.jmst.2016.01.007_bib0025) 2010; 2
References_xml – volume: 22
  start-page: 19
  year: 2007
  end-page: 29
  ident: bib0080
  publication-title: J. Bioact. Compat. Pol
– volume: 9
  start-page: 6459
  year: 2013
  end-page: 6467
  ident: bib0100
  publication-title: Acta Biomater
– volume: 33
  start-page: 6020
  year: 2012
  end-page: 6041
  ident: bib0110
  publication-title: Biomaterials
– volume: 31
  start-page: 3868
  year: 2010
  end-page: 3877
  ident: bib0070
  publication-title: Biomaterials
– volume: 338
  start-page: 921
  year: 2012
  end-page: 926
  ident: bib0030
  publication-title: Science
– volume: 10
  start-page: 1689
  year: 2009
  end-page: 1696
  ident: bib0085
  publication-title: Biomacromolecules
– volume: 101
  start-page: 272
  year: 2013
  end-page: 284
  ident: bib0065
  publication-title: J. Biomed. Mater. Res. A
– start-page: 63
  year: 2015
  end-page: 66
  ident: bib0040
  publication-title: Manuf. Eng
– volume: 37
  start-page: 3107
  year: 2002
  end-page: 3116
  ident: bib0125
  publication-title: J. Mater. Sci
– volume: 27
  start-page: 974
  year: 2006
  end-page: 985
  ident: bib0180
  publication-title: Biomaterials
– volume: 28
  start-page: 1036
  year: 2007
  end-page: 1047
  ident: bib0020
  publication-title: Biomaterials
– volume: 22
  start-page: 763
  year: 2001
  end-page: 768
  ident: bib0120
  publication-title: Biomaterials
– volume: 19
  start-page: 375
  year: 2010
  end-page: 398
  ident: bib0165
  publication-title: Iran. Polym. J.
– volume: 21
  start-page: 2164
  year: 2009
  end-page: 2175
  ident: bib0060
  publication-title: Prog. Chem
– volume: 22
  start-page: 363
  year: 2007
  end-page: 377
  ident: bib0095
  publication-title: J. Bioact. Compat. Pol
– volume: 645
  start-page: 137
  year: 2015
  end-page: 142
  ident: bib0140
  publication-title: J. Alloy. Compd
– volume: 26
  start-page: 5474
  year: 2005
  end-page: 5491
  ident: bib0145
  publication-title: Biomaterials
– volume: 24
  start-page: 881
  year: 2012
  end-page: 891
  ident: bib0155
  publication-title: Chem. Mater
– volume: 23
  start-page: 4827
  year: 2002
  end-page: 4832
  ident: bib0160
  publication-title: Biomaterials
– volume: 4
  start-page: 518
  year: 2005
  end-page: 524
  ident: bib0175
  publication-title: Nat. Mater
– volume: 63
  start-page: 1600
  year: 2014
  end-page: 1607
  ident: bib0055
  publication-title: Polym. Int
– volume: 34
  start-page: 168
  year: 2014
  end-page: 175
  ident: bib0150
  publication-title: Mat. Sci. Eng. C-Mater
– volume: 21
  start-page: 3307
  year: 2009
  end-page: 3329
  ident: bib0050
  publication-title: Adv. Mater
– volume: 6
  year: 2014
  ident: bib0075
  publication-title: Biofabrication
– volume: 43
  start-page: 730
  year: 2015
  end-page: 746
  ident: bib0045
  publication-title: Ann. Biomed. Eng
– volume: 37
  start-page: 1079
  year: 2012
  end-page: 1104
  ident: bib0015
  publication-title: Prog. Polym. Sci
– volume: 32
  start-page: 773
  year: 2014
  end-page: 785
  ident: bib0035
  publication-title: Nat. Biotechnol
– volume: 9
  start-page: 77
  year: 2015
  end-page: 84
  ident: bib0090
  publication-title: J. Tissue Eng. Regen. Med
– volume: 8
  start-page: 3080
  year: 2012
  end-page: 3090
  ident: bib0130
  publication-title: Acta Biomater
– volume: 6
  start-page: 1388
  year: 2011
  end-page: 1396
  ident: bib0105
  publication-title: Biotech. J.
– volume: 40
  start-page: 106
  year: 2014
  end-page: 115
  ident: bib0115
  publication-title: Polym. Test
– volume: 60
  start-page: 137
  year: 2007
  end-page: 157
  ident: bib0135
  publication-title: Colloids Surf. B. Biointerfaces
– volume: 30
  start-page: 546
  year: 2012
  end-page: 554
  ident: bib0010
  publication-title: Trends Biotechnol
– volume: 28
  start-page: 1462
  year: 2008
  end-page: 1466
  ident: bib0170
  publication-title: Mat. Sci. Eng. C-Mater
– volume: 2
  year: 2010
  ident: bib0025
  publication-title: Biofabrication
– volume: 21
  start-page: 2164
  year: 2009
  ident: 10.1016/j.jmst.2016.01.007_bib0060
  publication-title: Prog. Chem
– volume: 22
  start-page: 19
  year: 2007
  ident: 10.1016/j.jmst.2016.01.007_bib0080
  publication-title: J. Bioact. Compat. Pol
  doi: 10.1177/0883911506074025
– volume: 60
  start-page: 137
  year: 2007
  ident: 10.1016/j.jmst.2016.01.007_bib0135
  publication-title: Colloids Surf. B. Biointerfaces
  doi: 10.1016/j.colsurfb.2007.06.019
– volume: 23
  start-page: 4827
  year: 2002
  ident: 10.1016/j.jmst.2016.01.007_bib0160
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00235-1
– volume: 6
  year: 2014
  ident: 10.1016/j.jmst.2016.01.007_bib0075
  publication-title: Biofabrication
– volume: 28
  start-page: 1036
  year: 2007
  ident: 10.1016/j.jmst.2016.01.007_bib0020
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.10.003
– volume: 37
  start-page: 1079
  year: 2012
  ident: 10.1016/j.jmst.2016.01.007_bib0015
  publication-title: Prog. Polym. Sci
  doi: 10.1016/j.progpolymsci.2011.11.007
– volume: 8
  start-page: 3080
  year: 2012
  ident: 10.1016/j.jmst.2016.01.007_bib0130
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2012.05.006
– volume: 101
  start-page: 272
  year: 2013
  ident: 10.1016/j.jmst.2016.01.007_bib0065
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.34326
– volume: 21
  start-page: 3307
  year: 2009
  ident: 10.1016/j.jmst.2016.01.007_bib0050
  publication-title: Adv. Mater
  doi: 10.1002/adma.200802106
– volume: 4
  start-page: 518
  year: 2005
  ident: 10.1016/j.jmst.2016.01.007_bib0175
  publication-title: Nat. Mater
  doi: 10.1038/nmat1421
– volume: 32
  start-page: 773
  year: 2014
  ident: 10.1016/j.jmst.2016.01.007_bib0035
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.2958
– volume: 40
  start-page: 106
  year: 2014
  ident: 10.1016/j.jmst.2016.01.007_bib0115
  publication-title: Polym. Test
  doi: 10.1016/j.polymertesting.2014.08.016
– volume: 24
  start-page: 881
  year: 2012
  ident: 10.1016/j.jmst.2016.01.007_bib0155
  publication-title: Chem. Mater
  doi: 10.1021/cm200733s
– volume: 22
  start-page: 763
  year: 2001
  ident: 10.1016/j.jmst.2016.01.007_bib0120
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(00)00236-2
– volume: 22
  start-page: 363
  year: 2007
  ident: 10.1016/j.jmst.2016.01.007_bib0095
  publication-title: J. Bioact. Compat. Pol
  doi: 10.1177/0883911507079451
– volume: 338
  start-page: 921
  year: 2012
  ident: 10.1016/j.jmst.2016.01.007_bib0030
  publication-title: Science
  doi: 10.1126/science.1226340
– volume: 28
  start-page: 1462
  year: 2008
  ident: 10.1016/j.jmst.2016.01.007_bib0170
  publication-title: Mat. Sci. Eng. C-Mater
  doi: 10.1016/j.msec.2008.04.001
– volume: 2
  year: 2010
  ident: 10.1016/j.jmst.2016.01.007_bib0025
  publication-title: Biofabrication
– volume: 26
  start-page: 5474
  year: 2005
  ident: 10.1016/j.jmst.2016.01.007_bib0145
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.02.002
– volume: 63
  start-page: 1600
  year: 2014
  ident: 10.1016/j.jmst.2016.01.007_bib0055
  publication-title: Polym. Int
  doi: 10.1002/pi.4648
– volume: 9
  start-page: 77
  year: 2015
  ident: 10.1016/j.jmst.2016.01.007_bib0090
  publication-title: J. Tissue Eng. Regen. Med
  doi: 10.1002/term.1641
– volume: 37
  start-page: 3107
  year: 2002
  ident: 10.1016/j.jmst.2016.01.007_bib0125
  publication-title: J. Mater. Sci
  doi: 10.1023/A:1016189724389
– volume: 34
  start-page: 168
  year: 2014
  ident: 10.1016/j.jmst.2016.01.007_bib0150
  publication-title: Mat. Sci. Eng. C-Mater
  doi: 10.1016/j.msec.2013.09.003
– start-page: 63
  year: 2015
  ident: 10.1016/j.jmst.2016.01.007_bib0040
  publication-title: Manuf. Eng
– volume: 43
  start-page: 730
  year: 2015
  ident: 10.1016/j.jmst.2016.01.007_bib0045
  publication-title: Ann. Biomed. Eng
  doi: 10.1007/s10439-014-1207-1
– volume: 30
  start-page: 546
  year: 2012
  ident: 10.1016/j.jmst.2016.01.007_bib0010
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2012.07.005
– volume: 19
  start-page: 375
  year: 2010
  ident: 10.1016/j.jmst.2016.01.007_bib0165
  publication-title: Iran. Polym. J.
– volume: 27
  start-page: 974
  year: 2006
  ident: 10.1016/j.jmst.2016.01.007_bib0180
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.07.023
– volume: 10
  start-page: 1689
  year: 2009
  ident: 10.1016/j.jmst.2016.01.007_bib0085
  publication-title: Biomacromolecules
  doi: 10.1021/bm801463q
– volume: 31
  start-page: 3868
  year: 2010
  ident: 10.1016/j.jmst.2016.01.007_bib0070
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.01.111
– volume: 9
  start-page: 6459
  year: 2013
  ident: 10.1016/j.jmst.2016.01.007_bib0100
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2012.10.047
– volume: 6
  start-page: 1388
  year: 2011
  ident: 10.1016/j.jmst.2016.01.007_bib0105
  publication-title: Biotech. J.
  doi: 10.1002/biot.201100017
– volume: 33
  start-page: 6020
  year: 2012
  ident: 10.1016/j.jmst.2016.01.007_bib0110
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.04.050
– volume: 645
  start-page: 137
  year: 2015
  ident: 10.1016/j.jmst.2016.01.007_bib0140
  publication-title: J. Alloy. Compd
  doi: 10.1016/j.jallcom.2015.05.006
SSID ssj0037588
Score 2.4829636
Snippet Gelatin/Alginate hydrogels were engineered for bioplotting in tissue engineering. One major drawback of hydrogel scaffolds is the lack of adequate mechanical...
SourceID proquest
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 889
SubjectTerms Alginate
Alginates
Architecture
Bioplotting
Crosslinking
Gelatin
Gelatins
Hydrogels
Mechanical properties
Porosity
Scaffolds
Tissue engineering
交联度
孔隙结构
明胶
海藻酸钠
理化性质
组织工程支架
细胞存活率
Title 3D Bioplotting of Gelatin/Alginate Scaffolds for Tissue Engineering: Influence of Crosslinking Degree and Pore Architecture on Physicochemical Properties
URI http://lib.cqvip.com/qk/84252X/201609/670051005.html
https://dx.doi.org/10.1016/j.jmst.2016.01.007
https://www.proquest.com/docview/1855380498
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPZQeqr5QFyiaSr2hdOM4mwe3ZRdYWoGQAImb5fhRLdom231c-R_8W2acZLsglUOPieKR5ZnMfGN_nmHsG8aMSIcFpiU2T4LYchEUIuIBVzbXPReZxF8fO79IRjfxj9ve7QYbtHdhiFbZ-P7ap3tv3bzpNqvZnY7H3Svua5lgjEo88KGy23GckpV_v1_RPATi4fo6HJHUBLF5dv5yvO5-z4lPyRNfupNayr5Gp1P--oNh41-B6pnL9nHo5B172wBI6NdzfM82bPmBvVkrK_iRPYghHI2r6aTypGaoHJx6zlvZ7U-oD8PCwpVWzlUTMwdErXDtlx_WpBzCWdu-hMYPaI5NnwUYWkzSLajSwGU1s9BfO4yAqgTPKtXUisvXIoBL2vCfUeXWT-zm5Ph6MAqaFgyBFkm4CEyu8sIInXOXK4fwhafKuLjIUkxuQ5NpSmcikVuTYtzPCsNzK3QUKdqpiItCbLPNsirtZwYoAVNHxH9O6ThUKjNZ6BKN8M6loRVZh-2u1l5O61Ibki4R9Uh3HcZbbUjdVC-nJhoT2dLU7iRpU5I2ZcglarPDDlZjWoEvfd1rlSyfWKDE4PLiuK-tRUj8Nem8RZW2Ws4lQiFcE0zBsp3_lL3Ltuip5rTtsc3FbGm_IAhaFPveyvfZq_7Zz9HFI1McB4U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RcKA9IPpSA6XdSr1VVrxe27F7SwM0KRAhESRuq_U-UFBqp0n4MfzbzqxtSCuVQ6-2d7TaWc98s_vNDMBn9BmRDgsMS2yeBrHlIihExAOubK4TF5nUp4-dT9LRVfzjOrnegmGbC0O0ysb21zbdW-vmSa9Zzd5iNutdcl_LBH1U6oFP-gy2qTpV0oHtwfh0NGkNskBIXGfEEU9NEKFn_5HmdftzRZRKnvrqndRVdgftTnnzCz3Hv3zVX1bbu6KTPdhtMCQb1NN8CVu2fAUvNioLvoZ7ccS-zarFvPK8ZlY59t3T3sreYE6tGNaWXWrlXDU3K4bAlU29BtiGlK9s3HYwofFDmmPTaoEdWYzTLVOlYRfV0rLBxn0Eq0rmiaWaunH5cgTsgs78l1S89Q1cnRxPh6Og6cIQaJGG68DkKi-M0Dl3uXKIYHhfGRcXWR_j29BkmiKaSOTW9NH1Z4XhuRU6ihQdVsRFId5Cp6xK-w4YSsDoESGgUzoOlcpMFrpUI8Jz_dCKrAsHD2svF3W1DUl5RAnprgu81YbUTQFz6qMxly1T7VaSNiVpU4Zcoja78OVhTCvwqa-TVsnyj00o0b88Oe5TuyMk_p105aJKW92tJKIhXBOMwrL9_5T9EXZG0_MzeTaenB7Ac3pTU9zeQ2e9vLOHiInWxYdmz_8GTaoKNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Bioplotting+of+Gelatin%2FAlginate+Scaffolds+for+Tissue+Engineering%EF%BC%9A+Influence+of+Crosslinking+Degree+and+Pore+Architecture+on+Physicochemical+Properties&rft.jtitle=%E6%9D%90%E6%96%99%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Ting+Pan+Wenjing+Song+Xiaodong+Cao+Yingjun+Wang&rft.date=2016-09-01&rft.issn=1005-0302&rft.eissn=1941-1162&rft.issue=9&rft.spage=889&rft.epage=900&rft_id=info:doi/10.1016%2Fj.jmst.2016.01.007&rft.externalDocID=670051005
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84252X%2F84252X.jpg