Ideal ring extensions and trusses

It is shown that there is a close relationship between ideal extensions of rings and trusses, that is, sets with a semigroup operation distributing over a ternary abelian heap operation. Specifically, a truss can be associated to every element of an extension ring that projects down to an idempotent...

Full description

Saved in:
Bibliographic Details
Published inJournal of algebra Vol. 600; pp. 237 - 278
Main Authors Andruszkiewicz, Ryszard R., Brzeziński, Tomasz, Rybołowicz, Bernard
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is shown that there is a close relationship between ideal extensions of rings and trusses, that is, sets with a semigroup operation distributing over a ternary abelian heap operation. Specifically, a truss can be associated to every element of an extension ring that projects down to an idempotent in the extending ring; every weak equivalence of extensions yields an isomorphism of corresponding trusses. Furthermore, equivalence classes of ideal extensions of rings by integers are in one-to-one correspondence with associated trusses up to isomorphism given by a translation. Conversely, to any truss T and an element of this truss one can associate a ring and its extension by integers in which T is embedded as a truss. Consequently any truss can be understood as arising from an ideal extension by integers. The key role is played by interpretation of ideal extensions by integers as extensions defined by double homothetisms of Redei (L. Redei (1952) [24]) or by self-permutable bimultiplications of Mac Lane (S. Mac Lane (1958) [18]), that is, as integral homothetic extensions. The correspondence between homothetic ring extensions and trusses is used to classify fully up to isomorphism trusses arising from rings with zero multiplication and rings with trivial annihilators.
AbstractList It is shown that there is a close relationship between ideal extensions of rings and trusses, that is, sets with a semigroup operation distributing over a ternary abelian heap operation. Specifically, a truss can be associated to every element of an extension ring that projects down to an idempotent in the extending ring; every weak equivalence of extensions yields an isomorphism of corresponding trusses. Furthermore, equivalence classes of ideal extensions of rings by integers are in one-to-one correspondence with associated trusses up to isomorphism given by a translation. Conversely, to any truss T and an element of this truss one can associate a ring and its extension by integers in which T is embedded as a truss. Consequently any truss can be understood as arising from an ideal extension by integers. The key role is played by interpretation of ideal extensions by integers as extensions defined by double homothetisms of Redei (L. Redei (1952) [24]) or by self-permutable bimultiplications of Mac Lane (S. Mac Lane (1958) [18]), that is, as integral homothetic extensions. The correspondence between homothetic ring extensions and trusses is used to classify fully up to isomorphism trusses arising from rings with zero multiplication and rings with trivial annihilators.
Author Brzeziński, Tomasz
Rybołowicz, Bernard
Andruszkiewicz, Ryszard R.
Author_xml – sequence: 1
  givenname: Ryszard R.
  surname: Andruszkiewicz
  fullname: Andruszkiewicz, Ryszard R.
  email: randrusz@math.uwb.edu.pl
  organization: Faculty of Mathematics, University of Białystok, K. Ciołkowskiego 1M, 15-245 Białystok, Poland
– sequence: 2
  givenname: Tomasz
  orcidid: 0000-0001-6270-3439
  surname: Brzeziński
  fullname: Brzeziński, Tomasz
  email: T.Brzezinski@swansea.ac.uk
  organization: Faculty of Mathematics, University of Białystok, K. Ciołkowskiego 1M, 15-245 Białystok, Poland
– sequence: 3
  givenname: Bernard
  surname: Rybołowicz
  fullname: Rybołowicz, Bernard
  email: B.Rybolowicz@hw.ac.uk
  organization: Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, UK
BookMark eNqFj81KAzEURoNUsK2-gowPMOO9yUxmulOKP4WCGwV3IT83JcOYkWQUfXtbqmtX3-ocvrNgszhGYuwSoUJAed1XvR52ZJKuOHBeAVYguhM2R1hByaV8nbE5AMeykytxxhY59wCITd3N2dXGkR6KFOKuoK-JYg5jzIWOrpjSR86Uz9mp10Omi99dspf7u-f1Y7l9etisb7elFRKm0nFuayG0I-ONrLvGd9y1xksQHrXuQLTegJWmBWy8abSxUhr0rUQntbNiyeTRa9OYcyKv3lN40-lbIahDqOrVX6g6hCpAtQ_dgzdHkPbvPgMllW2gaMmFRHZSbgz_KX4AwZthgw
CitedBy_id crossref_primary_10_1007_s10231_023_01369_0
crossref_primary_10_1017_S0013091523000275
Cites_doi 10.1007/s10468-020-10008-8
10.1016/0021-8693(78)90180-1
10.1007/s00220-014-1935-y
10.7151/dmgaa.1274
10.2307/2371690
10.1016/0021-8693(72)90104-4
10.1142/S0219199720500108
10.2307/1969971
10.1016/j.jpaa.2019.106258
10.1016/j.jalgebra.2006.03.040
10.1007/BF01472198
10.1090/mcom/3161
10.1017/S0004972710001759
10.1007/BF01957021
10.1215/S0012-7094-47-01473-7
10.1090/tran/7705
10.1515/crll.1929.160.199
10.1515/crll.1932.168.233
10.1007/BF01188079
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jalgebra.2022.01.038
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1090-266X
EndPage 278
ExternalDocumentID 10_1016_j_jalgebra_2022_01_038
S0021869322000680
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
6I.
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AASFE
AAXUO
ABAOU
ABJNI
ABLJU
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
T5K
TN5
TWZ
UPT
WH7
YQT
ZMT
ZU3
~G-
0SF
186
1RT
29J
5VS
6TJ
9M8
AAEDT
AAQFI
AAQXK
AAXKI
AAYXX
ABEFU
ABFNM
ABTAH
ABXDB
ADFGL
ADIYS
ADMUD
ADVLN
AEXQZ
AFFNX
AFJKZ
AGHFR
AKRWK
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FGOYB
G-2
HZ~
H~9
K-O
MVM
NCXOZ
NHB
OHT
R2-
RIG
SEW
SSZ
WUQ
X7L
XJT
XOL
XPP
ZCG
ZY4
ID FETCH-LOGICAL-c360t-d22c433adebfb6485f82d7bf603f1aa8037fb0c6b7015fb5abc66b1f761d6adc3
IEDL.DBID AIKHN
ISSN 0021-8693
IngestDate Thu Sep 26 19:13:23 EDT 2024
Fri Feb 23 02:40:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Extension
16Y99
Truss
16S70
Ring
08A99
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-d22c433adebfb6485f82d7bf603f1aa8037fb0c6b7015fb5abc66b1f761d6adc3
ORCID 0000-0001-6270-3439
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0021869322000680
PageCount 42
ParticipantIDs crossref_primary_10_1016_j_jalgebra_2022_01_038
elsevier_sciencedirect_doi_10_1016_j_jalgebra_2022_01_038
PublicationCentury 2000
PublicationDate 2022-06-15
PublicationDateYYYYMMDD 2022-06-15
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of algebra
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Weibel (br0280) 1994
Redei (br0250) 1967
Rump (br0270) 2007; 307
Robson (br0260) 1972; 22
Busby (br0100) 1968; 132
Hochschild (br0160) 1947; 14
Brzeziński, Rybołowicz (br0070) 2021; 23
Mac Lane (br0180) 1958; 2
Brzeziński, Rybołowicz (br0080) 2020; 25
Andruszkiewicz (br0010) 2011; 83
Fitting (br0130) 1935; 111
Brzeziński (br0060) 2020; 224
Beidar (br0030) 1985; 85
Beidar (br0040) 1993; vol. 61
Ore (br0210) 1932; 168
Brzeziński (br0050) 2019; 372
Brzeziński, Rybołowicz, Saracco (br0090) 2020
Mac Lane (br0190) 1998
Petrich (br0220) 1985; 45
Everett (br0120) 1942; 64
Najafizadeh, Woronowicz (br0200) 2017; 37
Prüfer (br0230) 1924; 20
Helgason (br0170) 1956; 64
Baer (br0020) 1929; 160
Cedó, Jespers, Okniński (br0110) 2014; 327
Guarnieri, Vendramin (br0150) 2017; 86
Redei (br0240) 1952; 14
Flanigan (br0140) 1978; 50
Fitting (10.1016/j.jalgebra.2022.01.038_br0130) 1935; 111
Redei (10.1016/j.jalgebra.2022.01.038_br0240) 1952; 14
Mac Lane (10.1016/j.jalgebra.2022.01.038_br0190) 1998
Petrich (10.1016/j.jalgebra.2022.01.038_br0220) 1985; 45
Weibel (10.1016/j.jalgebra.2022.01.038_br0280) 1994
Brzeziński (10.1016/j.jalgebra.2022.01.038_br0050) 2019; 372
Beidar (10.1016/j.jalgebra.2022.01.038_br0030) 1985; 85
Robson (10.1016/j.jalgebra.2022.01.038_br0260) 1972; 22
Redei (10.1016/j.jalgebra.2022.01.038_br0250) 1967
Rump (10.1016/j.jalgebra.2022.01.038_br0270) 2007; 307
Brzeziński (10.1016/j.jalgebra.2022.01.038_br0070) 2021; 23
Brzeziński (10.1016/j.jalgebra.2022.01.038_br0080) 2020; 25
Busby (10.1016/j.jalgebra.2022.01.038_br0100) 1968; 132
Prüfer (10.1016/j.jalgebra.2022.01.038_br0230) 1924; 20
Mac Lane (10.1016/j.jalgebra.2022.01.038_br0180) 1958; 2
Flanigan (10.1016/j.jalgebra.2022.01.038_br0140) 1978; 50
Andruszkiewicz (10.1016/j.jalgebra.2022.01.038_br0010) 2011; 83
Baer (10.1016/j.jalgebra.2022.01.038_br0020) 1929; 160
Beidar (10.1016/j.jalgebra.2022.01.038_br0040) 1993; vol. 61
Brzeziński (10.1016/j.jalgebra.2022.01.038_br0090)
Guarnieri (10.1016/j.jalgebra.2022.01.038_br0150) 2017; 86
Helgason (10.1016/j.jalgebra.2022.01.038_br0170) 1956; 64
Najafizadeh (10.1016/j.jalgebra.2022.01.038_br0200) 2017; 37
Hochschild (10.1016/j.jalgebra.2022.01.038_br0160) 1947; 14
Everett (10.1016/j.jalgebra.2022.01.038_br0120) 1942; 64
Cedó (10.1016/j.jalgebra.2022.01.038_br0110) 2014; 327
Brzeziński (10.1016/j.jalgebra.2022.01.038_br0060) 2020; 224
Ore (10.1016/j.jalgebra.2022.01.038_br0210) 1932; 168
References_xml – volume: 2
  start-page: 316
  year: 1958
  end-page: 345
  ident: br0180
  article-title: Extensions and obstructions for rings
  publication-title: Ill. J. Math.
  contributor:
    fullname: Mac Lane
– volume: 14
  start-page: 252
  year: 1952
  end-page: 273
  ident: br0240
  article-title: Die Verallgemeinerung der Schreierschen Erweiterungstheorie
  publication-title: Acta Sci. Math. (Szeged)
  contributor:
    fullname: Redei
– volume: 37
  start-page: 223
  year: 2017
  end-page: 232
  ident: br0200
  article-title: A note on additive groups of some specific torsion-free rings of rank three and mixed associative rings
  publication-title: Discus. Math., Gen. Algebra Appl.
  contributor:
    fullname: Woronowicz
– year: 1967
  ident: br0250
  article-title: Algebra I
  contributor:
    fullname: Redei
– volume: 85
  start-page: 21
  year: 1985
  end-page: 31
  ident: br0030
  article-title: Atoms in the “lattice” of radicals
  publication-title: Mat. Issled.
  contributor:
    fullname: Beidar
– volume: 327
  start-page: 101
  year: 2014
  end-page: 116
  ident: br0110
  article-title: Braces and the Yang-Baxter equation
  publication-title: Commun. Math. Phys.
  contributor:
    fullname: Okniński
– volume: 64
  start-page: 240
  year: 1956
  end-page: 254
  ident: br0170
  article-title: Multipliers of Banach algebras
  publication-title: Ann. Math.
  contributor:
    fullname: Helgason
– volume: 224
  year: 2020
  ident: br0060
  article-title: Trusses: paragons, ideals and modules
  publication-title: J. Pure Appl. Algebra
  contributor:
    fullname: Brzeziński
– volume: 160
  start-page: 199
  year: 1929
  end-page: 207
  ident: br0020
  article-title: Zur Einführung des Scharbegriffs
  publication-title: J. Reine Angew. Math.
  contributor:
    fullname: Baer
– volume: 132
  start-page: 79
  year: 1968
  end-page: 99
  ident: br0100
  article-title: Double centralizers and extensions of
  publication-title: Trans. Am. Math. Soc.
  contributor:
    fullname: Busby
– volume: 372
  start-page: 4149
  year: 2019
  end-page: 4176
  ident: br0050
  article-title: Trusses: between braces and rings
  publication-title: Trans. Am. Math. Soc.
  contributor:
    fullname: Brzeziński
– volume: 45
  start-page: 263
  year: 1985
  end-page: 283
  ident: br0220
  article-title: Ideal extensions of rings
  publication-title: Acta Math. Hung.
  contributor:
    fullname: Petrich
– year: 2020
  ident: br0090
  article-title: On functors between categories of modules over trusses
  contributor:
    fullname: Saracco
– volume: 25
  start-page: 1
  year: 2020
  end-page: 23
  ident: br0080
  article-title: Modules over trusses vs modules over rings: direct sums and free modules
  publication-title: Algebr. Represent. Theory
  contributor:
    fullname: Rybołowicz
– volume: 111
  start-page: 19
  year: 1935
  end-page: 40
  ident: br0130
  article-title: Primärkomponentenzerlegung in nichtkommutativen Ringen
  publication-title: Math. Ann.
  contributor:
    fullname: Fitting
– year: 1998
  ident: br0190
  article-title: Categories for the Working Mathematician
  contributor:
    fullname: Mac Lane
– volume: 14
  start-page: 921
  year: 1947
  end-page: 948
  ident: br0160
  article-title: Cohomology and representations of associative algebras
  publication-title: Duke Math. J.
  contributor:
    fullname: Hochschild
– year: 1994
  ident: br0280
  article-title: An Introduction to Homological Algebra
  contributor:
    fullname: Weibel
– volume: 50
  start-page: 153
  year: 1978
  end-page: 174
  ident: br0140
  article-title: On the ideal and radical embedding of algebras. I. Extreme embeddings
  publication-title: J. Algebra
  contributor:
    fullname: Flanigan
– volume: 64
  start-page: 363
  year: 1942
  end-page: 370
  ident: br0120
  article-title: An extension theory for rings
  publication-title: Am. J. Math.
  contributor:
    fullname: Everett
– volume: 86
  start-page: 2519
  year: 2017
  end-page: 2534
  ident: br0150
  article-title: Skew braces and the Yang-Baxter equation
  publication-title: Math. Comput.
  contributor:
    fullname: Vendramin
– volume: 22
  start-page: 45
  year: 1972
  end-page: 81
  ident: br0260
  article-title: Idealizers and hereditary Noetherian prime rings
  publication-title: J. Algebra
  contributor:
    fullname: Robson
– volume: 307
  start-page: 153
  year: 2007
  end-page: 170
  ident: br0270
  article-title: Braces, radical rings, and the quantum Yang-Baxter equation
  publication-title: J. Algebra
  contributor:
    fullname: Rump
– volume: 83
  start-page: 329
  year: 2011
  end-page: 337
  ident: br0010
  article-title: On maximal essential extensions of rings
  publication-title: Bull. Aust. Math. Soc.
  contributor:
    fullname: Andruszkiewicz
– volume: 20
  start-page: 165
  year: 1924
  end-page: 187
  ident: br0230
  article-title: Theorie der Abelschen Gruppen. I. Grundeigenschaften
  publication-title: Math. Z.
  contributor:
    fullname: Prüfer
– volume: vol. 61
  start-page: 17
  year: 1993
  end-page: 26
  ident: br0040
  article-title: On essential extensions, maximal essential extensions and iterated maximal essential extensions in radical theory
  publication-title: Theory of Radicals
  contributor:
    fullname: Beidar
– volume: 168
  start-page: 233
  year: 1932
  end-page: 252
  ident: br0210
  article-title: Formale Theorie der linearen Differentialgleichungen. (Zweiter Teil)
  publication-title: J. Reine Angew. Math.
  contributor:
    fullname: Ore
– volume: 23
  year: 2021
  ident: br0070
  article-title: Congruence classes and extensions of rings with an application to braces
  publication-title: Commun. Contemp. Math.
  contributor:
    fullname: Rybołowicz
– year: 1998
  ident: 10.1016/j.jalgebra.2022.01.038_br0190
  contributor:
    fullname: Mac Lane
– volume: 25
  start-page: 1
  year: 2020
  ident: 10.1016/j.jalgebra.2022.01.038_br0080
  article-title: Modules over trusses vs modules over rings: direct sums and free modules
  publication-title: Algebr. Represent. Theory
  doi: 10.1007/s10468-020-10008-8
  contributor:
    fullname: Brzeziński
– volume: 50
  start-page: 153
  year: 1978
  ident: 10.1016/j.jalgebra.2022.01.038_br0140
  article-title: On the ideal and radical embedding of algebras. I. Extreme embeddings
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(78)90180-1
  contributor:
    fullname: Flanigan
– volume: 327
  start-page: 101
  year: 2014
  ident: 10.1016/j.jalgebra.2022.01.038_br0110
  article-title: Braces and the Yang-Baxter equation
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-014-1935-y
  contributor:
    fullname: Cedó
– volume: 37
  start-page: 223
  year: 2017
  ident: 10.1016/j.jalgebra.2022.01.038_br0200
  article-title: A note on additive groups of some specific torsion-free rings of rank three and mixed associative rings
  publication-title: Discus. Math., Gen. Algebra Appl.
  doi: 10.7151/dmgaa.1274
  contributor:
    fullname: Najafizadeh
– volume: 14
  start-page: 252
  year: 1952
  ident: 10.1016/j.jalgebra.2022.01.038_br0240
  article-title: Die Verallgemeinerung der Schreierschen Erweiterungstheorie
  publication-title: Acta Sci. Math. (Szeged)
  contributor:
    fullname: Redei
– volume: 64
  start-page: 363
  year: 1942
  ident: 10.1016/j.jalgebra.2022.01.038_br0120
  article-title: An extension theory for rings
  publication-title: Am. J. Math.
  doi: 10.2307/2371690
  contributor:
    fullname: Everett
– volume: 22
  start-page: 45
  year: 1972
  ident: 10.1016/j.jalgebra.2022.01.038_br0260
  article-title: Idealizers and hereditary Noetherian prime rings
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(72)90104-4
  contributor:
    fullname: Robson
– volume: 23
  year: 2021
  ident: 10.1016/j.jalgebra.2022.01.038_br0070
  article-title: Congruence classes and extensions of rings with an application to braces
  publication-title: Commun. Contemp. Math.
  doi: 10.1142/S0219199720500108
  contributor:
    fullname: Brzeziński
– volume: 64
  start-page: 240
  year: 1956
  ident: 10.1016/j.jalgebra.2022.01.038_br0170
  article-title: Multipliers of Banach algebras
  publication-title: Ann. Math.
  doi: 10.2307/1969971
  contributor:
    fullname: Helgason
– year: 1994
  ident: 10.1016/j.jalgebra.2022.01.038_br0280
  contributor:
    fullname: Weibel
– volume: 224
  year: 2020
  ident: 10.1016/j.jalgebra.2022.01.038_br0060
  article-title: Trusses: paragons, ideals and modules
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/j.jpaa.2019.106258
  contributor:
    fullname: Brzeziński
– volume: 307
  start-page: 153
  year: 2007
  ident: 10.1016/j.jalgebra.2022.01.038_br0270
  article-title: Braces, radical rings, and the quantum Yang-Baxter equation
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2006.03.040
  contributor:
    fullname: Rump
– volume: 111
  start-page: 19
  year: 1935
  ident: 10.1016/j.jalgebra.2022.01.038_br0130
  article-title: Primärkomponentenzerlegung in nichtkommutativen Ringen
  publication-title: Math. Ann.
  doi: 10.1007/BF01472198
  contributor:
    fullname: Fitting
– volume: 85
  start-page: 21
  year: 1985
  ident: 10.1016/j.jalgebra.2022.01.038_br0030
  article-title: Atoms in the “lattice” of radicals
  publication-title: Mat. Issled.
  contributor:
    fullname: Beidar
– volume: 86
  start-page: 2519
  year: 2017
  ident: 10.1016/j.jalgebra.2022.01.038_br0150
  article-title: Skew braces and the Yang-Baxter equation
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3161
  contributor:
    fullname: Guarnieri
– volume: 2
  start-page: 316
  year: 1958
  ident: 10.1016/j.jalgebra.2022.01.038_br0180
  article-title: Extensions and obstructions for rings
  publication-title: Ill. J. Math.
  contributor:
    fullname: Mac Lane
– volume: 132
  start-page: 79
  year: 1968
  ident: 10.1016/j.jalgebra.2022.01.038_br0100
  article-title: Double centralizers and extensions of C⁎-algebras
  publication-title: Trans. Am. Math. Soc.
  contributor:
    fullname: Busby
– volume: 83
  start-page: 329
  year: 2011
  ident: 10.1016/j.jalgebra.2022.01.038_br0010
  article-title: On maximal essential extensions of rings
  publication-title: Bull. Aust. Math. Soc.
  doi: 10.1017/S0004972710001759
  contributor:
    fullname: Andruszkiewicz
– volume: 45
  start-page: 263
  year: 1985
  ident: 10.1016/j.jalgebra.2022.01.038_br0220
  article-title: Ideal extensions of rings
  publication-title: Acta Math. Hung.
  doi: 10.1007/BF01957021
  contributor:
    fullname: Petrich
– volume: 14
  start-page: 921
  year: 1947
  ident: 10.1016/j.jalgebra.2022.01.038_br0160
  article-title: Cohomology and representations of associative algebras
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-47-01473-7
  contributor:
    fullname: Hochschild
– volume: 372
  start-page: 4149
  year: 2019
  ident: 10.1016/j.jalgebra.2022.01.038_br0050
  article-title: Trusses: between braces and rings
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/tran/7705
  contributor:
    fullname: Brzeziński
– ident: 10.1016/j.jalgebra.2022.01.038_br0090
  contributor:
    fullname: Brzeziński
– volume: 160
  start-page: 199
  year: 1929
  ident: 10.1016/j.jalgebra.2022.01.038_br0020
  article-title: Zur Einführung des Scharbegriffs
  publication-title: J. Reine Angew. Math.
  doi: 10.1515/crll.1929.160.199
  contributor:
    fullname: Baer
– volume: vol. 61
  start-page: 17
  year: 1993
  ident: 10.1016/j.jalgebra.2022.01.038_br0040
  article-title: On essential extensions, maximal essential extensions and iterated maximal essential extensions in radical theory
  contributor:
    fullname: Beidar
– volume: 168
  start-page: 233
  year: 1932
  ident: 10.1016/j.jalgebra.2022.01.038_br0210
  article-title: Formale Theorie der linearen Differentialgleichungen. (Zweiter Teil)
  publication-title: J. Reine Angew. Math.
  doi: 10.1515/crll.1932.168.233
  contributor:
    fullname: Ore
– year: 1967
  ident: 10.1016/j.jalgebra.2022.01.038_br0250
  contributor:
    fullname: Redei
– volume: 20
  start-page: 165
  year: 1924
  ident: 10.1016/j.jalgebra.2022.01.038_br0230
  article-title: Theorie der Abelschen Gruppen. I. Grundeigenschaften
  publication-title: Math. Z.
  doi: 10.1007/BF01188079
  contributor:
    fullname: Prüfer
SSID ssj0011548
Score 2.4250681
Snippet It is shown that there is a close relationship between ideal extensions of rings and trusses, that is, sets with a semigroup operation distributing over a...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 237
SubjectTerms Extension
Ring
Truss
Title Ideal ring extensions and trusses
URI https://dx.doi.org/10.1016/j.jalgebra.2022.01.038
Volume 600
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwED7yWNqh9EnTR3ChqxLZkiV3DKEhaWmmBrIJPSEZ3IIz97dXku2QQqFDRwnOWJ_E3el03x3AozIq0DEz5E0lRdRqjqRLJbKamoxJQ6yOCbJLNl_Rl3W-7sC05cKEtMpG99c6PWrrZmbcoDn-3GwCxzf2U_InEscOEl3ox0eiHvQni9f5cv-YELzyOtMjRUHggCi8HW1DOw1_MfVXxSyLFTwDVeU3G3Vgd2ancNI4jMmk_qcz6NjyHI7f9tVWqwt4WBjv7iUhQpfEoHaIgFWJLE0SKBWVrS5hNXt-n85R0_oAacLwDpks05QQaaxyitEid0VmuHIME4-kLDDhTmHNFPfm3KlcKs2YSh1nqfEIa3IFvfKjtNeQ0Difc65CqaGC-Q9JZixmhiqiCBvAuF2s-KwrXIg29WsrWnhEgEfgVHh4BvDUYiJ-7JXwavgP2Zt_yN7CURiFRK00v4Oeh9Dee5dgp4bQHX2lw2bjvwFUV7XW
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8MwDBZde9h2GHuy7pnBrl6T2HHSYykr6fo4tdCb8SvQHtJC-v-ZnEfpYLDDrjYyzmcjyYo-CeBdGeXomCFBU8kIszomMgsksZqZkEtDrS4TZOc8XbKvVbRqwbDhwri0ylr3Vzq91Nb1SK9Gs7dbrx3Ht-ynhDfSLztInEAHvYE-XvbOYDxJ54efCc4rrzI9AuIEjojCm4-Na6eBD1N8KoZhWcHTUVV-s1FHdmd0CRe1w-gNqj1dQcvm13A-O1RbLW7gbWzQ3fNchM4rg9ouAlZ4Mjeeo1QUtriF5ehzMUxJ3fqAaMr9PTFhqBml0liVKc6SKEtCE6uM-xSRlIlP40z5mqsYzXmmIqk05yrIYh4YRFjTO2jn29zeg8fK8SiOlSs1lHBcSHJjfW6YooryLvSajxW7qsKFaFK_NqKBRzh4hB8IhKcL_QYT8eOsBKrhP2Qf_iH7CqfpYjYV0_F88ghnbsYlbQXRE7QRTvuM7sFevdTH_w3S9bfT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ideal+ring+extensions+and+trusses&rft.jtitle=Journal+of+algebra&rft.au=Andruszkiewicz%2C+Ryszard+R.&rft.au=Brzezi%C5%84ski%2C+Tomasz&rft.au=Rybo%C5%82owicz%2C+Bernard&rft.date=2022-06-15&rft.pub=Elsevier+Inc&rft.issn=0021-8693&rft.eissn=1090-266X&rft.volume=600&rft.spage=237&rft.epage=278&rft_id=info:doi/10.1016%2Fj.jalgebra.2022.01.038&rft.externalDocID=S0021869322000680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8693&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8693&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8693&client=summon