Ideal ring extensions and trusses
It is shown that there is a close relationship between ideal extensions of rings and trusses, that is, sets with a semigroup operation distributing over a ternary abelian heap operation. Specifically, a truss can be associated to every element of an extension ring that projects down to an idempotent...
Saved in:
Published in | Journal of algebra Vol. 600; pp. 237 - 278 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is shown that there is a close relationship between ideal extensions of rings and trusses, that is, sets with a semigroup operation distributing over a ternary abelian heap operation. Specifically, a truss can be associated to every element of an extension ring that projects down to an idempotent in the extending ring; every weak equivalence of extensions yields an isomorphism of corresponding trusses. Furthermore, equivalence classes of ideal extensions of rings by integers are in one-to-one correspondence with associated trusses up to isomorphism given by a translation. Conversely, to any truss T and an element of this truss one can associate a ring and its extension by integers in which T is embedded as a truss. Consequently any truss can be understood as arising from an ideal extension by integers. The key role is played by interpretation of ideal extensions by integers as extensions defined by double homothetisms of Redei (L. Redei (1952) [24]) or by self-permutable bimultiplications of Mac Lane (S. Mac Lane (1958) [18]), that is, as integral homothetic extensions. The correspondence between homothetic ring extensions and trusses is used to classify fully up to isomorphism trusses arising from rings with zero multiplication and rings with trivial annihilators. |
---|---|
AbstractList | It is shown that there is a close relationship between ideal extensions of rings and trusses, that is, sets with a semigroup operation distributing over a ternary abelian heap operation. Specifically, a truss can be associated to every element of an extension ring that projects down to an idempotent in the extending ring; every weak equivalence of extensions yields an isomorphism of corresponding trusses. Furthermore, equivalence classes of ideal extensions of rings by integers are in one-to-one correspondence with associated trusses up to isomorphism given by a translation. Conversely, to any truss T and an element of this truss one can associate a ring and its extension by integers in which T is embedded as a truss. Consequently any truss can be understood as arising from an ideal extension by integers. The key role is played by interpretation of ideal extensions by integers as extensions defined by double homothetisms of Redei (L. Redei (1952) [24]) or by self-permutable bimultiplications of Mac Lane (S. Mac Lane (1958) [18]), that is, as integral homothetic extensions. The correspondence between homothetic ring extensions and trusses is used to classify fully up to isomorphism trusses arising from rings with zero multiplication and rings with trivial annihilators. |
Author | Brzeziński, Tomasz Rybołowicz, Bernard Andruszkiewicz, Ryszard R. |
Author_xml | – sequence: 1 givenname: Ryszard R. surname: Andruszkiewicz fullname: Andruszkiewicz, Ryszard R. email: randrusz@math.uwb.edu.pl organization: Faculty of Mathematics, University of Białystok, K. Ciołkowskiego 1M, 15-245 Białystok, Poland – sequence: 2 givenname: Tomasz orcidid: 0000-0001-6270-3439 surname: Brzeziński fullname: Brzeziński, Tomasz email: T.Brzezinski@swansea.ac.uk organization: Faculty of Mathematics, University of Białystok, K. Ciołkowskiego 1M, 15-245 Białystok, Poland – sequence: 3 givenname: Bernard surname: Rybołowicz fullname: Rybołowicz, Bernard email: B.Rybolowicz@hw.ac.uk organization: Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, UK |
BookMark | eNqFj81KAzEURoNUsK2-gowPMOO9yUxmulOKP4WCGwV3IT83JcOYkWQUfXtbqmtX3-ocvrNgszhGYuwSoUJAed1XvR52ZJKuOHBeAVYguhM2R1hByaV8nbE5AMeykytxxhY59wCITd3N2dXGkR6KFOKuoK-JYg5jzIWOrpjSR86Uz9mp10Omi99dspf7u-f1Y7l9etisb7elFRKm0nFuayG0I-ONrLvGd9y1xksQHrXuQLTegJWmBWy8abSxUhr0rUQntbNiyeTRa9OYcyKv3lN40-lbIahDqOrVX6g6hCpAtQ_dgzdHkPbvPgMllW2gaMmFRHZSbgz_KX4AwZthgw |
CitedBy_id | crossref_primary_10_1007_s10231_023_01369_0 crossref_primary_10_1017_S0013091523000275 |
Cites_doi | 10.1007/s10468-020-10008-8 10.1016/0021-8693(78)90180-1 10.1007/s00220-014-1935-y 10.7151/dmgaa.1274 10.2307/2371690 10.1016/0021-8693(72)90104-4 10.1142/S0219199720500108 10.2307/1969971 10.1016/j.jpaa.2019.106258 10.1016/j.jalgebra.2006.03.040 10.1007/BF01472198 10.1090/mcom/3161 10.1017/S0004972710001759 10.1007/BF01957021 10.1215/S0012-7094-47-01473-7 10.1090/tran/7705 10.1515/crll.1929.160.199 10.1515/crll.1932.168.233 10.1007/BF01188079 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.jalgebra.2022.01.038 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1090-266X |
EndPage | 278 |
ExternalDocumentID | 10_1016_j_jalgebra_2022_01_038 S0021869322000680 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 6I. 7-5 71M 8P~ 9JN AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AASFE AAXUO ABAOU ABJNI ABLJU ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSW T5K TN5 TWZ UPT WH7 YQT ZMT ZU3 ~G- 0SF 186 1RT 29J 5VS 6TJ 9M8 AAEDT AAQFI AAQXK AAXKI AAYXX ABEFU ABFNM ABTAH ABXDB ADFGL ADIYS ADMUD ADVLN AEXQZ AFFNX AFJKZ AGHFR AKRWK ASPBG AVWKF AZFZN CAG CITATION COF EJD FGOYB G-2 HZ~ H~9 K-O MVM NCXOZ NHB OHT R2- RIG SEW SSZ WUQ X7L XJT XOL XPP ZCG ZY4 |
ID | FETCH-LOGICAL-c360t-d22c433adebfb6485f82d7bf603f1aa8037fb0c6b7015fb5abc66b1f761d6adc3 |
IEDL.DBID | AIKHN |
ISSN | 0021-8693 |
IngestDate | Thu Sep 26 19:13:23 EDT 2024 Fri Feb 23 02:40:48 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Extension 16Y99 Truss 16S70 Ring 08A99 |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-d22c433adebfb6485f82d7bf603f1aa8037fb0c6b7015fb5abc66b1f761d6adc3 |
ORCID | 0000-0001-6270-3439 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0021869322000680 |
PageCount | 42 |
ParticipantIDs | crossref_primary_10_1016_j_jalgebra_2022_01_038 elsevier_sciencedirect_doi_10_1016_j_jalgebra_2022_01_038 |
PublicationCentury | 2000 |
PublicationDate | 2022-06-15 |
PublicationDateYYYYMMDD | 2022-06-15 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of algebra |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Weibel (br0280) 1994 Redei (br0250) 1967 Rump (br0270) 2007; 307 Robson (br0260) 1972; 22 Busby (br0100) 1968; 132 Hochschild (br0160) 1947; 14 Brzeziński, Rybołowicz (br0070) 2021; 23 Mac Lane (br0180) 1958; 2 Brzeziński, Rybołowicz (br0080) 2020; 25 Andruszkiewicz (br0010) 2011; 83 Fitting (br0130) 1935; 111 Brzeziński (br0060) 2020; 224 Beidar (br0030) 1985; 85 Beidar (br0040) 1993; vol. 61 Ore (br0210) 1932; 168 Brzeziński (br0050) 2019; 372 Brzeziński, Rybołowicz, Saracco (br0090) 2020 Mac Lane (br0190) 1998 Petrich (br0220) 1985; 45 Everett (br0120) 1942; 64 Najafizadeh, Woronowicz (br0200) 2017; 37 Prüfer (br0230) 1924; 20 Helgason (br0170) 1956; 64 Baer (br0020) 1929; 160 Cedó, Jespers, Okniński (br0110) 2014; 327 Guarnieri, Vendramin (br0150) 2017; 86 Redei (br0240) 1952; 14 Flanigan (br0140) 1978; 50 Fitting (10.1016/j.jalgebra.2022.01.038_br0130) 1935; 111 Redei (10.1016/j.jalgebra.2022.01.038_br0240) 1952; 14 Mac Lane (10.1016/j.jalgebra.2022.01.038_br0190) 1998 Petrich (10.1016/j.jalgebra.2022.01.038_br0220) 1985; 45 Weibel (10.1016/j.jalgebra.2022.01.038_br0280) 1994 Brzeziński (10.1016/j.jalgebra.2022.01.038_br0050) 2019; 372 Beidar (10.1016/j.jalgebra.2022.01.038_br0030) 1985; 85 Robson (10.1016/j.jalgebra.2022.01.038_br0260) 1972; 22 Redei (10.1016/j.jalgebra.2022.01.038_br0250) 1967 Rump (10.1016/j.jalgebra.2022.01.038_br0270) 2007; 307 Brzeziński (10.1016/j.jalgebra.2022.01.038_br0070) 2021; 23 Brzeziński (10.1016/j.jalgebra.2022.01.038_br0080) 2020; 25 Busby (10.1016/j.jalgebra.2022.01.038_br0100) 1968; 132 Prüfer (10.1016/j.jalgebra.2022.01.038_br0230) 1924; 20 Mac Lane (10.1016/j.jalgebra.2022.01.038_br0180) 1958; 2 Flanigan (10.1016/j.jalgebra.2022.01.038_br0140) 1978; 50 Andruszkiewicz (10.1016/j.jalgebra.2022.01.038_br0010) 2011; 83 Baer (10.1016/j.jalgebra.2022.01.038_br0020) 1929; 160 Beidar (10.1016/j.jalgebra.2022.01.038_br0040) 1993; vol. 61 Brzeziński (10.1016/j.jalgebra.2022.01.038_br0090) Guarnieri (10.1016/j.jalgebra.2022.01.038_br0150) 2017; 86 Helgason (10.1016/j.jalgebra.2022.01.038_br0170) 1956; 64 Najafizadeh (10.1016/j.jalgebra.2022.01.038_br0200) 2017; 37 Hochschild (10.1016/j.jalgebra.2022.01.038_br0160) 1947; 14 Everett (10.1016/j.jalgebra.2022.01.038_br0120) 1942; 64 Cedó (10.1016/j.jalgebra.2022.01.038_br0110) 2014; 327 Brzeziński (10.1016/j.jalgebra.2022.01.038_br0060) 2020; 224 Ore (10.1016/j.jalgebra.2022.01.038_br0210) 1932; 168 |
References_xml | – volume: 2 start-page: 316 year: 1958 end-page: 345 ident: br0180 article-title: Extensions and obstructions for rings publication-title: Ill. J. Math. contributor: fullname: Mac Lane – volume: 14 start-page: 252 year: 1952 end-page: 273 ident: br0240 article-title: Die Verallgemeinerung der Schreierschen Erweiterungstheorie publication-title: Acta Sci. Math. (Szeged) contributor: fullname: Redei – volume: 37 start-page: 223 year: 2017 end-page: 232 ident: br0200 article-title: A note on additive groups of some specific torsion-free rings of rank three and mixed associative rings publication-title: Discus. Math., Gen. Algebra Appl. contributor: fullname: Woronowicz – year: 1967 ident: br0250 article-title: Algebra I contributor: fullname: Redei – volume: 85 start-page: 21 year: 1985 end-page: 31 ident: br0030 article-title: Atoms in the “lattice” of radicals publication-title: Mat. Issled. contributor: fullname: Beidar – volume: 327 start-page: 101 year: 2014 end-page: 116 ident: br0110 article-title: Braces and the Yang-Baxter equation publication-title: Commun. Math. Phys. contributor: fullname: Okniński – volume: 64 start-page: 240 year: 1956 end-page: 254 ident: br0170 article-title: Multipliers of Banach algebras publication-title: Ann. Math. contributor: fullname: Helgason – volume: 224 year: 2020 ident: br0060 article-title: Trusses: paragons, ideals and modules publication-title: J. Pure Appl. Algebra contributor: fullname: Brzeziński – volume: 160 start-page: 199 year: 1929 end-page: 207 ident: br0020 article-title: Zur Einführung des Scharbegriffs publication-title: J. Reine Angew. Math. contributor: fullname: Baer – volume: 132 start-page: 79 year: 1968 end-page: 99 ident: br0100 article-title: Double centralizers and extensions of publication-title: Trans. Am. Math. Soc. contributor: fullname: Busby – volume: 372 start-page: 4149 year: 2019 end-page: 4176 ident: br0050 article-title: Trusses: between braces and rings publication-title: Trans. Am. Math. Soc. contributor: fullname: Brzeziński – volume: 45 start-page: 263 year: 1985 end-page: 283 ident: br0220 article-title: Ideal extensions of rings publication-title: Acta Math. Hung. contributor: fullname: Petrich – year: 2020 ident: br0090 article-title: On functors between categories of modules over trusses contributor: fullname: Saracco – volume: 25 start-page: 1 year: 2020 end-page: 23 ident: br0080 article-title: Modules over trusses vs modules over rings: direct sums and free modules publication-title: Algebr. Represent. Theory contributor: fullname: Rybołowicz – volume: 111 start-page: 19 year: 1935 end-page: 40 ident: br0130 article-title: Primärkomponentenzerlegung in nichtkommutativen Ringen publication-title: Math. Ann. contributor: fullname: Fitting – year: 1998 ident: br0190 article-title: Categories for the Working Mathematician contributor: fullname: Mac Lane – volume: 14 start-page: 921 year: 1947 end-page: 948 ident: br0160 article-title: Cohomology and representations of associative algebras publication-title: Duke Math. J. contributor: fullname: Hochschild – year: 1994 ident: br0280 article-title: An Introduction to Homological Algebra contributor: fullname: Weibel – volume: 50 start-page: 153 year: 1978 end-page: 174 ident: br0140 article-title: On the ideal and radical embedding of algebras. I. Extreme embeddings publication-title: J. Algebra contributor: fullname: Flanigan – volume: 64 start-page: 363 year: 1942 end-page: 370 ident: br0120 article-title: An extension theory for rings publication-title: Am. J. Math. contributor: fullname: Everett – volume: 86 start-page: 2519 year: 2017 end-page: 2534 ident: br0150 article-title: Skew braces and the Yang-Baxter equation publication-title: Math. Comput. contributor: fullname: Vendramin – volume: 22 start-page: 45 year: 1972 end-page: 81 ident: br0260 article-title: Idealizers and hereditary Noetherian prime rings publication-title: J. Algebra contributor: fullname: Robson – volume: 307 start-page: 153 year: 2007 end-page: 170 ident: br0270 article-title: Braces, radical rings, and the quantum Yang-Baxter equation publication-title: J. Algebra contributor: fullname: Rump – volume: 83 start-page: 329 year: 2011 end-page: 337 ident: br0010 article-title: On maximal essential extensions of rings publication-title: Bull. Aust. Math. Soc. contributor: fullname: Andruszkiewicz – volume: 20 start-page: 165 year: 1924 end-page: 187 ident: br0230 article-title: Theorie der Abelschen Gruppen. I. Grundeigenschaften publication-title: Math. Z. contributor: fullname: Prüfer – volume: vol. 61 start-page: 17 year: 1993 end-page: 26 ident: br0040 article-title: On essential extensions, maximal essential extensions and iterated maximal essential extensions in radical theory publication-title: Theory of Radicals contributor: fullname: Beidar – volume: 168 start-page: 233 year: 1932 end-page: 252 ident: br0210 article-title: Formale Theorie der linearen Differentialgleichungen. (Zweiter Teil) publication-title: J. Reine Angew. Math. contributor: fullname: Ore – volume: 23 year: 2021 ident: br0070 article-title: Congruence classes and extensions of rings with an application to braces publication-title: Commun. Contemp. Math. contributor: fullname: Rybołowicz – year: 1998 ident: 10.1016/j.jalgebra.2022.01.038_br0190 contributor: fullname: Mac Lane – volume: 25 start-page: 1 year: 2020 ident: 10.1016/j.jalgebra.2022.01.038_br0080 article-title: Modules over trusses vs modules over rings: direct sums and free modules publication-title: Algebr. Represent. Theory doi: 10.1007/s10468-020-10008-8 contributor: fullname: Brzeziński – volume: 50 start-page: 153 year: 1978 ident: 10.1016/j.jalgebra.2022.01.038_br0140 article-title: On the ideal and radical embedding of algebras. I. Extreme embeddings publication-title: J. Algebra doi: 10.1016/0021-8693(78)90180-1 contributor: fullname: Flanigan – volume: 327 start-page: 101 year: 2014 ident: 10.1016/j.jalgebra.2022.01.038_br0110 article-title: Braces and the Yang-Baxter equation publication-title: Commun. Math. Phys. doi: 10.1007/s00220-014-1935-y contributor: fullname: Cedó – volume: 37 start-page: 223 year: 2017 ident: 10.1016/j.jalgebra.2022.01.038_br0200 article-title: A note on additive groups of some specific torsion-free rings of rank three and mixed associative rings publication-title: Discus. Math., Gen. Algebra Appl. doi: 10.7151/dmgaa.1274 contributor: fullname: Najafizadeh – volume: 14 start-page: 252 year: 1952 ident: 10.1016/j.jalgebra.2022.01.038_br0240 article-title: Die Verallgemeinerung der Schreierschen Erweiterungstheorie publication-title: Acta Sci. Math. (Szeged) contributor: fullname: Redei – volume: 64 start-page: 363 year: 1942 ident: 10.1016/j.jalgebra.2022.01.038_br0120 article-title: An extension theory for rings publication-title: Am. J. Math. doi: 10.2307/2371690 contributor: fullname: Everett – volume: 22 start-page: 45 year: 1972 ident: 10.1016/j.jalgebra.2022.01.038_br0260 article-title: Idealizers and hereditary Noetherian prime rings publication-title: J. Algebra doi: 10.1016/0021-8693(72)90104-4 contributor: fullname: Robson – volume: 23 year: 2021 ident: 10.1016/j.jalgebra.2022.01.038_br0070 article-title: Congruence classes and extensions of rings with an application to braces publication-title: Commun. Contemp. Math. doi: 10.1142/S0219199720500108 contributor: fullname: Brzeziński – volume: 64 start-page: 240 year: 1956 ident: 10.1016/j.jalgebra.2022.01.038_br0170 article-title: Multipliers of Banach algebras publication-title: Ann. Math. doi: 10.2307/1969971 contributor: fullname: Helgason – year: 1994 ident: 10.1016/j.jalgebra.2022.01.038_br0280 contributor: fullname: Weibel – volume: 224 year: 2020 ident: 10.1016/j.jalgebra.2022.01.038_br0060 article-title: Trusses: paragons, ideals and modules publication-title: J. Pure Appl. Algebra doi: 10.1016/j.jpaa.2019.106258 contributor: fullname: Brzeziński – volume: 307 start-page: 153 year: 2007 ident: 10.1016/j.jalgebra.2022.01.038_br0270 article-title: Braces, radical rings, and the quantum Yang-Baxter equation publication-title: J. Algebra doi: 10.1016/j.jalgebra.2006.03.040 contributor: fullname: Rump – volume: 111 start-page: 19 year: 1935 ident: 10.1016/j.jalgebra.2022.01.038_br0130 article-title: Primärkomponentenzerlegung in nichtkommutativen Ringen publication-title: Math. Ann. doi: 10.1007/BF01472198 contributor: fullname: Fitting – volume: 85 start-page: 21 year: 1985 ident: 10.1016/j.jalgebra.2022.01.038_br0030 article-title: Atoms in the “lattice” of radicals publication-title: Mat. Issled. contributor: fullname: Beidar – volume: 86 start-page: 2519 year: 2017 ident: 10.1016/j.jalgebra.2022.01.038_br0150 article-title: Skew braces and the Yang-Baxter equation publication-title: Math. Comput. doi: 10.1090/mcom/3161 contributor: fullname: Guarnieri – volume: 2 start-page: 316 year: 1958 ident: 10.1016/j.jalgebra.2022.01.038_br0180 article-title: Extensions and obstructions for rings publication-title: Ill. J. Math. contributor: fullname: Mac Lane – volume: 132 start-page: 79 year: 1968 ident: 10.1016/j.jalgebra.2022.01.038_br0100 article-title: Double centralizers and extensions of C⁎-algebras publication-title: Trans. Am. Math. Soc. contributor: fullname: Busby – volume: 83 start-page: 329 year: 2011 ident: 10.1016/j.jalgebra.2022.01.038_br0010 article-title: On maximal essential extensions of rings publication-title: Bull. Aust. Math. Soc. doi: 10.1017/S0004972710001759 contributor: fullname: Andruszkiewicz – volume: 45 start-page: 263 year: 1985 ident: 10.1016/j.jalgebra.2022.01.038_br0220 article-title: Ideal extensions of rings publication-title: Acta Math. Hung. doi: 10.1007/BF01957021 contributor: fullname: Petrich – volume: 14 start-page: 921 year: 1947 ident: 10.1016/j.jalgebra.2022.01.038_br0160 article-title: Cohomology and representations of associative algebras publication-title: Duke Math. J. doi: 10.1215/S0012-7094-47-01473-7 contributor: fullname: Hochschild – volume: 372 start-page: 4149 year: 2019 ident: 10.1016/j.jalgebra.2022.01.038_br0050 article-title: Trusses: between braces and rings publication-title: Trans. Am. Math. Soc. doi: 10.1090/tran/7705 contributor: fullname: Brzeziński – ident: 10.1016/j.jalgebra.2022.01.038_br0090 contributor: fullname: Brzeziński – volume: 160 start-page: 199 year: 1929 ident: 10.1016/j.jalgebra.2022.01.038_br0020 article-title: Zur Einführung des Scharbegriffs publication-title: J. Reine Angew. Math. doi: 10.1515/crll.1929.160.199 contributor: fullname: Baer – volume: vol. 61 start-page: 17 year: 1993 ident: 10.1016/j.jalgebra.2022.01.038_br0040 article-title: On essential extensions, maximal essential extensions and iterated maximal essential extensions in radical theory contributor: fullname: Beidar – volume: 168 start-page: 233 year: 1932 ident: 10.1016/j.jalgebra.2022.01.038_br0210 article-title: Formale Theorie der linearen Differentialgleichungen. (Zweiter Teil) publication-title: J. Reine Angew. Math. doi: 10.1515/crll.1932.168.233 contributor: fullname: Ore – year: 1967 ident: 10.1016/j.jalgebra.2022.01.038_br0250 contributor: fullname: Redei – volume: 20 start-page: 165 year: 1924 ident: 10.1016/j.jalgebra.2022.01.038_br0230 article-title: Theorie der Abelschen Gruppen. I. Grundeigenschaften publication-title: Math. Z. doi: 10.1007/BF01188079 contributor: fullname: Prüfer |
SSID | ssj0011548 |
Score | 2.4250681 |
Snippet | It is shown that there is a close relationship between ideal extensions of rings and trusses, that is, sets with a semigroup operation distributing over a... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 237 |
SubjectTerms | Extension Ring Truss |
Title | Ideal ring extensions and trusses |
URI | https://dx.doi.org/10.1016/j.jalgebra.2022.01.038 |
Volume | 600 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwED7yWNqh9EnTR3ChqxLZkiV3DKEhaWmmBrIJPSEZ3IIz97dXku2QQqFDRwnOWJ_E3el03x3AozIq0DEz5E0lRdRqjqRLJbKamoxJQ6yOCbJLNl_Rl3W-7sC05cKEtMpG99c6PWrrZmbcoDn-3GwCxzf2U_InEscOEl3ox0eiHvQni9f5cv-YELzyOtMjRUHggCi8HW1DOw1_MfVXxSyLFTwDVeU3G3Vgd2ancNI4jMmk_qcz6NjyHI7f9tVWqwt4WBjv7iUhQpfEoHaIgFWJLE0SKBWVrS5hNXt-n85R0_oAacLwDpks05QQaaxyitEid0VmuHIME4-kLDDhTmHNFPfm3KlcKs2YSh1nqfEIa3IFvfKjtNeQ0Difc65CqaGC-Q9JZixmhiqiCBvAuF2s-KwrXIg29WsrWnhEgEfgVHh4BvDUYiJ-7JXwavgP2Zt_yN7CURiFRK00v4Oeh9Dee5dgp4bQHX2lw2bjvwFUV7XW |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8MwDBZde9h2GHuy7pnBrl6T2HHSYykr6fo4tdCb8SvQHtJC-v-ZnEfpYLDDrjYyzmcjyYo-CeBdGeXomCFBU8kIszomMgsksZqZkEtDrS4TZOc8XbKvVbRqwbDhwri0ylr3Vzq91Nb1SK9Gs7dbrx3Ht-ynhDfSLztInEAHvYE-XvbOYDxJ54efCc4rrzI9AuIEjojCm4-Na6eBD1N8KoZhWcHTUVV-s1FHdmd0CRe1w-gNqj1dQcvm13A-O1RbLW7gbWzQ3fNchM4rg9ouAlZ4Mjeeo1QUtriF5ehzMUxJ3fqAaMr9PTFhqBml0liVKc6SKEtCE6uM-xSRlIlP40z5mqsYzXmmIqk05yrIYh4YRFjTO2jn29zeg8fK8SiOlSs1lHBcSHJjfW6YooryLvSajxW7qsKFaFK_NqKBRzh4hB8IhKcL_QYT8eOsBKrhP2Qf_iH7CqfpYjYV0_F88ghnbsYlbQXRE7QRTvuM7sFevdTH_w3S9bfT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ideal+ring+extensions+and+trusses&rft.jtitle=Journal+of+algebra&rft.au=Andruszkiewicz%2C+Ryszard+R.&rft.au=Brzezi%C5%84ski%2C+Tomasz&rft.au=Rybo%C5%82owicz%2C+Bernard&rft.date=2022-06-15&rft.pub=Elsevier+Inc&rft.issn=0021-8693&rft.eissn=1090-266X&rft.volume=600&rft.spage=237&rft.epage=278&rft_id=info:doi/10.1016%2Fj.jalgebra.2022.01.038&rft.externalDocID=S0021869322000680 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8693&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8693&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8693&client=summon |