A lifetime assessment and prediction method for large area solder joints
Mechanical bending fatigue experiments were conducted on large area Pb-rich and SnSb-based model solder joints consisting of Cu-strip/solder/DCB substrates. Experimental lifetime curves in the range between 105 and 108 loading cycles at room and elevated temperature showed an improved fatigue resist...
Saved in:
Published in | Microelectronics and reliability Vol. 114; p. 113888 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | Mechanical bending fatigue experiments were conducted on large area Pb-rich and SnSb-based model solder joints consisting of Cu-strip/solder/DCB substrates. Experimental lifetime curves in the range between 105 and 108 loading cycles at room and elevated temperature showed an improved fatigue resistance for SnSb alloys. Crack length as a function of loading cycles (da/dN) was determined for selected samples to study the cyclic degradation behaviour of the solder layer. Crack initiation and propagation in the joints was modelled on the basis of a damage accumulation rule considering the strain rate and temperature dependency of the solder alloy. Application of the FEM model to large area solder joints allowed calculation of the incremental advancement of the crack front, determination of the crack growth rate (da/dN) and prediction of lifetime under a given loading condition.
•High cyclic fatigue life of Pb-rich and SnSb-based model solder joints were determined at room and elevated temperatures•Improved fatigue resistance was obtained for Cu/SnSb solder joints•Strain rate and temperature dependent crack initiation and growth model based on a damage accumulation rule is established•FEM allowed to establish crack growth and life time prediction curves for solder joints under given loading conditions |
---|---|
AbstractList | Mechanical bending fatigue experiments were conducted on large area Pb-rich and SnSb-based model solder joints consisting of Cu-strip/solder/DCB substrates. Experimental lifetime curves in the range between 105 and 108 loading cycles at room and elevated temperature showed an improved fatigue resistance for SnSb alloys. Crack length as a function of loading cycles (da/dN) was determined for selected samples to study the cyclic degradation behaviour of the solder layer. Crack initiation and propagation in the joints was modelled on the basis of a damage accumulation rule considering the strain rate and temperature dependency of the solder alloy. Application of the FEM model to large area solder joints allowed calculation of the incremental advancement of the crack front, determination of the crack growth rate (da/dN) and prediction of lifetime under a given loading condition.
•High cyclic fatigue life of Pb-rich and SnSb-based model solder joints were determined at room and elevated temperatures•Improved fatigue resistance was obtained for Cu/SnSb solder joints•Strain rate and temperature dependent crack initiation and growth model based on a damage accumulation rule is established•FEM allowed to establish crack growth and life time prediction curves for solder joints under given loading conditions |
ArticleNumber | 113888 |
Author | Lederer, M. Kotas, A. Betzwar Khatibi, G. |
Author_xml | – sequence: 1 givenname: M. surname: Lederer fullname: Lederer, M. – sequence: 2 givenname: A. Betzwar surname: Kotas fullname: Kotas, A. Betzwar – sequence: 3 givenname: G. surname: Khatibi fullname: Khatibi, G. email: golta.khatibi@tuwien.ac.at |
BookMark | eNqFkMFKAzEQhoNUsFZfQfICWyfZ3WwWPFiKWqHgRcFbyCYTTdndlCQIvr1bqhcvPf0wzPcz812S2RhGJOSGwZIBE7e75eBNDBH7JQc-DVkppTwjcyYbXrQVe5-ROQAXBW9YdUEuU9oBQAOMzclmRXvvMPsBqU4JUxpwzFSPlu4jWm-yDyMdMH8GS12ItNfxY1qNqGkKvcVId8GPOV2Rc6f7hNe_uSBvjw-v602xfXl6Xq-2hSkF5MI4aYUEN2XDtamFrmXJoTO6raxosWXadF1dl5U0xtXWtV3bAArkAiRry3JB7o6908spRXTK-KwPV-aofa8YqIMVtVN_VtTBijpamXDxD99HP-j4fRq8P4I4PfflMapkPI5mchTRZGWDP1XxA2oihCQ |
CitedBy_id | crossref_primary_10_1007_s10854_021_07437_6 crossref_primary_10_1007_s40194_022_01453_8 crossref_primary_10_1108_RS_12_2023_0050 crossref_primary_10_2320_matertrans_MT_M2021200 crossref_primary_10_1016_j_microrel_2023_114994 crossref_primary_10_1016_j_microrel_2023_115098 crossref_primary_10_1002_adem_202401703 |
Cites_doi | 10.1016/j.jmps.2018.07.026 10.1109/TIE.2010.2089936 10.1109/ISPSD.2015.7123454 10.1016/j.microrel.2017.06.081 10.1016/j.msea.2011.02.034 10.1016/j.microrel.2014.08.007 10.5104/jiepeng.8.8 10.1007/s11664-011-1895-3 10.1016/j.microrel.2018.03.009 10.1016/j.ijsolstr.2006.12.026 |
ContentType | Journal Article |
Copyright | 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.microrel.2020.113888 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-941X |
ExternalDocumentID | 10_1016_j_microrel_2020_113888 S0026271420305771 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 29M 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SDF SDG SES SET SEW SPC SPCBC SPD SSM SST SSV SSZ T5K T9H TAE UHS UNMZH WUQ XOL ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c360t-cf8d680fcf872ac56a58320bca94d69e91acbb55348ccf5df9b970e6e26081933 |
IEDL.DBID | .~1 |
ISSN | 0026-2714 |
IngestDate | Thu Apr 24 22:52:58 EDT 2025 Tue Jul 01 01:27:33 EDT 2025 Fri Feb 23 02:46:05 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-cf8d680fcf872ac56a58320bca94d69e91acbb55348ccf5df9b970e6e26081933 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0026271420305771 |
ParticipantIDs | crossref_citationtrail_10_1016_j_microrel_2020_113888 crossref_primary_10_1016_j_microrel_2020_113888 elsevier_sciencedirect_doi_10_1016_j_microrel_2020_113888 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationTitle | Microelectronics and reliability |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Engelmaier (bb0015) 1983; 6 Hosseini, Dadfarnia, Somerday, Sofronis, Ritchie (bb0085) 2018; 121 Hunger, Bayerer (bb0025) 2009 Lemaıtre (bb0075) 1992 Darveaux (bb0070) 1997 Morozumi, Hiroaki, Nishimura, Mochizuki, Takahashi (bb0055) 2015; 8 Siow (bb0005) 2019 N. Heuck, R. Bayerer, S. Krasel, F. Otto, R. Speckels, K. Guth, (2015). 321–324. . Xue (bb0080) 2007; 44 Lall (bb0020) 2011; 58 Geranmayeh, Mahmudi, Kangooie (bb0065) 2011; 528 Kashi, Keshavarz, Vasilevskiy, Masut, Turenne (bb0040) 2012; 41 Mohaparata, Smith (bb0045) 2017 Gupta (bb0060) 2003 Junghaenel, Scheuermann (bb0030) 2017; 76–77 Khatibi, Betzwar Kotas, Lederer (bb0035) 2018; 85 Dietrich (bb0050) 2014; 54 Hosseini (10.1016/j.microrel.2020.113888_bb0085) 2018; 121 Hunger (10.1016/j.microrel.2020.113888_bb0025) 2009 Junghaenel (10.1016/j.microrel.2020.113888_bb0030) 2017; 76–77 Darveaux (10.1016/j.microrel.2020.113888_bb0070) 1997 Engelmaier (10.1016/j.microrel.2020.113888_bb0015) 1983; 6 Khatibi (10.1016/j.microrel.2020.113888_bb0035) 2018; 85 Lall (10.1016/j.microrel.2020.113888_bb0020) 2011; 58 Lemaıtre (10.1016/j.microrel.2020.113888_bb0075) 1992 Gupta (10.1016/j.microrel.2020.113888_bb0060) 2003 Geranmayeh (10.1016/j.microrel.2020.113888_bb0065) 2011; 528 Morozumi (10.1016/j.microrel.2020.113888_bb0055) 2015; 8 Kashi (10.1016/j.microrel.2020.113888_bb0040) 2012; 41 Dietrich (10.1016/j.microrel.2020.113888_bb0050) 2014; 54 Siow (10.1016/j.microrel.2020.113888_bb0005) 2019 Mohaparata (10.1016/j.microrel.2020.113888_bb0045) 2017 10.1016/j.microrel.2020.113888_bb0010 Xue (10.1016/j.microrel.2020.113888_bb0080) 2007; 44 |
References_xml | – volume: 528 start-page: 3967 year: 2011 end-page: 3972 ident: bb0065 publication-title: Mater. Sci. Eng. A – volume: 54 start-page: 1901 year: 2014 end-page: 1905 ident: bb0050 publication-title: Microelectron. Reliab. – volume: 41 year: 2012 ident: bb0040 publication-title: J. Electron. Mater. – year: 1992 ident: bb0075 article-title: A Course on Damage Mechanics – volume: 8 start-page: 8 year: 2015 end-page: 17 ident: bb0055 publication-title: Trans. Jpn. Inst. Electron. Packag. – reference: N. Heuck, R. Bayerer, S. Krasel, F. Otto, R. Speckels, K. Guth, (2015). 321–324. – reference: . – volume: 44 start-page: 5163 year: 2007 end-page: 5181 ident: bb0080 publication-title: Int. J. Solids Struct. – volume: 121 start-page: 341 year: 2018 end-page: 362 ident: bb0085 publication-title: J. Mech. Phys. Solids – year: 2019 ident: bb0005 article-title: Die-Attach Materials for High Temperature Applications in Microelectronics Packaging – volume: 76–77 start-page: 480 year: 2017 end-page: 484 ident: bb0030 publication-title: Microelectron. Reliab. – start-page: 64 year: 2003 end-page: 66 ident: bb0060 article-title: Temperature and Rate Dependent Partitioned Relationships for 95.5Pb2Sn2.Ag Solder Alloy – volume: 58 start-page: 2605 year: 2011 end-page: 2616 ident: bb0020 publication-title: IEEE Trans. Ind. Electron. – start-page: 713 year: 2009 end-page: 716 ident: bb0025 article-title: PCIM – start-page: 1 year: 2017 end-page: 14 ident: bb0045 article-title: SAMPE Conference Proceedings – start-page: 213 year: 1997 end-page: 218 ident: bb0070 article-title: Solder joint fatigue life model publication-title: Proc. TMS Annual Meeting, Orlando, FL – volume: 85 start-page: 1 year: 2018 end-page: 11 ident: bb0035 publication-title: Microelectron. Reliab. – volume: 6 start-page: 232 year: 1983 end-page: 237 ident: bb0015 publication-title: IEEE Trans. Compon. Packag. Manuf. Technol. – volume: 121 start-page: 341 year: 2018 ident: 10.1016/j.microrel.2020.113888_bb0085 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2018.07.026 – start-page: 64 year: 2003 ident: 10.1016/j.microrel.2020.113888_bb0060 – volume: 58 start-page: 2605 issue: /7 year: 2011 ident: 10.1016/j.microrel.2020.113888_bb0020 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2010.2089936 – ident: 10.1016/j.microrel.2020.113888_bb0010 doi: 10.1109/ISPSD.2015.7123454 – year: 2019 ident: 10.1016/j.microrel.2020.113888_bb0005 – volume: 6 start-page: 232 year: 1983 ident: 10.1016/j.microrel.2020.113888_bb0015 publication-title: IEEE Trans. Compon. Packag. Manuf. Technol. – start-page: 213 year: 1997 ident: 10.1016/j.microrel.2020.113888_bb0070 article-title: Solder joint fatigue life model – start-page: 1 year: 2017 ident: 10.1016/j.microrel.2020.113888_bb0045 – year: 1992 ident: 10.1016/j.microrel.2020.113888_bb0075 – volume: 76–77 start-page: 480 year: 2017 ident: 10.1016/j.microrel.2020.113888_bb0030 publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2017.06.081 – volume: 528 start-page: 3967 year: 2011 ident: 10.1016/j.microrel.2020.113888_bb0065 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2011.02.034 – start-page: 713 year: 2009 ident: 10.1016/j.microrel.2020.113888_bb0025 – volume: 54 start-page: 1901 year: 2014 ident: 10.1016/j.microrel.2020.113888_bb0050 publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2014.08.007 – volume: 8 start-page: 8 year: 2015 ident: 10.1016/j.microrel.2020.113888_bb0055 publication-title: Trans. Jpn. Inst. Electron. Packag. doi: 10.5104/jiepeng.8.8 – volume: 41 year: 2012 ident: 10.1016/j.microrel.2020.113888_bb0040 publication-title: J. Electron. Mater. doi: 10.1007/s11664-011-1895-3 – volume: 85 start-page: 1 year: 2018 ident: 10.1016/j.microrel.2020.113888_bb0035 publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2018.03.009 – volume: 44 start-page: 5163 year: 2007 ident: 10.1016/j.microrel.2020.113888_bb0080 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2006.12.026 |
SSID | ssj0007011 |
Score | 2.3135176 |
Snippet | Mechanical bending fatigue experiments were conducted on large area Pb-rich and SnSb-based model solder joints consisting of Cu-strip/solder/DCB substrates.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 113888 |
Title | A lifetime assessment and prediction method for large area solder joints |
URI | https://dx.doi.org/10.1016/j.microrel.2020.113888 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBYhXdqh9EnTR9DQ1YkfelhjCA1uC5kayGb0BIfUCa679rdXsuw0hUKGTsbGB-LjdHdC990HwKOSRAgWk4AorAIkVRSwhIkAI86kiR1bs-m2mJNsgV6WeNkD044L49oq29jvY3oTrdsv4xbN8bYoHMc3JjGNUOx8ljY8coSo8_LR10-bBw0jr5pn1-P-3mMJr0bvrumt0u4KIm7kTdJGgeWPBLWXdGZn4LStFuHEL-gc9HR5AU72ZghegmwC14XRTiMe8t2YTchLBbeVu4VxyEMvFA1thQrXrvcbclssQut3SldwtSnK-uMKLGZPb9MsaOURApmQsA6kSRVJQ2OfNOYSE47t9gyF5AwpwjSLuBQC4wSlUhqsDBOMhppoe4SxdUCSXIN-uSn1DYA272uMDUpFIhENU3toIiQURgukEDV6AHCHSS7b2eFOwmKdd01iq7zDMndY5h7LARjv7LZ-esZBC9ZBnv_yg9yG-AO2t_-wvQPH7s2zDO9Bv64-9YMtN2oxbPxpCI4mz6_Z_BvrMNWT |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEG4IHtSD8Rnx2YMeF3ZL290ePBCVgCAnSLit21cCwYUsGOPFP-UftN0HYmLCwXDaZDeTNF8nM9PtN_MBcCMF5Zwh6lBJpIOF9BxWZ9whOGJCI9utmbIterQ1wE9DMiyBr6IXxtIq89ifxfQ0WudvajmatdloZHt8EUW-h5H1Wd_3cmZlR328m3Pb_K79YDb5FqHmY_--5eTSAo6oU3fhCB1IGrjaPH0UCUIjYlzb5SJiWFKmmBcJzgmp40AITaRmnPmuosqU_yaH2r-gJu5vYRMurGxC9fOHV-K7XibTZwCwy1tpSx5XXy3LLlH2zgOleipBKvnyR0ZcyXLNfbCXl6ewkSFwAEoqPgS7K0MLj0CrAScjrawoPYyWcz1hFEs4S-y1j91qmClTQ1MSw4klm8PIVKfQOLpUCRxPR_FifgwGGwHtBJTjaaxOATSFhiJE44DXBfbdwJzSKHW5VhxL7GtVAaTAJBT5sHKrmTEJC1baOCywDC2WYYZlBdSWdrNsXMdaC1ZAHv5yvNDklDW2Z_-wvQbbrf5zN-y2e51zsGO_ZC2OF6C8SN7Upal1Fvwq9S0IXjbtzN9omBH0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lifetime+assessment+and+prediction+method+for+large+area+solder+joints&rft.jtitle=Microelectronics+and+reliability&rft.au=Lederer%2C+M.&rft.au=Kotas%2C+A.+Betzwar&rft.au=Khatibi%2C+G.&rft.date=2020-11-01&rft.issn=0026-2714&rft.volume=114&rft.spage=113888&rft_id=info:doi/10.1016%2Fj.microrel.2020.113888&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_microrel_2020_113888 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon |