A lifetime assessment and prediction method for large area solder joints

Mechanical bending fatigue experiments were conducted on large area Pb-rich and SnSb-based model solder joints consisting of Cu-strip/solder/DCB substrates. Experimental lifetime curves in the range between 105 and 108 loading cycles at room and elevated temperature showed an improved fatigue resist...

Full description

Saved in:
Bibliographic Details
Published inMicroelectronics and reliability Vol. 114; p. 113888
Main Authors Lederer, M., Kotas, A. Betzwar, Khatibi, G.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2020
Online AccessGet full text

Cover

Loading…
Abstract Mechanical bending fatigue experiments were conducted on large area Pb-rich and SnSb-based model solder joints consisting of Cu-strip/solder/DCB substrates. Experimental lifetime curves in the range between 105 and 108 loading cycles at room and elevated temperature showed an improved fatigue resistance for SnSb alloys. Crack length as a function of loading cycles (da/dN) was determined for selected samples to study the cyclic degradation behaviour of the solder layer. Crack initiation and propagation in the joints was modelled on the basis of a damage accumulation rule considering the strain rate and temperature dependency of the solder alloy. Application of the FEM model to large area solder joints allowed calculation of the incremental advancement of the crack front, determination of the crack growth rate (da/dN) and prediction of lifetime under a given loading condition. •High cyclic fatigue life of Pb-rich and SnSb-based model solder joints were determined at room and elevated temperatures•Improved fatigue resistance was obtained for Cu/SnSb solder joints•Strain rate and temperature dependent crack initiation and growth model based on a damage accumulation rule is established•FEM allowed to establish crack growth and life time prediction curves for solder joints under given loading conditions
AbstractList Mechanical bending fatigue experiments were conducted on large area Pb-rich and SnSb-based model solder joints consisting of Cu-strip/solder/DCB substrates. Experimental lifetime curves in the range between 105 and 108 loading cycles at room and elevated temperature showed an improved fatigue resistance for SnSb alloys. Crack length as a function of loading cycles (da/dN) was determined for selected samples to study the cyclic degradation behaviour of the solder layer. Crack initiation and propagation in the joints was modelled on the basis of a damage accumulation rule considering the strain rate and temperature dependency of the solder alloy. Application of the FEM model to large area solder joints allowed calculation of the incremental advancement of the crack front, determination of the crack growth rate (da/dN) and prediction of lifetime under a given loading condition. •High cyclic fatigue life of Pb-rich and SnSb-based model solder joints were determined at room and elevated temperatures•Improved fatigue resistance was obtained for Cu/SnSb solder joints•Strain rate and temperature dependent crack initiation and growth model based on a damage accumulation rule is established•FEM allowed to establish crack growth and life time prediction curves for solder joints under given loading conditions
ArticleNumber 113888
Author Lederer, M.
Kotas, A. Betzwar
Khatibi, G.
Author_xml – sequence: 1
  givenname: M.
  surname: Lederer
  fullname: Lederer, M.
– sequence: 2
  givenname: A. Betzwar
  surname: Kotas
  fullname: Kotas, A. Betzwar
– sequence: 3
  givenname: G.
  surname: Khatibi
  fullname: Khatibi, G.
  email: golta.khatibi@tuwien.ac.at
BookMark eNqFkMFKAzEQhoNUsFZfQfICWyfZ3WwWPFiKWqHgRcFbyCYTTdndlCQIvr1bqhcvPf0wzPcz812S2RhGJOSGwZIBE7e75eBNDBH7JQc-DVkppTwjcyYbXrQVe5-ROQAXBW9YdUEuU9oBQAOMzclmRXvvMPsBqU4JUxpwzFSPlu4jWm-yDyMdMH8GS12ItNfxY1qNqGkKvcVId8GPOV2Rc6f7hNe_uSBvjw-v602xfXl6Xq-2hSkF5MI4aYUEN2XDtamFrmXJoTO6raxosWXadF1dl5U0xtXWtV3bAArkAiRry3JB7o6908spRXTK-KwPV-aofa8YqIMVtVN_VtTBijpamXDxD99HP-j4fRq8P4I4PfflMapkPI5mchTRZGWDP1XxA2oihCQ
CitedBy_id crossref_primary_10_1007_s10854_021_07437_6
crossref_primary_10_1007_s40194_022_01453_8
crossref_primary_10_1108_RS_12_2023_0050
crossref_primary_10_2320_matertrans_MT_M2021200
crossref_primary_10_1016_j_microrel_2023_114994
crossref_primary_10_1016_j_microrel_2023_115098
crossref_primary_10_1002_adem_202401703
Cites_doi 10.1016/j.jmps.2018.07.026
10.1109/TIE.2010.2089936
10.1109/ISPSD.2015.7123454
10.1016/j.microrel.2017.06.081
10.1016/j.msea.2011.02.034
10.1016/j.microrel.2014.08.007
10.5104/jiepeng.8.8
10.1007/s11664-011-1895-3
10.1016/j.microrel.2018.03.009
10.1016/j.ijsolstr.2006.12.026
ContentType Journal Article
Copyright 2020 The Authors
Copyright_xml – notice: 2020 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.microrel.2020.113888
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-941X
ExternalDocumentID 10_1016_j_microrel_2020_113888
S0026271420305771
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
29M
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSM
SST
SSV
SSZ
T5K
T9H
TAE
UHS
UNMZH
WUQ
XOL
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c360t-cf8d680fcf872ac56a58320bca94d69e91acbb55348ccf5df9b970e6e26081933
IEDL.DBID .~1
ISSN 0026-2714
IngestDate Thu Apr 24 22:52:58 EDT 2025
Tue Jul 01 01:27:33 EDT 2025
Fri Feb 23 02:46:05 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-cf8d680fcf872ac56a58320bca94d69e91acbb55348ccf5df9b970e6e26081933
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0026271420305771
ParticipantIDs crossref_citationtrail_10_1016_j_microrel_2020_113888
crossref_primary_10_1016_j_microrel_2020_113888
elsevier_sciencedirect_doi_10_1016_j_microrel_2020_113888
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Microelectronics and reliability
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Engelmaier (bb0015) 1983; 6
Hosseini, Dadfarnia, Somerday, Sofronis, Ritchie (bb0085) 2018; 121
Hunger, Bayerer (bb0025) 2009
Lemaıtre (bb0075) 1992
Darveaux (bb0070) 1997
Morozumi, Hiroaki, Nishimura, Mochizuki, Takahashi (bb0055) 2015; 8
Siow (bb0005) 2019
N. Heuck, R. Bayerer, S. Krasel, F. Otto, R. Speckels, K. Guth, (2015). 321–324.
.
Xue (bb0080) 2007; 44
Lall (bb0020) 2011; 58
Geranmayeh, Mahmudi, Kangooie (bb0065) 2011; 528
Kashi, Keshavarz, Vasilevskiy, Masut, Turenne (bb0040) 2012; 41
Mohaparata, Smith (bb0045) 2017
Gupta (bb0060) 2003
Junghaenel, Scheuermann (bb0030) 2017; 76–77
Khatibi, Betzwar Kotas, Lederer (bb0035) 2018; 85
Dietrich (bb0050) 2014; 54
Hosseini (10.1016/j.microrel.2020.113888_bb0085) 2018; 121
Hunger (10.1016/j.microrel.2020.113888_bb0025) 2009
Junghaenel (10.1016/j.microrel.2020.113888_bb0030) 2017; 76–77
Darveaux (10.1016/j.microrel.2020.113888_bb0070) 1997
Engelmaier (10.1016/j.microrel.2020.113888_bb0015) 1983; 6
Khatibi (10.1016/j.microrel.2020.113888_bb0035) 2018; 85
Lall (10.1016/j.microrel.2020.113888_bb0020) 2011; 58
Lemaıtre (10.1016/j.microrel.2020.113888_bb0075) 1992
Gupta (10.1016/j.microrel.2020.113888_bb0060) 2003
Geranmayeh (10.1016/j.microrel.2020.113888_bb0065) 2011; 528
Morozumi (10.1016/j.microrel.2020.113888_bb0055) 2015; 8
Kashi (10.1016/j.microrel.2020.113888_bb0040) 2012; 41
Dietrich (10.1016/j.microrel.2020.113888_bb0050) 2014; 54
Siow (10.1016/j.microrel.2020.113888_bb0005) 2019
Mohaparata (10.1016/j.microrel.2020.113888_bb0045) 2017
10.1016/j.microrel.2020.113888_bb0010
Xue (10.1016/j.microrel.2020.113888_bb0080) 2007; 44
References_xml – volume: 528
  start-page: 3967
  year: 2011
  end-page: 3972
  ident: bb0065
  publication-title: Mater. Sci. Eng. A
– volume: 54
  start-page: 1901
  year: 2014
  end-page: 1905
  ident: bb0050
  publication-title: Microelectron. Reliab.
– volume: 41
  year: 2012
  ident: bb0040
  publication-title: J. Electron. Mater.
– year: 1992
  ident: bb0075
  article-title: A Course on Damage Mechanics
– volume: 8
  start-page: 8
  year: 2015
  end-page: 17
  ident: bb0055
  publication-title: Trans. Jpn. Inst. Electron. Packag.
– reference: N. Heuck, R. Bayerer, S. Krasel, F. Otto, R. Speckels, K. Guth, (2015). 321–324.
– reference: .
– volume: 44
  start-page: 5163
  year: 2007
  end-page: 5181
  ident: bb0080
  publication-title: Int. J. Solids Struct.
– volume: 121
  start-page: 341
  year: 2018
  end-page: 362
  ident: bb0085
  publication-title: J. Mech. Phys. Solids
– year: 2019
  ident: bb0005
  article-title: Die-Attach Materials for High Temperature Applications in Microelectronics Packaging
– volume: 76–77
  start-page: 480
  year: 2017
  end-page: 484
  ident: bb0030
  publication-title: Microelectron. Reliab.
– start-page: 64
  year: 2003
  end-page: 66
  ident: bb0060
  article-title: Temperature and Rate Dependent Partitioned Relationships for 95.5Pb2Sn2.Ag Solder Alloy
– volume: 58
  start-page: 2605
  year: 2011
  end-page: 2616
  ident: bb0020
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 713
  year: 2009
  end-page: 716
  ident: bb0025
  article-title: PCIM
– start-page: 1
  year: 2017
  end-page: 14
  ident: bb0045
  article-title: SAMPE Conference Proceedings
– start-page: 213
  year: 1997
  end-page: 218
  ident: bb0070
  article-title: Solder joint fatigue life model
  publication-title: Proc. TMS Annual Meeting, Orlando, FL
– volume: 85
  start-page: 1
  year: 2018
  end-page: 11
  ident: bb0035
  publication-title: Microelectron. Reliab.
– volume: 6
  start-page: 232
  year: 1983
  end-page: 237
  ident: bb0015
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol.
– volume: 121
  start-page: 341
  year: 2018
  ident: 10.1016/j.microrel.2020.113888_bb0085
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2018.07.026
– start-page: 64
  year: 2003
  ident: 10.1016/j.microrel.2020.113888_bb0060
– volume: 58
  start-page: 2605
  issue: /7
  year: 2011
  ident: 10.1016/j.microrel.2020.113888_bb0020
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2010.2089936
– ident: 10.1016/j.microrel.2020.113888_bb0010
  doi: 10.1109/ISPSD.2015.7123454
– year: 2019
  ident: 10.1016/j.microrel.2020.113888_bb0005
– volume: 6
  start-page: 232
  year: 1983
  ident: 10.1016/j.microrel.2020.113888_bb0015
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol.
– start-page: 213
  year: 1997
  ident: 10.1016/j.microrel.2020.113888_bb0070
  article-title: Solder joint fatigue life model
– start-page: 1
  year: 2017
  ident: 10.1016/j.microrel.2020.113888_bb0045
– year: 1992
  ident: 10.1016/j.microrel.2020.113888_bb0075
– volume: 76–77
  start-page: 480
  year: 2017
  ident: 10.1016/j.microrel.2020.113888_bb0030
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2017.06.081
– volume: 528
  start-page: 3967
  year: 2011
  ident: 10.1016/j.microrel.2020.113888_bb0065
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2011.02.034
– start-page: 713
  year: 2009
  ident: 10.1016/j.microrel.2020.113888_bb0025
– volume: 54
  start-page: 1901
  year: 2014
  ident: 10.1016/j.microrel.2020.113888_bb0050
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2014.08.007
– volume: 8
  start-page: 8
  year: 2015
  ident: 10.1016/j.microrel.2020.113888_bb0055
  publication-title: Trans. Jpn. Inst. Electron. Packag.
  doi: 10.5104/jiepeng.8.8
– volume: 41
  year: 2012
  ident: 10.1016/j.microrel.2020.113888_bb0040
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-011-1895-3
– volume: 85
  start-page: 1
  year: 2018
  ident: 10.1016/j.microrel.2020.113888_bb0035
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2018.03.009
– volume: 44
  start-page: 5163
  year: 2007
  ident: 10.1016/j.microrel.2020.113888_bb0080
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2006.12.026
SSID ssj0007011
Score 2.3135176
Snippet Mechanical bending fatigue experiments were conducted on large area Pb-rich and SnSb-based model solder joints consisting of Cu-strip/solder/DCB substrates....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113888
Title A lifetime assessment and prediction method for large area solder joints
URI https://dx.doi.org/10.1016/j.microrel.2020.113888
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBYhXdqh9EnTR9DQ1YkfelhjCA1uC5kayGb0BIfUCa679rdXsuw0hUKGTsbGB-LjdHdC990HwKOSRAgWk4AorAIkVRSwhIkAI86kiR1bs-m2mJNsgV6WeNkD044L49oq29jvY3oTrdsv4xbN8bYoHMc3JjGNUOx8ljY8coSo8_LR10-bBw0jr5pn1-P-3mMJr0bvrumt0u4KIm7kTdJGgeWPBLWXdGZn4LStFuHEL-gc9HR5AU72ZghegmwC14XRTiMe8t2YTchLBbeVu4VxyEMvFA1thQrXrvcbclssQut3SldwtSnK-uMKLGZPb9MsaOURApmQsA6kSRVJQ2OfNOYSE47t9gyF5AwpwjSLuBQC4wSlUhqsDBOMhppoe4SxdUCSXIN-uSn1DYA272uMDUpFIhENU3toIiQURgukEDV6AHCHSS7b2eFOwmKdd01iq7zDMndY5h7LARjv7LZ-esZBC9ZBnv_yg9yG-AO2t_-wvQPH7s2zDO9Bv64-9YMtN2oxbPxpCI4mz6_Z_BvrMNWT
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEG4IHtSD8Rnx2YMeF3ZL290ePBCVgCAnSLit21cCwYUsGOPFP-UftN0HYmLCwXDaZDeTNF8nM9PtN_MBcCMF5Zwh6lBJpIOF9BxWZ9whOGJCI9utmbIterQ1wE9DMiyBr6IXxtIq89ifxfQ0WudvajmatdloZHt8EUW-h5H1Wd_3cmZlR328m3Pb_K79YDb5FqHmY_--5eTSAo6oU3fhCB1IGrjaPH0UCUIjYlzb5SJiWFKmmBcJzgmp40AITaRmnPmuosqU_yaH2r-gJu5vYRMurGxC9fOHV-K7XibTZwCwy1tpSx5XXy3LLlH2zgOleipBKvnyR0ZcyXLNfbCXl6ewkSFwAEoqPgS7K0MLj0CrAScjrawoPYyWcz1hFEs4S-y1j91qmClTQ1MSw4klm8PIVKfQOLpUCRxPR_FifgwGGwHtBJTjaaxOATSFhiJE44DXBfbdwJzSKHW5VhxL7GtVAaTAJBT5sHKrmTEJC1baOCywDC2WYYZlBdSWdrNsXMdaC1ZAHv5yvNDklDW2Z_-wvQbbrf5zN-y2e51zsGO_ZC2OF6C8SN7Upal1Fvwq9S0IXjbtzN9omBH0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+lifetime+assessment+and+prediction+method+for+large+area+solder+joints&rft.jtitle=Microelectronics+and+reliability&rft.au=Lederer%2C+M.&rft.au=Kotas%2C+A.+Betzwar&rft.au=Khatibi%2C+G.&rft.date=2020-11-01&rft.issn=0026-2714&rft.volume=114&rft.spage=113888&rft_id=info:doi/10.1016%2Fj.microrel.2020.113888&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_microrel_2020_113888
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon