RAPID: A Radiosity Applicable to Porous IndiviDual Objects for directional reflectance over complex vegetated scenes
A novel computer graphics-based radiosity model applicable to porous individual thin objects, named RAPID, is developed for fast calculation of multiple scattering and bidirectional reflectance factor (BRF) over complex, vegetated scenes. Instead of hundreds of small leaf facets, only a small number...
Saved in:
Published in | Remote sensing of environment Vol. 132; pp. 221 - 237 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Elsevier Inc
15.05.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel computer graphics-based radiosity model applicable to porous individual thin objects, named RAPID, is developed for fast calculation of multiple scattering and bidirectional reflectance factor (BRF) over complex, vegetated scenes. Instead of hundreds of small leaf facets, only a small number of porous thin objects are used to construct a complex tree crown or crop canopy. With gaps inside the object, it can effectively represent a group of small leaves. Each porous object has several properties, including shape, size (R), thickness (H), leaf area index (LAI), leaf angle distribution (LAD) and leaf clumping conditions (C). These properties are used to dynamically create the small leaves at run-time; hence, only view factors between porous objects (not between hundreds of small leaves) need to be calculated and stored. As a result, the model significantly reduces the huge memory requirement and long computation time of view factors for a large, realistic vegetation scene. RAPID is able to simulate arbitrary vegetation canopies in complex landscapes and to calculate BRF within a few minutes, which makes its application possible on different satellite pixel levels. This innovative technique is evaluated by comparing with directional reflectances from other models as well as field measurements.
► We develop and validate a radiosity model RAPID using porous individual objects. ► A new conifer shoot model is created for large vegetation scenes. ► RAPID simulates arbitrary vegetation canopies within a few minutes. ► Possible to be applied on different satellite pixel levels. |
---|---|
AbstractList | A novel computer graphics-based radiosity model applicable to porous individual thin objects, named RAPID, is developed for fast calculation of multiple scattering and bidirectional reflectance factor (BRF) over complex, vegetated scenes. Instead of hundreds of small leaf facets, only a small number of porous thin objects are used to construct a complex tree crown or crop canopy. With gaps inside the object, it can effectively represent a group of small leaves. Each porous object has several properties, including shape, size (R), thickness (H), leaf area index (LAI), leaf angle distribution (LAD) and leaf clumping conditions (C). These properties are used to dynamically create the small leaves at run-time; hence, only view factors between porous objects (not between hundreds of small leaves) need to be calculated and stored. As a result, the model significantly reduces the huge memory requirement and long computation time of view factors for a large, realistic vegetation scene. RAPID is able to simulate arbitrary vegetation canopies in complex landscapes and to calculate BRF within a few minutes, which makes its application possible on different satellite pixel levels. This innovative technique is evaluated by comparing with directional reflectances from other models as well as field measurements.
► We develop and validate a radiosity model RAPID using porous individual objects. ► A new conifer shoot model is created for large vegetation scenes. ► RAPID simulates arbitrary vegetation canopies within a few minutes. ► Possible to be applied on different satellite pixel levels. A novel computer graphics-based radiosity model applicable to porous individual thin objects, named RAPID, is developed for fast calculation of multiple scattering and bidirectional reflectance factor (BRF) over complex, vegetated scenes. Instead of hundreds of small leaf facets, only a small number of porous thin objects are used to construct a complex tree crown or crop canopy. With gaps inside the object, it can effectively represent a group of small leaves. Each porous object has several properties, including shape, size (R), thickness (H), leaf area index (LAI), leaf angle distribution (LAD) and leaf clumping conditions (C). These properties are used to dynamically create the small leaves at run-time; hence, only view factors between porous objects (not between hundreds of small leaves) need to be calculated and stored. As a result, the model significantly reduces the huge memory requirement and long computation time of view factors for a large, realistic vegetation scene. RAPID is able to simulate arbitrary vegetation canopies in complex landscapes and to calculate BRF within a few minutes, which makes its application possible on different satellite pixel levels. This innovative technique is evaluated by comparing with directional reflectances from other models as well as field measurements. |
Author | Qin, Wenhan Huang, Huaguo Liu, Qinhuo |
Author_xml | – sequence: 1 givenname: Huaguo surname: Huang fullname: Huang, Huaguo email: huaguo.huang@gmail.com organization: Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, P. R. China – sequence: 2 givenname: Wenhan surname: Qin fullname: Qin, Wenhan organization: Science Systems and Applications Inc., Lanham, MD, USA – sequence: 3 givenname: Qinhuo surname: Liu fullname: Liu, Qinhuo organization: State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, 100101, Beijing, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27174717$$DView record in Pascal Francis |
BookMark | eNp9UU1rGzEQFSWBOGl_QG66FHpZd2a_JLcnk_TDEEgI6VlI2tkiI6-2kmySf18Zhx56CMwgjXhv0Hvvkp1NYSLGrhGWCNh_3i5jomUN2CwBSzXv2AKlWFUgoD1jC4Cmrdq6ExfsMqUtAHZS4ILlx_XD5vYLX_NHPbiQXH7h63n2zmrjiefAH0IM-8Q30-AO7navPb83W7I58TFEPrhY7i5M5T3S6MugJ0s8HChyG3azp2d-oN-UdaaBJ0sTpffsfNQ-0YfX84r9-v7t6eZndXf_Y3Ozvqts00OuzCCsacBAb0y7QmnqXo4S7ApJSOwstmYAqnUrCajvtNFt17fGrBqNKMe-uWKfTnvnGP7sKWW1c-UH3uuJiiaFAqFGKWVToB9foTpZ7cdYVLik5uh2Or6oWqBoSxccnnA2hpSK4n8QBHVMQm1VSUIdk1CApY67xX8c64odxbQctfNvMr-emFRcOjiKKllHxd-T7WoI7g32XyrEpc4 |
CODEN | RSEEA7 |
CitedBy_id | crossref_primary_10_1109_JSTARS_2017_2751539 crossref_primary_10_1016_j_rse_2022_112973 crossref_primary_10_1146_annurev_ento_120220_125410 crossref_primary_10_3390_rs71215875 crossref_primary_10_1016_j_rse_2018_03_030 crossref_primary_10_1016_j_rse_2018_08_011 crossref_primary_10_1109_TGRS_2019_2952377 crossref_primary_10_1109_JSTARS_2024_3450301 crossref_primary_10_1109_TGRS_2019_2956258 crossref_primary_10_1109_JSTARS_2021_3122509 crossref_primary_10_1016_j_rse_2018_11_036 crossref_primary_10_1109_TGRS_2019_2917923 crossref_primary_10_1016_j_srs_2024_100152 crossref_primary_10_34133_remotesensing_0033 crossref_primary_10_1016_j_rse_2023_113985 crossref_primary_10_1016_j_rse_2022_113301 crossref_primary_10_1109_TGRS_2016_2547326 crossref_primary_10_34133_remotesensing_0039 crossref_primary_10_3390_rs16224296 crossref_primary_10_1109_LGRS_2022_3206312 crossref_primary_10_1016_j_agrformet_2021_108374 crossref_primary_10_1109_TGRS_2017_2704079 crossref_primary_10_1109_JSTARS_2017_2714423 crossref_primary_10_3390_f13020235 crossref_primary_10_1029_2018RG000608 crossref_primary_10_1080_17538947_2021_1936226 crossref_primary_10_1109_LGRS_2015_2440438 crossref_primary_10_1016_j_isprsjprs_2024_11_020 crossref_primary_10_1186_s40663_015_0044_5 crossref_primary_10_3390_rs10050686 crossref_primary_10_1186_s13007_025_01346_z crossref_primary_10_1016_j_rse_2019_111614 crossref_primary_10_3390_rs16152721 crossref_primary_10_3390_rs10030370 crossref_primary_10_3390_rs9080780 crossref_primary_10_1080_07038992_2017_1286937 crossref_primary_10_1016_j_ecolind_2024_112034 crossref_primary_10_1109_TGRS_2024_3519429 crossref_primary_10_1016_j_jag_2023_103549 crossref_primary_10_1109_JSTARS_2017_2750223 crossref_primary_10_1016_j_agrformet_2021_108346 crossref_primary_10_1109_TGRS_2020_3022874 crossref_primary_10_1007_s11430_016_5082_6 crossref_primary_10_3390_rs11212540 crossref_primary_10_3390_rs14061526 crossref_primary_10_3390_rs12203391 crossref_primary_10_3390_f13122139 crossref_primary_10_3390_rs13234911 crossref_primary_10_3390_rs16193627 crossref_primary_10_1109_TGRS_2019_2963366 crossref_primary_10_1080_2150704X_2019_1629706 crossref_primary_10_1109_LGRS_2017_2687702 crossref_primary_10_3390_rs10071133 crossref_primary_10_1016_j_rse_2021_112475 crossref_primary_10_3390_ijgi6120405 crossref_primary_10_1016_j_rse_2023_113759 crossref_primary_10_1016_j_jag_2021_102363 crossref_primary_10_3390_rs10050736 crossref_primary_10_1109_TGRS_2024_3401840 crossref_primary_10_1016_j_jag_2024_104285 crossref_primary_10_3390_rs10081264 crossref_primary_10_3390_rs11101222 crossref_primary_10_1109_JSTARS_2021_3111295 crossref_primary_10_1109_TGRS_2017_2719098 crossref_primary_10_3390_rs12040684 crossref_primary_10_1016_j_rse_2024_114264 crossref_primary_10_3390_rs10060856 crossref_primary_10_1016_j_rse_2020_112040 crossref_primary_10_1109_JSTARS_2020_2987424 |
Cites_doi | 10.1016/S0034-4257(00)00129-2 10.1109/36.628798 10.1029/1998JD200105 10.1016/j.rse.2010.07.014 10.1080/02757259809532351 10.1016/j.rse.2005.10.003 10.1016/S0168-1923(96)02402-1 10.1126/science.1147247 10.1016/0034-4257(85)90072-0 10.1016/j.rse.2008.10.014 10.1109/36.508411 10.1364/AO.10.002354 10.1016/j.eja.2011.06.005 10.1016/j.rse.2003.06.003 10.1016/j.rse.2004.10.010 10.1145/636886.636890 10.1029/96JD03880 10.1016/0034-4257(91)90032-2 10.1016/S0034-4257(01)00344-3 10.1016/S0034-4257(98)00119-9 10.1016/j.ecolmodel.2006.04.010 10.1016/0034-4257(92)90072-R 10.1080/0143116031000115166 10.1109/36.662732 10.1016/j.rse.2005.05.003 10.1016/j.rse.2006.12.007 10.1029/2006JD007821 10.1109/36.763304 10.1117/1.601527 10.1016/j.rse.2009.09.018 10.1016/S0304-3800(98)00100-8 10.1016/0034-4257(84)90057-9 10.1016/j.rse.2009.01.005 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. 2014 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7S9 L.6 |
DOI | 10.1016/j.rse.2013.01.013 |
DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Environmental Sciences |
EISSN | 1879-0704 |
EndPage | 237 |
ExternalDocumentID | 27174717 10_1016_j_rse_2013_01_013 S0034425713000254 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VOH WUQ XOL EFKBS IQODW 7S9 L.6 |
ID | FETCH-LOGICAL-c360t-bd7cb30b06bb4918b268f80c91e7815c14bd0e2a48e0e65aba4564bb93a118f63 |
IEDL.DBID | .~1 |
ISSN | 0034-4257 |
IngestDate | Tue Aug 05 10:27:53 EDT 2025 Mon Jul 21 09:12:20 EDT 2025 Thu Apr 24 22:52:13 EDT 2025 Tue Jul 01 01:34:26 EDT 2025 Fri Feb 23 02:30:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Porous object Directional reflectance Radiosity RAPID models Dynamic characteristic thickness Size Phyllotaxis remote sensing vegetation Plant leaf Representation Multiple scattering distribution Tree crown Computer graphics Plant cover properties Reflectance Leaf area index |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-bd7cb30b06bb4918b268f80c91e7815c14bd0e2a48e0e65aba4564bb93a118f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1710218883 |
PQPubID | 24069 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1710218883 pascalfrancis_primary_27174717 crossref_primary_10_1016_j_rse_2013_01_013 crossref_citationtrail_10_1016_j_rse_2013_01_013 elsevier_sciencedirect_doi_10_1016_j_rse_2013_01_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-15 |
PublicationDateYYYYMMDD | 2013-05-15 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | Remote sensing of environment |
PublicationYear | 2013 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | North (bb0105) 1996; 34 Chen, Blanken, Black, Guilbeault, Chen (bb0015) 1997; 86 Chen, Menges, Leblanc (bb0025) 2005; 97 Combes, Bousquet, Jacquemoud, Sinoquet, Varlet-Grancher, Moya (bb0030) 2007; 109 Li, Zhai (bb0095) 2002; 22 Smith, Jerrell, Ballard, Pedelty (bb0130) 1997; 36 Govaerts, Verstraete (bb0060) 1998; 36 Chelle (bb0005) 2006; 198 Kuusk, Nilson, Kuusk, Lang (bb0085) 2010; 114 Smolander, Stenberg (bb0140) 2005; 94 Lopez-Lozano, Baret, Atauri, Lebon, Tisseyre (bb0100) 2011; 35 Rautiainen, Mõttus, Stenberg (bb0115) 2009; 113 Chen, Leblanc (bb0020) 1997; 35 Gastellu-Etchegorry, Martin, Gascon (bb0050) 2004; 25 Gastellu-Etchegorry, Guillevic, Zagolski, Demarez, Trichon, Deering (bb0045) 1999; 68 Stenberg, Mõttus, Rautiainen (bb0150) 2008 Leblanc, Bicheron, Chen, Leroy, Cihlar (bb0090) 1999; 37 Widlowski, Taberner, Pinty, Bruniquel-Pinel, Disney, Fernandes (bb0180) 2007; 112 Zhao, Gu, Verhoef, Wang, Yu, Liu (bb0185) 2010; 114 Russell, Irons, Dabney (bb0125) 1997; 102 Widlowski, Lavergne, Pinty, Verstraete, Gobron (bb0175) 2006; 48 García-Haro, Gilabert, Meliá (bb0040) 1999; 104 Disney, Lewis, Saich (bb0035) 2006; 100 Goel, Rozehnal, Thompson (bb0055) 1991; 36 Soler, Sillion, Blaise, Dereffye (bb0145) 2003; 22 Chelle, Andrieu (bb0010) 1998; 111 Kuusk, Kuusk, Lang (bb0075) 2009; 113 Thompson, Goel (bb0155) 1998; 16 Jacquemoud, Baret, Hanocq (bb0070) 1992; 41 Verhoef (bb0160) 1984; 16 Smolander, Stenberg (bb0135) 2003; 88 Verhoef (bb0165) 1985; 17 Garcı́a-Haro, Sommer (bb1000) 2002; 81 Howard (bb0065) 1971; 10 Wang, Innes, Lei, Dai, Wu (bb0170) 2007; 318 Kuusk, Lang, Kuusk, Lükk, Nilson, Mõttus (bb0080) 2009 Qin, Gerstl (bb0110) 2000; 74 Li (10.1016/j.rse.2013.01.013_bb0095) 2002; 22 Qin (10.1016/j.rse.2013.01.013_bb0110) 2000; 74 Chelle (10.1016/j.rse.2013.01.013_bb0010) 1998; 111 Goel (10.1016/j.rse.2013.01.013_bb0055) 1991; 36 García-Haro (10.1016/j.rse.2013.01.013_bb0040) 1999; 104 Russell (10.1016/j.rse.2013.01.013_bb0125) 1997; 102 Gastellu-Etchegorry (10.1016/j.rse.2013.01.013_bb0050) 2004; 25 Jacquemoud (10.1016/j.rse.2013.01.013_bb0070) 1992; 41 Thompson (10.1016/j.rse.2013.01.013_bb0155) 1998; 16 Verhoef (10.1016/j.rse.2013.01.013_bb0160) 1984; 16 Disney (10.1016/j.rse.2013.01.013_bb0035) 2006; 100 Howard (10.1016/j.rse.2013.01.013_bb0065) 1971; 10 Smolander (10.1016/j.rse.2013.01.013_bb0135) 2003; 88 Kuusk (10.1016/j.rse.2013.01.013_bb0075) 2009; 113 Combes (10.1016/j.rse.2013.01.013_bb0030) 2007; 109 Chelle (10.1016/j.rse.2013.01.013_bb0005) 2006; 198 Smith (10.1016/j.rse.2013.01.013_bb0130) 1997; 36 Verhoef (10.1016/j.rse.2013.01.013_bb0165) 1985; 17 Stenberg (10.1016/j.rse.2013.01.013_bb0150) 2008 Widlowski (10.1016/j.rse.2013.01.013_bb0175) 2006; 48 Wang (10.1016/j.rse.2013.01.013_bb0170) 2007; 318 Chen (10.1016/j.rse.2013.01.013_bb0015) 1997; 86 Garcı́a-Haro (10.1016/j.rse.2013.01.013_bb1000) 2002; 81 Govaerts (10.1016/j.rse.2013.01.013_bb0060) 1998; 36 Leblanc (10.1016/j.rse.2013.01.013_bb0090) 1999; 37 Lopez-Lozano (10.1016/j.rse.2013.01.013_bb0100) 2011; 35 Kuusk (10.1016/j.rse.2013.01.013_bb0080) 2009 Kuusk (10.1016/j.rse.2013.01.013_bb0085) 2010; 114 Rautiainen (10.1016/j.rse.2013.01.013_bb0115) 2009; 113 North (10.1016/j.rse.2013.01.013_bb0105) 1996; 34 Chen (10.1016/j.rse.2013.01.013_bb0025) 2005; 97 Gastellu-Etchegorry (10.1016/j.rse.2013.01.013_bb0045) 1999; 68 Smolander (10.1016/j.rse.2013.01.013_bb0140) 2005; 94 Soler (10.1016/j.rse.2013.01.013_bb0145) 2003; 22 Zhao (10.1016/j.rse.2013.01.013_bb0185) 2010; 114 Chen (10.1016/j.rse.2013.01.013_bb0020) 1997; 35 Widlowski (10.1016/j.rse.2013.01.013_bb0180) 2007; 112 |
References_xml | – volume: 22 start-page: 1976 year: 2002 end-page: 1982 ident: bb0095 article-title: The comparison study on forestry ecological projects in the world publication-title: Acta Ecologica Sinica – volume: 17 start-page: 165 year: 1985 end-page: 178 ident: bb0165 article-title: Earth observation modeling based on layer scattering matrices publication-title: Remote Sensing of Environment – volume: 104 start-page: 12159 year: 1999 end-page: 12176 ident: bb0040 article-title: A radiosity model for heterogeneous canopies in remote sensing publication-title: Journal of Geophysical Research – volume: 36 start-page: 3093 year: 1997 end-page: 3100 ident: bb0130 article-title: Effect of three-dimensional canopy architecture on thermal infrared exitance publication-title: Optical Engineering – volume: 86 start-page: 107 year: 1997 end-page: 125 ident: bb0015 article-title: Radiation regime and canopy architecture in a boreal aspen forest publication-title: Agricultural and Forest Meteorology – volume: 35 start-page: 1316 year: 1997 end-page: 1337 ident: bb0020 article-title: A four-scale bidirectional reflectance model based on canopy architecture publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 113 start-page: 889 year: 2009 end-page: 892 ident: bb0075 article-title: A dataset for the validation of reflectance models publication-title: Remote Sensing of Environment – volume: 88 start-page: 363 year: 2003 end-page: 373 ident: bb0135 article-title: A method to account for shoot scale clumping in coniferous canopy reflectance models publication-title: Remote Sensing of Environment – volume: 112 start-page: D09111 year: 2007 ident: bb0180 article-title: The third RAdiation transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance modeling publication-title: Journal of Geophysical Research – year: 2009 ident: bb0080 article-title: Database of optical and structural data for the validation of radiative transfer models publication-title: Technical report. Tartu observatory – volume: 34 start-page: 946 year: 1996 end-page: 956 ident: bb0105 article-title: Three-dimensional forest light interaction model using a Monte Carlo method publication-title: IEEE Transactions on Geoscience and Remote Sensing – start-page: 219 year: 2008 end-page: 243 ident: bb0150 article-title: Modeling the spectral signature of forests: Application of remote sensing models to coniferous canopies publication-title: Advances in land remote sensing: system, modeling, inversion and application – volume: 113 start-page: 458 year: 2009 end-page: 461 ident: bb0115 article-title: On the relationship of canopy LAI and photon recollision probability in boreal forests publication-title: Remote Sensing of Environment – volume: 111 start-page: 75 year: 1998 end-page: 91 ident: bb0010 article-title: The nested radiosity model for the distribution of light within plant canopies publication-title: Ecological Modelling – volume: 22 start-page: 204 year: 2003 end-page: 233 ident: bb0145 article-title: An efficient instantiation algorithm for simulating radiant energy transfer in plant models publication-title: ACM Transactions on Graphics – volume: 36 start-page: 73 year: 1991 end-page: 104 ident: bb0055 article-title: A computer graphics based model for scattering from objects of arbitrary shapes in the optical region publication-title: Remote Sensing of Environment – volume: 102 start-page: 29505 year: 1997 end-page: 29516 ident: bb0125 article-title: Bidirectional reflectance of selected BOREAS sites from multiangle airborne data publication-title: Journal of Geophysical Research – volume: 35 start-page: 171 year: 2011 end-page: 183 ident: bb0100 article-title: 2D approximation of realistic 3D vineyard row canopy representation for light interception (fIPAR) and light intensity distribution on leaves (LIDIL) publication-title: European Journal of Agronomy – volume: 41 start-page: 123 year: 1992 end-page: 132 ident: bb0070 article-title: Modeling spectral and bidirectional soil reflectance publication-title: Remote Sensing of Environment – volume: 68 start-page: 281 year: 1999 end-page: 316 ident: bb0045 article-title: Modeling BRF and radiation regime of boreal and tropical forests: I. BRF publication-title: Remote Sensing of Environment – volume: 114 start-page: 265 year: 2010 end-page: 285 ident: bb0185 article-title: A spectral directional reflectance model of row crops publication-title: Remote Sensing of Environment – volume: 198 start-page: 219 year: 2006 end-page: 228 ident: bb0005 article-title: Could plant leaves be treated as Lambertian surfaces in dense crop canopies to estimate light absorption? publication-title: Ecological Modelling – volume: 16 start-page: 157 year: 1998 end-page: 207 ident: bb0155 article-title: Two models for rapidly calculating bidirectional reflectance: Photon spread (ps) model and statistical photon spread (sps) model publication-title: Remote Sensing Reviews – volume: 318 start-page: 1556 year: 2007 end-page: 1557 ident: bb0170 article-title: China's forestry reforms publication-title: Science – volume: 109 start-page: 107 year: 2007 end-page: 117 ident: bb0030 article-title: A new spectrogoniophotometer to measure leaf spectral and directional optical properties publication-title: Remote Sensing of Environment – volume: 10 start-page: 2354 year: 1971 end-page: 2360 ident: bb0065 article-title: Luminance and luminous intensity indicatrices of isolateral leaves publication-title: Applied Optics – volume: 16 start-page: 125 year: 1984 end-page: 141 ident: bb0160 article-title: Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model publication-title: Remote Sensing of Environment – volume: 100 start-page: 114 year: 2006 end-page: 132 ident: bb0035 article-title: 3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains publication-title: Remote Sensing of Environment – volume: 48 start-page: 211 year: 2006 end-page: 231 ident: bb0175 article-title: Rayspread: A virtual laboratory for rapid BRF simulations over 3-D plant canopies publication-title: Computational methods in transport – volume: 97 start-page: 447 year: 2005 end-page: 457 ident: bb0025 article-title: Global mapping of foliage clumping index using multi-angular satellite data publication-title: Remote Sensing of Environment – volume: 74 start-page: 145 year: 2000 end-page: 162 ident: bb0110 article-title: 3-D scene modeling of semidesert vegetation cover and its radiation regime publication-title: Remote Sensing of Environment – volume: 25 start-page: 73 year: 2004 end-page: 96 ident: bb0050 article-title: DART: A 3D model for simulating satellite images and studying surface radiation budget publication-title: International Journal of Remote Sensing – volume: 81 start-page: 205 year: 2002 end-page: 227 ident: bb1000 article-title: A fast canopy reflectance model to simulate realistic remote sensing scenarios publication-title: Remote Sensing of Environment – volume: 36 start-page: 493 year: 1998 end-page: 505 ident: bb0060 article-title: Raytran: A Monte Carlo ray tracing model to compute light scattering in three dimensional heterogeneous media publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 94 start-page: 355 year: 2005 end-page: 363 ident: bb0140 article-title: Simple parameterizations of the radiation budget of uniform broadleaved and coniferous canopies publication-title: Remote Sensing of Environment – volume: 114 start-page: 2962 year: 2010 end-page: 2969 ident: bb0085 article-title: Reflectance spectra of RAMI forest stands in Estonia: Simulations and measurements publication-title: Remote Sensing of Environment – volume: 37 start-page: 1396 year: 1999 end-page: 1414 ident: bb0090 article-title: Investigation of directional reflectance in boreal forests using an improved 4-Scale model and airborne POLDER data publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 74 start-page: 145 year: 2000 ident: 10.1016/j.rse.2013.01.013_bb0110 article-title: 3-D scene modeling of semidesert vegetation cover and its radiation regime publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(00)00129-2 – volume: 35 start-page: 1316 year: 1997 ident: 10.1016/j.rse.2013.01.013_bb0020 article-title: A four-scale bidirectional reflectance model based on canopy architecture publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.628798 – volume: 104 start-page: 12159 year: 1999 ident: 10.1016/j.rse.2013.01.013_bb0040 article-title: A radiosity model for heterogeneous canopies in remote sensing publication-title: Journal of Geophysical Research doi: 10.1029/1998JD200105 – volume: 114 start-page: 2962 year: 2010 ident: 10.1016/j.rse.2013.01.013_bb0085 article-title: Reflectance spectra of RAMI forest stands in Estonia: Simulations and measurements publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2010.07.014 – volume: 16 start-page: 157 year: 1998 ident: 10.1016/j.rse.2013.01.013_bb0155 article-title: Two models for rapidly calculating bidirectional reflectance: Photon spread (ps) model and statistical photon spread (sps) model publication-title: Remote Sensing Reviews doi: 10.1080/02757259809532351 – volume: 100 start-page: 114 year: 2006 ident: 10.1016/j.rse.2013.01.013_bb0035 article-title: 3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2005.10.003 – volume: 86 start-page: 107 year: 1997 ident: 10.1016/j.rse.2013.01.013_bb0015 article-title: Radiation regime and canopy architecture in a boreal aspen forest publication-title: Agricultural and Forest Meteorology doi: 10.1016/S0168-1923(96)02402-1 – volume: 318 start-page: 1556 year: 2007 ident: 10.1016/j.rse.2013.01.013_bb0170 article-title: China's forestry reforms publication-title: Science doi: 10.1126/science.1147247 – volume: 17 start-page: 165 year: 1985 ident: 10.1016/j.rse.2013.01.013_bb0165 article-title: Earth observation modeling based on layer scattering matrices publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(85)90072-0 – volume: 48 start-page: 211 year: 2006 ident: 10.1016/j.rse.2013.01.013_bb0175 article-title: Rayspread: A virtual laboratory for rapid BRF simulations over 3-D plant canopies – volume: 113 start-page: 458 year: 2009 ident: 10.1016/j.rse.2013.01.013_bb0115 article-title: On the relationship of canopy LAI and photon recollision probability in boreal forests publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2008.10.014 – volume: 34 start-page: 946 year: 1996 ident: 10.1016/j.rse.2013.01.013_bb0105 article-title: Three-dimensional forest light interaction model using a Monte Carlo method publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.508411 – volume: 10 start-page: 2354 year: 1971 ident: 10.1016/j.rse.2013.01.013_bb0065 article-title: Luminance and luminous intensity indicatrices of isolateral leaves publication-title: Applied Optics doi: 10.1364/AO.10.002354 – start-page: 219 year: 2008 ident: 10.1016/j.rse.2013.01.013_bb0150 article-title: Modeling the spectral signature of forests: Application of remote sensing models to coniferous canopies – volume: 35 start-page: 171 year: 2011 ident: 10.1016/j.rse.2013.01.013_bb0100 article-title: 2D approximation of realistic 3D vineyard row canopy representation for light interception (fIPAR) and light intensity distribution on leaves (LIDIL) publication-title: European Journal of Agronomy doi: 10.1016/j.eja.2011.06.005 – volume: 88 start-page: 363 year: 2003 ident: 10.1016/j.rse.2013.01.013_bb0135 article-title: A method to account for shoot scale clumping in coniferous canopy reflectance models publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2003.06.003 – volume: 94 start-page: 355 year: 2005 ident: 10.1016/j.rse.2013.01.013_bb0140 article-title: Simple parameterizations of the radiation budget of uniform broadleaved and coniferous canopies publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2004.10.010 – volume: 22 start-page: 204 year: 2003 ident: 10.1016/j.rse.2013.01.013_bb0145 article-title: An efficient instantiation algorithm for simulating radiant energy transfer in plant models publication-title: ACM Transactions on Graphics doi: 10.1145/636886.636890 – volume: 102 start-page: 29505 year: 1997 ident: 10.1016/j.rse.2013.01.013_bb0125 article-title: Bidirectional reflectance of selected BOREAS sites from multiangle airborne data publication-title: Journal of Geophysical Research doi: 10.1029/96JD03880 – volume: 36 start-page: 73 year: 1991 ident: 10.1016/j.rse.2013.01.013_bb0055 article-title: A computer graphics based model for scattering from objects of arbitrary shapes in the optical region publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(91)90032-2 – volume: 81 start-page: 205 year: 2002 ident: 10.1016/j.rse.2013.01.013_bb1000 article-title: A fast canopy reflectance model to simulate realistic remote sensing scenarios publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(01)00344-3 – volume: 68 start-page: 281 year: 1999 ident: 10.1016/j.rse.2013.01.013_bb0045 article-title: Modeling BRF and radiation regime of boreal and tropical forests: I. BRF publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(98)00119-9 – volume: 198 start-page: 219 year: 2006 ident: 10.1016/j.rse.2013.01.013_bb0005 article-title: Could plant leaves be treated as Lambertian surfaces in dense crop canopies to estimate light absorption? publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2006.04.010 – volume: 41 start-page: 123 year: 1992 ident: 10.1016/j.rse.2013.01.013_bb0070 article-title: Modeling spectral and bidirectional soil reflectance publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(92)90072-R – volume: 25 start-page: 73 year: 2004 ident: 10.1016/j.rse.2013.01.013_bb0050 article-title: DART: A 3D model for simulating satellite images and studying surface radiation budget publication-title: International Journal of Remote Sensing doi: 10.1080/0143116031000115166 – volume: 36 start-page: 493 year: 1998 ident: 10.1016/j.rse.2013.01.013_bb0060 article-title: Raytran: A Monte Carlo ray tracing model to compute light scattering in three dimensional heterogeneous media publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.662732 – volume: 97 start-page: 447 year: 2005 ident: 10.1016/j.rse.2013.01.013_bb0025 article-title: Global mapping of foliage clumping index using multi-angular satellite data publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2005.05.003 – volume: 109 start-page: 107 year: 2007 ident: 10.1016/j.rse.2013.01.013_bb0030 article-title: A new spectrogoniophotometer to measure leaf spectral and directional optical properties publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2006.12.007 – year: 2009 ident: 10.1016/j.rse.2013.01.013_bb0080 article-title: Database of optical and structural data for the validation of radiative transfer models – volume: 112 start-page: D09111 year: 2007 ident: 10.1016/j.rse.2013.01.013_bb0180 article-title: The third RAdiation transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance modeling publication-title: Journal of Geophysical Research doi: 10.1029/2006JD007821 – volume: 37 start-page: 1396 year: 1999 ident: 10.1016/j.rse.2013.01.013_bb0090 article-title: Investigation of directional reflectance in boreal forests using an improved 4-Scale model and airborne POLDER data publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.763304 – volume: 36 start-page: 3093 year: 1997 ident: 10.1016/j.rse.2013.01.013_bb0130 article-title: Effect of three-dimensional canopy architecture on thermal infrared exitance publication-title: Optical Engineering doi: 10.1117/1.601527 – volume: 114 start-page: 265 year: 2010 ident: 10.1016/j.rse.2013.01.013_bb0185 article-title: A spectral directional reflectance model of row crops publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2009.09.018 – volume: 111 start-page: 75 year: 1998 ident: 10.1016/j.rse.2013.01.013_bb0010 article-title: The nested radiosity model for the distribution of light within plant canopies publication-title: Ecological Modelling doi: 10.1016/S0304-3800(98)00100-8 – volume: 22 start-page: 1976 year: 2002 ident: 10.1016/j.rse.2013.01.013_bb0095 article-title: The comparison study on forestry ecological projects in the world publication-title: Acta Ecologica Sinica – volume: 16 start-page: 125 year: 1984 ident: 10.1016/j.rse.2013.01.013_bb0160 article-title: Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(84)90057-9 – volume: 113 start-page: 889 year: 2009 ident: 10.1016/j.rse.2013.01.013_bb0075 article-title: A dataset for the validation of reflectance models publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2009.01.005 |
SSID | ssj0015871 |
Score | 2.3961232 |
Snippet | A novel computer graphics-based radiosity model applicable to porous individual thin objects, named RAPID, is developed for fast calculation of multiple... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 221 |
SubjectTerms | Animal, plant and microbial ecology Applied geophysics Biological and medical sciences canopy Directional reflectance Earth sciences Earth, ocean, space Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects. Techniques Internal geophysics landscapes leaf angle leaf area index leaves Porous object Radiosity RAPID reflectance remote sensing Teledetection and vegetation maps tree crown vegetation |
Title | RAPID: A Radiosity Applicable to Porous IndiviDual Objects for directional reflectance over complex vegetated scenes |
URI | https://dx.doi.org/10.1016/j.rse.2013.01.013 https://www.proquest.com/docview/1710218883 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9sw8CgdY4Mxumxl6dagwZ4GXiVLtuW9mX4s2VhXygp9E5IsdxklCbFTlpf99ulkO6WM9mHgJ1uy7LvT3ek-Ad47WWWe6ZnI77YqQsdQpLHikM2NSKiVNA-m7G-n6fhCfLlMLrfgsM-FwbDKjve3PD1w6-7OQQfNg8V0ijm-XCDFoUMGc7oxg11kSOUf_2zCPFgis7ZrHhcRju49myHGa1ljpUzGQ-VOxu-TTc8WuvYQq9pWF_9w7SCKTnbgeadDkqL9zBew5WYD2D2-TVnzD7s9Ww_gSdfn_Od6AI8_h0a-65fQnBdnk6NPpCDnupxi5NaaFK0z21w70szJ2Xw5X9VkEjK2jlb-nd8NGm1q4vVc0oIt2BGJ_xE0_iP9EIwIJSFO3f0mN-4KoxldSbBmlKtfwcXJ8Y_DcdR1YIgsT2kTmTKzhlNDU2NEzqSJU1lJanPmMskSy4QpqYu1kI66NNFGY3UaY3Ku_cGlSvkubM_mM_caCNdxXBmeWJFaoV0qWeaErXJq8rLKRTwE2sNe2a48OXbJuFZ9HNov5dGlEF2KMn_xIXzYTFm0tTkeGix6hKo7BKa87Hho2ugO8jcLxf4c7AV7NoR3PTUovzPR3aJnzuNHMVTemJSS7_3f2m_gaRyabyQRS97CdrNcuX2vAjVmFGh8BI-Kydfx6V_7awWS |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6lNFBGVu2suyj02BPA1PJkm15b6YfS9Y2K6WFvglJlreMkoQ4Kct_P51sZ5SxPgz8ZFv-uDudTvfxO4CPTlaZV3om8rOtijAwFGlEHLK5EQm1kubBlX0-TofX4utNcrMFh10tDKZVtrq_0elBW7dnDlpqHswnE6zx5QIlDgMyWNP9CLYRnSrpwXYxOh2ON8GERGZN4zwuIhzQBTdDmteiRrBMxgN4J-P_Wp5257r2RKuabhd_Ke6wGp08g6etGUmK5kufw5ab9mHv-E_Vmr_YTtu6Dzttq_Mf6z48_hJ6-a5fwPKyuBgdfSYFudTlBJO31qRo4tnm1pHljFzMFrNVTUahaOto5Z_5zaDfpibe1CUN5YIrkfgfQf8_ihDBpFASUtXdL3LnvmNCoysJwka5-iVcnxxfHQ6jtglDZHlKl5EpM2s4NTQ1RuRMmjiVlaQ2Zy6TLLFMmJK6WAvpqEsTbTQC1BiTc-33LlXK96A3nU3dKyBcx3FleGJFaoV2qWSZE7bKqcnLKhfxAGhHe2VbhHJslHGrulS0n8qzSyG7FGX-4AP4tBkyb-A5HrpZdAxV92RM-eXjoWH795i_eVHst8J-bc8G8KGTBuUnJ0Zc9NR5_iiG9huTUvLX__fu97AzvDo_U2ej8ekbeBKHXhxJxJK30FsuVu6dt4iWZr-V-N_oDAhD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RAPID%3A+A+Radiosity+Applicable+to+Porous+IndiviDual+Objects+for+directional+reflectance+over+complex+vegetated+scenes&rft.jtitle=Remote+sensing+of+environment&rft.au=Huang%2C+Huaguo&rft.au=Qin%2C+Wenhan&rft.au=Liu%2C+Qinhuo&rft.date=2013-05-15&rft.issn=0034-4257&rft.volume=132+p.221-237&rft.spage=221&rft.epage=237&rft_id=info:doi/10.1016%2Fj.rse.2013.01.013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |