Hand Gesture Recognition Based on High-Density Myoelectricity in Forearm Flexors in Humans

Electromyography-based gesture recognition has become a challenging problem in the decoding of fine hand movements. Recent research has focused on improving the accuracy of gesture recognition by increasing the complexity of network models. However, training a complex model necessitates a significan...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 12; p. 3970
Main Authors Chen, Xiaoling, Yang, Huaigang, Zhang, Dong, Hu, Xinfeng, Xie, Ping
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.06.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electromyography-based gesture recognition has become a challenging problem in the decoding of fine hand movements. Recent research has focused on improving the accuracy of gesture recognition by increasing the complexity of network models. However, training a complex model necessitates a significant amount of data, thereby escalating both user burden and computational costs. Moreover, owing to the considerable variability of surface electromyography (sEMG) signals across different users, conventional machine learning approaches reliant on a single feature fail to meet the demand for precise gesture recognition tailored to individual users. Therefore, to solve the problems of large computational cost and poor cross-user pattern recognition performance, we propose a feature selection method that combines mutual information, principal component analysis and the Pearson correlation coefficient (MPP). This method can filter out the optimal subset of features that match a specific user while combining with an SVM classifier to accurately and efficiently recognize the user's gesture movements. To validate the effectiveness of the above method, we designed an experiment including five gesture actions. The experimental results show that compared to the classification accuracy obtained using a single feature, we achieved an improvement of about 5% with the optimally selected feature as the input to any of the classifiers. This study provides an effective guarantee for user-specific fine hand movement decoding based on sEMG signals.
AbstractList Electromyography-based gesture recognition has become a challenging problem in the decoding of fine hand movements. Recent research has focused on improving the accuracy of gesture recognition by increasing the complexity of network models. However, training a complex model necessitates a significant amount of data, thereby escalating both user burden and computational costs. Moreover, owing to the considerable variability of surface electromyography (sEMG) signals across different users, conventional machine learning approaches reliant on a single feature fail to meet the demand for precise gesture recognition tailored to individual users. Therefore, to solve the problems of large computational cost and poor cross-user pattern recognition performance, we propose a feature selection method that combines mutual information, principal component analysis and the Pearson correlation coefficient (MPP). This method can filter out the optimal subset of features that match a specific user while combining with an SVM classifier to accurately and efficiently recognize the user's gesture movements. To validate the effectiveness of the above method, we designed an experiment including five gesture actions. The experimental results show that compared to the classification accuracy obtained using a single feature, we achieved an improvement of about 5% with the optimally selected feature as the input to any of the classifiers. This study provides an effective guarantee for user-specific fine hand movement decoding based on sEMG signals.
Electromyography-based gesture recognition has become a challenging problem in the decoding of fine hand movements. Recent research has focused on improving the accuracy of gesture recognition by increasing the complexity of network models. However, training a complex model necessitates a significant amount of data, thereby escalating both user burden and computational costs. Moreover, owing to the considerable variability of surface electromyography (sEMG) signals across different users, conventional machine learning approaches reliant on a single feature fail to meet the demand for precise gesture recognition tailored to individual users. Therefore, to solve the problems of large computational cost and poor cross-user pattern recognition performance, we propose a feature selection method that combines mutual information, principal component analysis and the Pearson correlation coefficient (MPP). This method can filter out the optimal subset of features that match a specific user while combining with an SVM classifier to accurately and efficiently recognize the user's gesture movements. To validate the effectiveness of the above method, we designed an experiment including five gesture actions. The experimental results show that compared to the classification accuracy obtained using a single feature, we achieved an improvement of about 5% with the optimally selected feature as the input to any of the classifiers. This study provides an effective guarantee for user-specific fine hand movement decoding based on sEMG signals.Electromyography-based gesture recognition has become a challenging problem in the decoding of fine hand movements. Recent research has focused on improving the accuracy of gesture recognition by increasing the complexity of network models. However, training a complex model necessitates a significant amount of data, thereby escalating both user burden and computational costs. Moreover, owing to the considerable variability of surface electromyography (sEMG) signals across different users, conventional machine learning approaches reliant on a single feature fail to meet the demand for precise gesture recognition tailored to individual users. Therefore, to solve the problems of large computational cost and poor cross-user pattern recognition performance, we propose a feature selection method that combines mutual information, principal component analysis and the Pearson correlation coefficient (MPP). This method can filter out the optimal subset of features that match a specific user while combining with an SVM classifier to accurately and efficiently recognize the user's gesture movements. To validate the effectiveness of the above method, we designed an experiment including five gesture actions. The experimental results show that compared to the classification accuracy obtained using a single feature, we achieved an improvement of about 5% with the optimally selected feature as the input to any of the classifiers. This study provides an effective guarantee for user-specific fine hand movement decoding based on sEMG signals.
Author Zhang, Dong
Chen, Xiaoling
Hu, Xinfeng
Yang, Huaigang
Xie, Ping
AuthorAffiliation 1 Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China; xlchen@ysu.edu.cn (X.C.); yhg622822@163.com (H.Y.); zhangdong_0328@163.com (D.Z.); 17638352137@163.com (X.H.)
2 Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China
AuthorAffiliation_xml – name: 1 Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China; xlchen@ysu.edu.cn (X.C.); yhg622822@163.com (H.Y.); zhangdong_0328@163.com (D.Z.); 17638352137@163.com (X.H.)
– name: 2 Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China
Author_xml – sequence: 1
  givenname: Xiaoling
  surname: Chen
  fullname: Chen, Xiaoling
  organization: Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China
– sequence: 2
  givenname: Huaigang
  surname: Yang
  fullname: Yang, Huaigang
  organization: Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China
– sequence: 3
  givenname: Dong
  surname: Zhang
  fullname: Zhang, Dong
  organization: Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China
– sequence: 4
  givenname: Xinfeng
  surname: Hu
  fullname: Hu, Xinfeng
  organization: Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China
– sequence: 5
  givenname: Ping
  surname: Xie
  fullname: Xie, Ping
  organization: Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38931754$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1vEzEQhi1URD_gwB9AK3GBw4Lt2djeE4JCmkpFSAguXKyJd5w62titvYvIv2fTlKjl5PHMo0ejeU_ZUUyRGHsp-DuAlr8vshESWs2fsBPRyKY2UvKjB_UxOy1lzbkEAPOMHYNpQehZc8J-LTB21QWVYcxUfSeXVjEMIcXqExbqqqlYhNV1_ZliCcO2-rpN1JMbcnC7b4jVPGXCvKnmPf1Juexai3GDsTxnTz32hV7cv2fs5_zLj_NFffXt4vL841XtQPGhXkpJAFKgQiDHjRRL73GGymvjPEljpJG8bTVImJHSpvW8cyDIKy3IODhjl3tvl3Btb3LYYN7ahMHeNVJeWcxDcD1ZY5RBp1qNXDXYCmzIeNk2ygmvG1hOrg9718243FDnKA4Z-0fSx5MYru0q_bZCSK4lNJPhzb0hp9txuqvdhOKo7zFSGouFCTMCZlpP6Ov_0HUac5xudUdp0ErtqLd7yuVUSiZ_2EZwu4vfHuKf2FcP1z-Q__KGvynoqvE
Cites_doi 10.1007/s11771-015-2698-0
10.1109/TBME.2008.2005485
10.1007/s13042-017-0705-5
10.1016/j.eswa.2014.11.044
10.1016/j.neucom.2013.12.010
10.1016/j.bspc.2014.12.001
10.1109/TBME.2005.856295
10.1109/TOH.2013.6
10.1109/ICARCV.2012.6485374
10.3390/s130912431
10.1016/j.eswa.2012.01.102
10.1007/s11431-017-9159-3
10.1109/ACCESS.2021.3118281
10.1038/sdata.2014.53
10.1371/journal.pone.0276436
10.1109/TNSRE.2022.3173946
10.1109/10.914793
10.1108/IR-04-2014-0327
10.1016/j.eswa.2013.02.023
10.1109/TNSRE.2009.2015177
10.1063/1.5057725
10.1109/THMS.2017.2700444
10.1109/TIE.2015.2497212
10.1109/TNSRE.2023.3237181
10.1007/s11517-017-1723-x
10.3389/fnbot.2021.659876
10.3390/s20041201
10.1109/TBME.2012.2191551
10.1145/2702123.2702501
10.1016/j.bspc.2020.102074
10.1016/j.bspc.2015.02.009
10.1109/TBME.2004.836492
10.1016/j.ins.2021.11.065
10.1038/srep36571
10.1186/1743-0003-9-85
10.1016/j.cmpb.2008.01.003
10.1016/j.ergon.2017.02.004
10.3390/s18082497
10.1038/s41597-020-00717-6
10.1016/j.compbiomed.2018.08.020
10.1007/978-3-319-00846-2_188
10.1016/j.bspc.2016.01.011
10.1109/TMECH.2007.897262
10.1016/j.bspc.2012.08.005
10.3389/fnbot.2016.00009
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24123970
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_8868ac697a064a91a4e8f2946c1f743b
10_3390_s24123970
38931754
Genre Journal Article
GrantInformation_xml – fundername: Hebei Natural Science Foundation
  grantid: F2022203079
– fundername: Hebei innovation capability improvement plan project
  grantid: 22567619H
– fundername: S&T Program of Hebei
  grantid: 21372005D; 21372001D
– fundername: Funding Project for the Introduced Overseas Students of Hebei Province
  grantid: C20220337
– fundername: National Natural Science Foundation of China
  grantid: 62371416
GroupedDBID ---
123
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
ABDBF
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BPHCQ
BVXVI
CCPQU
CGR
CS3
CUY
CVF
D1I
DU5
E3Z
EBD
ECM
EIF
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
ITC
KB.
KQ8
L6V
M1P
M48
M7S
MODMG
M~E
NPM
OK1
P2P
P62
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
AAYXX
CITATION
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c360t-b22e3321a6a3ec0821bffa5a6f78cfe28828209973235e6789f0dc31ef671e8c3
IEDL.DBID RPM
ISSN 1424-8220
IngestDate Tue Oct 22 15:14:50 EDT 2024
Tue Sep 17 21:28:54 EDT 2024
Sat Oct 26 04:49:41 EDT 2024
Thu Oct 10 18:00:55 EDT 2024
Thu Sep 26 21:38:46 EDT 2024
Tue Oct 29 09:22:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords gesture recognition
machine learning
high-density surface electromyography (HD-sEMG)
feature selection
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-b22e3321a6a3ec0821bffa5a6f78cfe28828209973235e6789f0dc31ef671e8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207234/
PMID 38931754
PQID 3072737667
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_8868ac697a064a91a4e8f2946c1f743b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11207234
proquest_miscellaneous_3072813577
proquest_journals_3072737667
crossref_primary_10_3390_s24123970
pubmed_primary_38931754
PublicationCentury 2000
PublicationDate 20240619
PublicationDateYYYYMMDD 2024-06-19
PublicationDate_xml – month: 6
  year: 2024
  text: 20240619
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hakonen (ref_10) 2015; 18
Chan (ref_25) 2005; 52
Xing (ref_18) 2014; 136
Hui (ref_27) 2014; 84
ref_35
Huang (ref_24) 2005; 52
ref_33
Englehart (ref_43) 2001; 48
Zhang (ref_15) 2017; 47
Zhang (ref_16) 2012; 59
Atzori (ref_11) 2014; 1
Phinyomark (ref_32) 2012; 39
Shim (ref_12) 2015; 22
Zhang (ref_39) 2022; 30
ref_17
ref_38
Liu (ref_5) 2018; 68
Bullock (ref_37) 2013; 6
Kanitz (ref_36) 2016; 27
Chu (ref_23) 2009; 17
Cheng (ref_30) 2018; 103
Meng (ref_7) 2014; 41
Chowdhury (ref_45) 2013; 13
Zhang (ref_41) 2022; 585
ref_47
Phinyomark (ref_31) 2013; 40
Xue (ref_40) 2023; 31
Chen (ref_26) 2013; 8
Wang (ref_3) 2017; 60
Chu (ref_21) 2007; 12
Hermens (ref_9) 1984; 24
Duan (ref_20) 2016; 63
Geng (ref_29) 2016; 6
Serna (ref_46) 2020; 7
ref_2
Zhou (ref_4) 2021; 15
Atzori (ref_14) 2016; 10
Srisuwan (ref_44) 2018; 56
Tenore (ref_6) 2009; 56
Cheok (ref_8) 2017; 10
ref_28
Alonso (ref_13) 2012; 9
Cisnal (ref_1) 2021; 9
McCool (ref_19) 2015; 18
Tsai (ref_22) 2015; 42
Yan (ref_34) 2008; 90
Xi (ref_42) 2019; 90
References_xml – volume: 22
  start-page: 1801
  year: 2015
  ident: ref_12
  article-title: Multi-channel electromyography pattern classification using deep belief networks for enhanced user experience
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-015-2698-0
  contributor:
    fullname: Shim
– volume: 56
  start-page: 1427
  year: 2009
  ident: ref_6
  article-title: Decoding of Individuated Finger Movements Using Surface Electromyography
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2005485
  contributor:
    fullname: Tenore
– volume: 10
  start-page: 131
  year: 2017
  ident: ref_8
  article-title: A review of hand gesture and sign language recognition techniques
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-017-0705-5
  contributor:
    fullname: Cheok
– volume: 42
  start-page: 3327
  year: 2015
  ident: ref_22
  article-title: A novel STFT-ranking feature of multi-channel EMG for motion pattern recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.11.044
  contributor:
    fullname: Tsai
– volume: 136
  start-page: 345
  year: 2014
  ident: ref_18
  article-title: A real-time EMG pattern recognition method for virtual myoelectric hand control
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.12.010
  contributor:
    fullname: Xing
– volume: 18
  start-page: 61
  year: 2015
  ident: ref_19
  article-title: Improved pattern recognition classification accuracy for surface myoelectric signals using spectral enhancement
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.12.001
  contributor:
    fullname: McCool
– volume: 52
  start-page: 1801
  year: 2005
  ident: ref_24
  article-title: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.856295
  contributor:
    fullname: Huang
– volume: 6
  start-page: 296
  year: 2013
  ident: ref_37
  article-title: Grasp Frequency and Usage in Daily Household and Machine Shop Tasks
  publication-title: IEEE Trans. Haptics
  doi: 10.1109/TOH.2013.6
  contributor:
    fullname: Bullock
– volume: 84
  start-page: 473
  year: 2014
  ident: ref_27
  article-title: Pattern Recognition of Eight Hand Motions Using Feature Extraction of Forearm EMG Signal
  publication-title: Proc. Nat. Acad. Sci. India A
  contributor:
    fullname: Hui
– ident: ref_35
  doi: 10.1109/ICARCV.2012.6485374
– volume: 13
  start-page: 12431
  year: 2013
  ident: ref_45
  article-title: Surface Electromyography Signal Processing and Classification Techniques
  publication-title: Sensors
  doi: 10.3390/s130912431
  contributor:
    fullname: Chowdhury
– volume: 39
  start-page: 7420
  year: 2012
  ident: ref_32
  article-title: Feature reduction and selection for EMG signal classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.102
  contributor:
    fullname: Phinyomark
– volume: 60
  start-page: 1978
  year: 2017
  ident: ref_3
  article-title: New advances in EMG control methods of anthropomorphic prosthetic hand
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-017-9159-3
  contributor:
    fullname: Wang
– volume: 9
  start-page: 137809
  year: 2021
  ident: ref_1
  article-title: RobHand: A Hand Exoskeleton with Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3118281
  contributor:
    fullname: Cisnal
– volume: 1
  start-page: 13
  year: 2014
  ident: ref_11
  article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses
  publication-title: Sci. Data
  doi: 10.1038/sdata.2014.53
  contributor:
    fullname: Atzori
– ident: ref_38
  doi: 10.1371/journal.pone.0276436
– volume: 30
  start-page: 1374
  year: 2022
  ident: ref_39
  article-title: Domain Adaptation With Self-Guided Adaptive Sampling Strategy: Feature Alignment for Cross-User Myoelectric Pattern Recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3173946
  contributor:
    fullname: Zhang
– volume: 48
  start-page: 302
  year: 2001
  ident: ref_43
  article-title: A wavelet-based continuous classification scheme for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.914793
  contributor:
    fullname: Englehart
– volume: 41
  start-page: 465
  year: 2014
  ident: ref_7
  article-title: Active interaction control applied to a lower limb rehabilitation robot by using EMG recognition and impedance model
  publication-title: Ind. Robot.
  doi: 10.1108/IR-04-2014-0327
  contributor:
    fullname: Meng
– volume: 40
  start-page: 4832
  year: 2013
  ident: ref_31
  article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.02.023
  contributor:
    fullname: Phinyomark
– volume: 17
  start-page: 287
  year: 2009
  ident: ref_23
  article-title: Conjugate-Prior-Penalized Learning of Gaussian Mixture Models for Multifunction Myoelectric Hand Control
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2009.2015177
  contributor:
    fullname: Chu
– volume: 90
  start-page: 035003
  year: 2019
  ident: ref_42
  article-title: Denoising of surface electromyogram based on complementary ensemble empirical mode decomposition and improved interval thresholding
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5057725
  contributor:
    fullname: Xi
– volume: 47
  start-page: 576
  year: 2017
  ident: ref_15
  article-title: Myoelectric Pattern Recognition Based on Muscle Synergies for Simultaneous Control of Dexterous Finger Movements
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2017.2700444
  contributor:
    fullname: Zhang
– volume: 63
  start-page: 1923
  year: 2016
  ident: ref_20
  article-title: sEMG-Based Identification of Hand Motion Commands Using Wavelet Neural Network Combined with Discrete Wavelet Transform
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2497212
  contributor:
    fullname: Duan
– volume: 31
  start-page: 972
  year: 2023
  ident: ref_40
  article-title: Reduce the User Burden of Multiuser Myoelectric Interface via Few-Shot Domain Adaptation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3237181
  contributor:
    fullname: Xue
– volume: 56
  start-page: 1041
  year: 2018
  ident: ref_44
  article-title: Comparison of feature evaluation criteria for speech recognition based on electromyography
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-017-1723-x
  contributor:
    fullname: Srisuwan
– volume: 15
  start-page: 12
  year: 2021
  ident: ref_4
  article-title: Toward Hand Pattern Recognition in Assistive and Rehabilitation Robotics Using EMG and Kinematics
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2021.659876
  contributor:
    fullname: Zhou
– ident: ref_17
  doi: 10.3390/s20041201
– volume: 59
  start-page: 1649
  year: 2012
  ident: ref_16
  article-title: High-Density Myoelectric Pattern Recognition toward Improved Stroke Rehabilitation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2191551
  contributor:
    fullname: Zhang
– ident: ref_47
  doi: 10.1145/2702123.2702501
– ident: ref_2
  doi: 10.1016/j.bspc.2020.102074
– volume: 18
  start-page: 334
  year: 2015
  ident: ref_10
  article-title: Current state of digital signal processing in myoelectric interfaces and related applications
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2015.02.009
  contributor:
    fullname: Hakonen
– volume: 52
  start-page: 121
  year: 2005
  ident: ref_25
  article-title: Continuous myoelectric control for powered prostheses using hidden Markov models
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.836492
  contributor:
    fullname: Chan
– volume: 585
  start-page: 543
  year: 2022
  ident: ref_41
  article-title: Second-order information bottleneck based spiking neural networks for sEMG recognition
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.11.065
  contributor:
    fullname: Zhang
– volume: 6
  start-page: 8
  year: 2016
  ident: ref_29
  article-title: Gesture recognition by instantaneous surface EMG images
  publication-title: Sci. Rep.
  doi: 10.1038/srep36571
  contributor:
    fullname: Geng
– volume: 9
  start-page: 85
  year: 2012
  ident: ref_13
  article-title: High-density surface EMG maps from upper-arm and forearm muscles
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/1743-0003-9-85
  contributor:
    fullname: Alonso
– volume: 90
  start-page: 275
  year: 2008
  ident: ref_34
  article-title: The application of mutual information-based feature selection and fuzzy LS-SVM-based classifier in motion classification
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2008.01.003
  contributor:
    fullname: Yan
– volume: 68
  start-page: 355
  year: 2018
  ident: ref_5
  article-title: Gesture recognition for human-robot collaboration: A review
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2017.02.004
  contributor:
    fullname: Liu
– volume: 24
  start-page: 243
  year: 1984
  ident: ref_9
  article-title: The clinical use of surface EMG
  publication-title: Electromyogr. Clin. Neurophysiol.
  contributor:
    fullname: Hermens
– ident: ref_28
  doi: 10.3390/s18082497
– volume: 7
  start-page: 397
  year: 2020
  ident: ref_46
  article-title: High-density surface electromyography signals during isometric contractions of elbow muscles of healthy humans
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-00717-6
  contributor:
    fullname: Serna
– volume: 103
  start-page: 44
  year: 2018
  ident: ref_30
  article-title: Position-independent gesture recognition using sEMG signals via canonical correlation analysis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.08.020
  contributor:
    fullname: Cheng
– ident: ref_33
  doi: 10.1007/978-3-319-00846-2_188
– volume: 27
  start-page: 24
  year: 2016
  ident: ref_36
  article-title: Distance and mutual information methods for EMG feature and channel subset selection for classification of hand movements
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.01.011
  contributor:
    fullname: Kanitz
– volume: 12
  start-page: 282
  year: 2007
  ident: ref_21
  article-title: A supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand control
  publication-title: IEEE-ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2007.897262
  contributor:
    fullname: Chu
– volume: 8
  start-page: 184
  year: 2013
  ident: ref_26
  article-title: Pattern recognition of number gestures based on a wireless surface EMG system
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2012.08.005
  contributor:
    fullname: Chen
– volume: 10
  start-page: 10
  year: 2016
  ident: ref_14
  article-title: Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2016.00009
  contributor:
    fullname: Atzori
SSID ssj0023338
Score 2.4707935
Snippet Electromyography-based gesture recognition has become a challenging problem in the decoding of fine hand movements. Recent research has focused on improving...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 3970
SubjectTerms Accuracy
Adult
Algorithms
Classification
Deep learning
Discriminant analysis
Efficiency
Electromyography - methods
Feature selection
Female
Forearm - physiology
gesture recognition
Gestures
Hand - physiology
high-density surface electromyography (HD-sEMG)
Humans
Machine Learning
Male
Methods
Movement - physiology
Neural networks
Pattern recognition
Pattern Recognition, Automated - methods
Principal Component Analysis
Principal components analysis
Support Vector Machine
Support vector machines
Young Adult
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA_iSQ_it9UpUbyWLXlpmh79HsI8iIPhpaRpgjvYyrqB_ve-tN3YRPDiqW0SQvpek9_vJa_vEXIJBrjJuA4zF-tQgJGhckKGLsKLiATkzu93DJ5kfygeR9FoKdWX9wlrwgM3gusqJZU2Mok1gqdOmBZWOZ4IaZhD9Mvq1beXzI2p1tQCtLyaOEKARn23QpziiLy9FfSpg_T_xix_OkguIc79NtlqqSK9aoa4Q9ZssUs2lwII7pHXvi5y-oC9ziaWPs-dgcqCXiM65RRvvCNHeOvd1KdfdPBVNnlvxsY_jgvqU3PqyTtF_X2Wk8oX1fv61T4Z3t-93PTDNltCaED2pmHGuQXgTEsN1iCys8w5HWnpYmWc5UilVf2fLHCILGJU4nq5AWadjJlVBg7IelEW9ohQtKGQmDCTSMuFVDbJUdiSOwuaCRO5gFzMpZh-NEExUjQmvKjThagDcu3lu2jg41jXBajdtNVu-pd2A9KZaydtJ1eV4rKEpCuWMg7I-aIap4U_69CFLWdNG8UgirHNYaPMxUg8R0PWJAKiVtS8MtTVmmL8VofeRnaKHYM4_o-XOyEbHCmSdzxjSYesTycze4oUZ5qd1V_zNyKu-e4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9gKHim9SCjKIq9W1x3GcE2KhZYXUClVUqrhEjmOXPZCUZFei_55xkg1dhDglsa3E8th-b8aTGYC36FC6UlpehsxyhU5zE5TmIaWLShVWIdo7Ts_08kJ9vkwvR4NbN7pVbvfEfqOuGhdt5Ec0FwlpM62zd9c_ecwaFU9XxxQad2FPkqYgZ7C3OD77cj6pXEga2BBPCEm5P-oIryQh8HwHhfpg_f9imH87St5CnpMHsD9SRvZ-kPFDuOPrR3D_ViDBx_BtaeuKfaK3blrPzrdOQU3NFoRSFaOb6NDBP0Z39fUNO71phvw3KxcfVzWLKTpt-4ORHH81bReLevt-9wQuTo6_fljyMWsCd6jna15K6RGlsNqid4TwogzBplaHzLjgJVFq0_8vixJTT1iVh3nlUPigM-GNw6cwq5vaPwdGuhQRFOFy7aXSxueVE0HL4NEK5dKQwJvtKBbXQ3CMgpSKONTFNNQJLOL4Tg1iPOu-oGmvinF5FMZoY53OM0sUyebCKm-CzJWmDxLHKRM43EqnGBdZV_yZEgm8nqppecQzD1v7ZjO0MQLTjNo8G4Q59SRyNWJPKgGzI-adru7W1KvvfQhuYqn0YlQH_-_XC7gniQRF1zKRH8Js3W78SyIx6_LVOFN_Ax1X81Y
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9V5WU8INgGBMrkTbwG6o84zgNCdFtXTRoPE5UqXiLHsaHSlkDaSut_zzlpogVVe0pin5zTnZ37nX25A_jIDWcmYzrMXKxDwY0MlRMydBFeRCR47vx-x813OZuL60W0GEBbY3MnwNVe187Xk5pXd58e_m6_4oL_4j1OdNk_r9AKMbSr6Lk_Yz4fl4_gE91hAuPohjVJhfrkPVNUZ-zfBzP_j5Z8ZH6mL-HFDjeSb42iX8HAFofw_FE2wSP4OdNFTq5w1E1lyW0bGVQWZIKmKid446M6wgsfs77ekptt2RTBWRr_uCyIr9Opq3uCynwoq5Vvqjf5V8cwn17-OJ-Fu9IJoeFyvA4zxiwKgmqpuTVo5mnmnI60dLEyzjLE1ar-aZYzHlk0WIkb54ZT62RMrTL8NQyLsrBvgaBDhSiFmkRaJqSySW6ok8xZrqkwkQvgrJVi-qfJkJGiZ-FFnXaiDmDi5dsR-KTWdUNZ_Up3ayRVSiptZBJrxEk6oVpY5VgiJL4QgU4WwKjVTtpOlBS_UYjAYinjAE67blwj_uBDF7bcNDSK8ihGmjeNMjtOPGBDCCUCUD0191jt9xTL33UeboSqODAX757m6z0cMERCPr6MJiMYrquN_YBIZp2d1PP0Hzmy810
  priority: 102
  providerName: Scholars Portal
Title Hand Gesture Recognition Based on High-Density Myoelectricity in Forearm Flexors in Humans
URI https://www.ncbi.nlm.nih.gov/pubmed/38931754
https://www.proquest.com/docview/3072737667
https://www.proquest.com/docview/3072813577
https://pubmed.ncbi.nlm.nih.gov/PMC11207234
https://doaj.org/article/8868ac697a064a91a4e8f2946c1f743b
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5swFH9qu8t2mPY9ui5i06408Qe2OS5d02hSqqpapWgXZIzdRmqgIonU_vd7NhA1U0-9GLANWH7PvN8zPz8D_GCGUVNQnRRO6oQzIxLluEhcigeeclY6P98xOxfTK_57ns73QPRrYQJp3xSL4-p2eVwtbgK38m5phj1PbHgxO0GMMJKU8eE-7KOG9j5652Yx9LraGEIMHfrhCm0URas72rE8IUD_U6jyf3LkI2szeQOvO5gY_2yb8xb2bPUOXj0KHvge_k51VcZn-NRNY-PLnghUV_EYLVMZ44kncSS_PEV9_RDPHup2z5uF8ZeLKvbbcupmGaPs7utm5bPCnP7qA1xNTv-cTJNup4TEMDFaJwWlljFKtNDMGrTqpHBOp1o4qYyzFGG0CmtkGWWpRfuUuVFpGLFOSGKVYR_hoKor-xli9J8QlBCTCUu5UDYrDXGCOss04SZ1EXzvezG_awNi5OhI-K7Ot10dwdj377aCj2EdMurmOu8kmSsllDYikxphkc6I5lY5mnGBL0RcU0Rw1Esn7wbWKsdPEgIuKYSM4Nu2GIeE_8-hK1tv2jqKsFRinU-tMLct8fgMEROPQO2IeaepuyWohSHsdq91h8-_9Qu8pAiKPNWMZEdwsG429iuCmnUxQE2eS0zV5GwAL8an5xeXgzBBgOmMq0HQ8X8LLf6v
link.rule.ids 230,315,730,783,787,867,888,2109,2228,12070,12779,21402,24332,27938,27939,31733,31734,33387,33388,33758,33759,43324,43614,43819,53806,53808,74081,74371,74638
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOQCHimdJKWAQV6vrRxznhChQFuj2gFppxSVyHBv2QFKSXYn-e2aS7LaLEKcktpVYM7bnG3vyDcBr5ZX0pXS8jJnjWnnDbdSGxxQvOtWqirTfMTs103P9eZ7Oxw23bgyrXK-J_UJdNZ72yA9xLKKlzYzJ3lz84pQ1ik5XxxQaN-EW8XARd342v3K4FPpfA5uQQtf-sENrJdH-TrZsUE_V_y98-XeY5DW7c3wPdkfAyN4OGr4PN0L9AO5eoxF8CN-mrq7YR3zrqg3s6zokqKnZEdqoiuENhXPw9xSsvrxks8tmyH6z8PS4qBkl6HTtT4Za_N20HRX1u_vdIzg__nD2bsrHnAncKzNZ8lLKgJIQzjgVPNp3UcboUmdiZn0MEgG17f-WVVKlAS1VHieVVyJEk4lgvXoMO3VThyfA0JNCeCJ8boLUxoa88iIaGYNyQvs0JvBqLcXiYqDGKNClIFEXG1EncETy3TQgNuu-oGm_F-PkKKw11nmTZw4BksuF08FGmWuDH0SEUyZwsNZOMU6xrrgaEAm83FTj5KATD1eHZjW0sUKlGbbZG5S56QkhNcROOgG7peatrm7X1IsfPQE3YlR8sdL7_-_XC7g9PZudFCefTr88hTsS4RAFmYn8AHaW7So8QzizLJ_3Y_YPnJv04Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkL0gHg3UMAgrtGuH3GcU8XSLsujq6qiUsUlchyb7qFJSXYl-u87TryhixCnJLaVWJ6xv2_syQzAe244MwXTceFSHQtuZKyckLFL8CISwUvn9zuOF3J-Jr6cJ-fB_6kNbpWbNbFbqMva-D3yMeoiIm0qZTp2wS3i5HB2cPUr9hmk_ElrSKdxF3ZSgVo1gp3p0eLkdDC_OFpjfWwhjob-uEXsYojGky1E6gL3_4tt_u00eQuFZg_hQaCP5EMv70dwx1aPYfdWUMEn8GOuq5J8wreuG0tONw5CdUWmiFglwRvv3BEfetf11TU5vq77XDhL4x-XFfHpOnVzSVCmv-um9UXdXn_7FM5mR98_zuOQQSE2XE5WccGY5ZxRLTW3BtGeFs7pREuXKuMsQ3qtun9nOeOJRdzK3KQ0nFonU2qV4c9gVNWV3QOCdhWSFWoyaZmQymaloU4yZ7mmwiQugnebUcyv-kAZORoYfqjzYagjmPrxHRr42NZdQd38zMNUyZWSShuZpRrpks6oFlY5lgmJH0S-U0Swv5FOHiZcm_9RjwjeDtU4Vfz5h65sve7bKMqTFNs874U59MTzNmRSIgK1Jeatrm7XVMuLLhw3MlZ8MRcv_t-vN3APFTb_9nnx9SXcZ8iNvMcZzfZhtGrW9hVym1XxOijtDTrQ-oQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hand+Gesture+Recognition+Based+on+High-Density+Myoelectricity+in+Forearm+Flexors+in+Humans&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Xiaoling&rft.au=Yang%2C+Huaigang&rft.au=Zhang%2C+Dong&rft.au=Hu%2C+Xinfeng&rft.date=2024-06-19&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=12&rft.spage=3970&rft_id=info:doi/10.3390%2Fs24123970&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon