Hand Gesture Recognition Based on High-Density Myoelectricity in Forearm Flexors in Humans
Electromyography-based gesture recognition has become a challenging problem in the decoding of fine hand movements. Recent research has focused on improving the accuracy of gesture recognition by increasing the complexity of network models. However, training a complex model necessitates a significan...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 12; p. 3970 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
19.06.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electromyography-based gesture recognition has become a challenging problem in the decoding of fine hand movements. Recent research has focused on improving the accuracy of gesture recognition by increasing the complexity of network models. However, training a complex model necessitates a significant amount of data, thereby escalating both user burden and computational costs. Moreover, owing to the considerable variability of surface electromyography (sEMG) signals across different users, conventional machine learning approaches reliant on a single feature fail to meet the demand for precise gesture recognition tailored to individual users. Therefore, to solve the problems of large computational cost and poor cross-user pattern recognition performance, we propose a feature selection method that combines mutual information, principal component analysis and the Pearson correlation coefficient (MPP). This method can filter out the optimal subset of features that match a specific user while combining with an SVM classifier to accurately and efficiently recognize the user's gesture movements. To validate the effectiveness of the above method, we designed an experiment including five gesture actions. The experimental results show that compared to the classification accuracy obtained using a single feature, we achieved an improvement of about 5% with the optimally selected feature as the input to any of the classifiers. This study provides an effective guarantee for user-specific fine hand movement decoding based on sEMG signals. |
---|---|
AbstractList | Electromyography-based gesture recognition has become a challenging problem in the decoding of fine hand movements. Recent research has focused on improving the accuracy of gesture recognition by increasing the complexity of network models. However, training a complex model necessitates a significant amount of data, thereby escalating both user burden and computational costs. Moreover, owing to the considerable variability of surface electromyography (sEMG) signals across different users, conventional machine learning approaches reliant on a single feature fail to meet the demand for precise gesture recognition tailored to individual users. Therefore, to solve the problems of large computational cost and poor cross-user pattern recognition performance, we propose a feature selection method that combines mutual information, principal component analysis and the Pearson correlation coefficient (MPP). This method can filter out the optimal subset of features that match a specific user while combining with an SVM classifier to accurately and efficiently recognize the user's gesture movements. To validate the effectiveness of the above method, we designed an experiment including five gesture actions. The experimental results show that compared to the classification accuracy obtained using a single feature, we achieved an improvement of about 5% with the optimally selected feature as the input to any of the classifiers. This study provides an effective guarantee for user-specific fine hand movement decoding based on sEMG signals. Electromyography-based gesture recognition has become a challenging problem in the decoding of fine hand movements. Recent research has focused on improving the accuracy of gesture recognition by increasing the complexity of network models. However, training a complex model necessitates a significant amount of data, thereby escalating both user burden and computational costs. Moreover, owing to the considerable variability of surface electromyography (sEMG) signals across different users, conventional machine learning approaches reliant on a single feature fail to meet the demand for precise gesture recognition tailored to individual users. Therefore, to solve the problems of large computational cost and poor cross-user pattern recognition performance, we propose a feature selection method that combines mutual information, principal component analysis and the Pearson correlation coefficient (MPP). This method can filter out the optimal subset of features that match a specific user while combining with an SVM classifier to accurately and efficiently recognize the user's gesture movements. To validate the effectiveness of the above method, we designed an experiment including five gesture actions. The experimental results show that compared to the classification accuracy obtained using a single feature, we achieved an improvement of about 5% with the optimally selected feature as the input to any of the classifiers. This study provides an effective guarantee for user-specific fine hand movement decoding based on sEMG signals.Electromyography-based gesture recognition has become a challenging problem in the decoding of fine hand movements. Recent research has focused on improving the accuracy of gesture recognition by increasing the complexity of network models. However, training a complex model necessitates a significant amount of data, thereby escalating both user burden and computational costs. Moreover, owing to the considerable variability of surface electromyography (sEMG) signals across different users, conventional machine learning approaches reliant on a single feature fail to meet the demand for precise gesture recognition tailored to individual users. Therefore, to solve the problems of large computational cost and poor cross-user pattern recognition performance, we propose a feature selection method that combines mutual information, principal component analysis and the Pearson correlation coefficient (MPP). This method can filter out the optimal subset of features that match a specific user while combining with an SVM classifier to accurately and efficiently recognize the user's gesture movements. To validate the effectiveness of the above method, we designed an experiment including five gesture actions. The experimental results show that compared to the classification accuracy obtained using a single feature, we achieved an improvement of about 5% with the optimally selected feature as the input to any of the classifiers. This study provides an effective guarantee for user-specific fine hand movement decoding based on sEMG signals. |
Author | Zhang, Dong Chen, Xiaoling Hu, Xinfeng Yang, Huaigang Xie, Ping |
AuthorAffiliation | 1 Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China; xlchen@ysu.edu.cn (X.C.); yhg622822@163.com (H.Y.); zhangdong_0328@163.com (D.Z.); 17638352137@163.com (X.H.) 2 Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China |
AuthorAffiliation_xml | – name: 1 Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China; xlchen@ysu.edu.cn (X.C.); yhg622822@163.com (H.Y.); zhangdong_0328@163.com (D.Z.); 17638352137@163.com (X.H.) – name: 2 Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China |
Author_xml | – sequence: 1 givenname: Xiaoling surname: Chen fullname: Chen, Xiaoling organization: Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China – sequence: 2 givenname: Huaigang surname: Yang fullname: Yang, Huaigang organization: Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China – sequence: 3 givenname: Dong surname: Zhang fullname: Zhang, Dong organization: Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China – sequence: 4 givenname: Xinfeng surname: Hu fullname: Hu, Xinfeng organization: Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China – sequence: 5 givenname: Ping surname: Xie fullname: Xie, Ping organization: Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao 066004, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38931754$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1vEzEQhi1URD_gwB9AK3GBw4Lt2djeE4JCmkpFSAguXKyJd5w62titvYvIv2fTlKjl5PHMo0ejeU_ZUUyRGHsp-DuAlr8vshESWs2fsBPRyKY2UvKjB_UxOy1lzbkEAPOMHYNpQehZc8J-LTB21QWVYcxUfSeXVjEMIcXqExbqqqlYhNV1_ZliCcO2-rpN1JMbcnC7b4jVPGXCvKnmPf1Juexai3GDsTxnTz32hV7cv2fs5_zLj_NFffXt4vL841XtQPGhXkpJAFKgQiDHjRRL73GGymvjPEljpJG8bTVImJHSpvW8cyDIKy3IODhjl3tvl3Btb3LYYN7ahMHeNVJeWcxDcD1ZY5RBp1qNXDXYCmzIeNk2ygmvG1hOrg9718243FDnKA4Z-0fSx5MYru0q_bZCSK4lNJPhzb0hp9txuqvdhOKo7zFSGouFCTMCZlpP6Ov_0HUac5xudUdp0ErtqLd7yuVUSiZ_2EZwu4vfHuKf2FcP1z-Q__KGvynoqvE |
Cites_doi | 10.1007/s11771-015-2698-0 10.1109/TBME.2008.2005485 10.1007/s13042-017-0705-5 10.1016/j.eswa.2014.11.044 10.1016/j.neucom.2013.12.010 10.1016/j.bspc.2014.12.001 10.1109/TBME.2005.856295 10.1109/TOH.2013.6 10.1109/ICARCV.2012.6485374 10.3390/s130912431 10.1016/j.eswa.2012.01.102 10.1007/s11431-017-9159-3 10.1109/ACCESS.2021.3118281 10.1038/sdata.2014.53 10.1371/journal.pone.0276436 10.1109/TNSRE.2022.3173946 10.1109/10.914793 10.1108/IR-04-2014-0327 10.1016/j.eswa.2013.02.023 10.1109/TNSRE.2009.2015177 10.1063/1.5057725 10.1109/THMS.2017.2700444 10.1109/TIE.2015.2497212 10.1109/TNSRE.2023.3237181 10.1007/s11517-017-1723-x 10.3389/fnbot.2021.659876 10.3390/s20041201 10.1109/TBME.2012.2191551 10.1145/2702123.2702501 10.1016/j.bspc.2020.102074 10.1016/j.bspc.2015.02.009 10.1109/TBME.2004.836492 10.1016/j.ins.2021.11.065 10.1038/srep36571 10.1186/1743-0003-9-85 10.1016/j.cmpb.2008.01.003 10.1016/j.ergon.2017.02.004 10.3390/s18082497 10.1038/s41597-020-00717-6 10.1016/j.compbiomed.2018.08.020 10.1007/978-3-319-00846-2_188 10.1016/j.bspc.2016.01.011 10.1109/TMECH.2007.897262 10.1016/j.bspc.2012.08.005 10.3389/fnbot.2016.00009 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s24123970 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_8868ac697a064a91a4e8f2946c1f743b 10_3390_s24123970 38931754 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Hebei Natural Science Foundation grantid: F2022203079 – fundername: Hebei innovation capability improvement plan project grantid: 22567619H – fundername: S&T Program of Hebei grantid: 21372005D; 21372001D – fundername: Funding Project for the Introduced Overseas Students of Hebei Province grantid: C20220337 – fundername: National Natural Science Foundation of China grantid: 62371416 |
GroupedDBID | --- 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH ABDBF ABJCF ABUWG ADBBV AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BPHCQ BVXVI CCPQU CGR CS3 CUY CVF D1I DU5 E3Z EBD ECM EIF ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO ITC KB. KQ8 L6V M1P M48 M7S MODMG M~E NPM OK1 P2P P62 PDBOC PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M AAYXX CITATION 7XB 8FK AZQEC DWQXO K9. PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c360t-b22e3321a6a3ec0821bffa5a6f78cfe28828209973235e6789f0dc31ef671e8c3 |
IEDL.DBID | RPM |
ISSN | 1424-8220 |
IngestDate | Tue Oct 22 15:14:50 EDT 2024 Tue Sep 17 21:28:54 EDT 2024 Sat Oct 26 04:49:41 EDT 2024 Thu Oct 10 18:00:55 EDT 2024 Thu Sep 26 21:38:46 EDT 2024 Tue Oct 29 09:22:46 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | gesture recognition machine learning high-density surface electromyography (HD-sEMG) feature selection |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c360t-b22e3321a6a3ec0821bffa5a6f78cfe28828209973235e6789f0dc31ef671e8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207234/ |
PMID | 38931754 |
PQID | 3072737667 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8868ac697a064a91a4e8f2946c1f743b pubmedcentral_primary_oai_pubmedcentral_nih_gov_11207234 proquest_miscellaneous_3072813577 proquest_journals_3072737667 crossref_primary_10_3390_s24123970 pubmed_primary_38931754 |
PublicationCentury | 2000 |
PublicationDate | 20240619 |
PublicationDateYYYYMMDD | 2024-06-19 |
PublicationDate_xml | – month: 6 year: 2024 text: 20240619 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Hakonen (ref_10) 2015; 18 Chan (ref_25) 2005; 52 Xing (ref_18) 2014; 136 Hui (ref_27) 2014; 84 ref_35 Huang (ref_24) 2005; 52 ref_33 Englehart (ref_43) 2001; 48 Zhang (ref_15) 2017; 47 Zhang (ref_16) 2012; 59 Atzori (ref_11) 2014; 1 Phinyomark (ref_32) 2012; 39 Shim (ref_12) 2015; 22 Zhang (ref_39) 2022; 30 ref_17 ref_38 Liu (ref_5) 2018; 68 Bullock (ref_37) 2013; 6 Kanitz (ref_36) 2016; 27 Chu (ref_23) 2009; 17 Cheng (ref_30) 2018; 103 Meng (ref_7) 2014; 41 Chowdhury (ref_45) 2013; 13 Zhang (ref_41) 2022; 585 ref_47 Phinyomark (ref_31) 2013; 40 Xue (ref_40) 2023; 31 Chen (ref_26) 2013; 8 Wang (ref_3) 2017; 60 Chu (ref_21) 2007; 12 Hermens (ref_9) 1984; 24 Duan (ref_20) 2016; 63 Geng (ref_29) 2016; 6 Serna (ref_46) 2020; 7 ref_2 Zhou (ref_4) 2021; 15 Atzori (ref_14) 2016; 10 Srisuwan (ref_44) 2018; 56 Tenore (ref_6) 2009; 56 Cheok (ref_8) 2017; 10 ref_28 Alonso (ref_13) 2012; 9 Cisnal (ref_1) 2021; 9 McCool (ref_19) 2015; 18 Tsai (ref_22) 2015; 42 Yan (ref_34) 2008; 90 Xi (ref_42) 2019; 90 |
References_xml | – volume: 22 start-page: 1801 year: 2015 ident: ref_12 article-title: Multi-channel electromyography pattern classification using deep belief networks for enhanced user experience publication-title: J. Cent. South Univ. doi: 10.1007/s11771-015-2698-0 contributor: fullname: Shim – volume: 56 start-page: 1427 year: 2009 ident: ref_6 article-title: Decoding of Individuated Finger Movements Using Surface Electromyography publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2005485 contributor: fullname: Tenore – volume: 10 start-page: 131 year: 2017 ident: ref_8 article-title: A review of hand gesture and sign language recognition techniques publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-017-0705-5 contributor: fullname: Cheok – volume: 42 start-page: 3327 year: 2015 ident: ref_22 article-title: A novel STFT-ranking feature of multi-channel EMG for motion pattern recognition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.11.044 contributor: fullname: Tsai – volume: 136 start-page: 345 year: 2014 ident: ref_18 article-title: A real-time EMG pattern recognition method for virtual myoelectric hand control publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.12.010 contributor: fullname: Xing – volume: 18 start-page: 61 year: 2015 ident: ref_19 article-title: Improved pattern recognition classification accuracy for surface myoelectric signals using spectral enhancement publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.12.001 contributor: fullname: McCool – volume: 52 start-page: 1801 year: 2005 ident: ref_24 article-title: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.856295 contributor: fullname: Huang – volume: 6 start-page: 296 year: 2013 ident: ref_37 article-title: Grasp Frequency and Usage in Daily Household and Machine Shop Tasks publication-title: IEEE Trans. Haptics doi: 10.1109/TOH.2013.6 contributor: fullname: Bullock – volume: 84 start-page: 473 year: 2014 ident: ref_27 article-title: Pattern Recognition of Eight Hand Motions Using Feature Extraction of Forearm EMG Signal publication-title: Proc. Nat. Acad. Sci. India A contributor: fullname: Hui – ident: ref_35 doi: 10.1109/ICARCV.2012.6485374 – volume: 13 start-page: 12431 year: 2013 ident: ref_45 article-title: Surface Electromyography Signal Processing and Classification Techniques publication-title: Sensors doi: 10.3390/s130912431 contributor: fullname: Chowdhury – volume: 39 start-page: 7420 year: 2012 ident: ref_32 article-title: Feature reduction and selection for EMG signal classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.01.102 contributor: fullname: Phinyomark – volume: 60 start-page: 1978 year: 2017 ident: ref_3 article-title: New advances in EMG control methods of anthropomorphic prosthetic hand publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-017-9159-3 contributor: fullname: Wang – volume: 9 start-page: 137809 year: 2021 ident: ref_1 article-title: RobHand: A Hand Exoskeleton with Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3118281 contributor: fullname: Cisnal – volume: 1 start-page: 13 year: 2014 ident: ref_11 article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses publication-title: Sci. Data doi: 10.1038/sdata.2014.53 contributor: fullname: Atzori – ident: ref_38 doi: 10.1371/journal.pone.0276436 – volume: 30 start-page: 1374 year: 2022 ident: ref_39 article-title: Domain Adaptation With Self-Guided Adaptive Sampling Strategy: Feature Alignment for Cross-User Myoelectric Pattern Recognition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3173946 contributor: fullname: Zhang – volume: 48 start-page: 302 year: 2001 ident: ref_43 article-title: A wavelet-based continuous classification scheme for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.914793 contributor: fullname: Englehart – volume: 41 start-page: 465 year: 2014 ident: ref_7 article-title: Active interaction control applied to a lower limb rehabilitation robot by using EMG recognition and impedance model publication-title: Ind. Robot. doi: 10.1108/IR-04-2014-0327 contributor: fullname: Meng – volume: 40 start-page: 4832 year: 2013 ident: ref_31 article-title: EMG feature evaluation for improving myoelectric pattern recognition robustness publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.02.023 contributor: fullname: Phinyomark – volume: 17 start-page: 287 year: 2009 ident: ref_23 article-title: Conjugate-Prior-Penalized Learning of Gaussian Mixture Models for Multifunction Myoelectric Hand Control publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2009.2015177 contributor: fullname: Chu – volume: 90 start-page: 035003 year: 2019 ident: ref_42 article-title: Denoising of surface electromyogram based on complementary ensemble empirical mode decomposition and improved interval thresholding publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5057725 contributor: fullname: Xi – volume: 47 start-page: 576 year: 2017 ident: ref_15 article-title: Myoelectric Pattern Recognition Based on Muscle Synergies for Simultaneous Control of Dexterous Finger Movements publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2017.2700444 contributor: fullname: Zhang – volume: 63 start-page: 1923 year: 2016 ident: ref_20 article-title: sEMG-Based Identification of Hand Motion Commands Using Wavelet Neural Network Combined with Discrete Wavelet Transform publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2497212 contributor: fullname: Duan – volume: 31 start-page: 972 year: 2023 ident: ref_40 article-title: Reduce the User Burden of Multiuser Myoelectric Interface via Few-Shot Domain Adaptation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3237181 contributor: fullname: Xue – volume: 56 start-page: 1041 year: 2018 ident: ref_44 article-title: Comparison of feature evaluation criteria for speech recognition based on electromyography publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-017-1723-x contributor: fullname: Srisuwan – volume: 15 start-page: 12 year: 2021 ident: ref_4 article-title: Toward Hand Pattern Recognition in Assistive and Rehabilitation Robotics Using EMG and Kinematics publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2021.659876 contributor: fullname: Zhou – ident: ref_17 doi: 10.3390/s20041201 – volume: 59 start-page: 1649 year: 2012 ident: ref_16 article-title: High-Density Myoelectric Pattern Recognition toward Improved Stroke Rehabilitation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2191551 contributor: fullname: Zhang – ident: ref_47 doi: 10.1145/2702123.2702501 – ident: ref_2 doi: 10.1016/j.bspc.2020.102074 – volume: 18 start-page: 334 year: 2015 ident: ref_10 article-title: Current state of digital signal processing in myoelectric interfaces and related applications publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2015.02.009 contributor: fullname: Hakonen – volume: 52 start-page: 121 year: 2005 ident: ref_25 article-title: Continuous myoelectric control for powered prostheses using hidden Markov models publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.836492 contributor: fullname: Chan – volume: 585 start-page: 543 year: 2022 ident: ref_41 article-title: Second-order information bottleneck based spiking neural networks for sEMG recognition publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.11.065 contributor: fullname: Zhang – volume: 6 start-page: 8 year: 2016 ident: ref_29 article-title: Gesture recognition by instantaneous surface EMG images publication-title: Sci. Rep. doi: 10.1038/srep36571 contributor: fullname: Geng – volume: 9 start-page: 85 year: 2012 ident: ref_13 article-title: High-density surface EMG maps from upper-arm and forearm muscles publication-title: J. NeuroEng. Rehabil. doi: 10.1186/1743-0003-9-85 contributor: fullname: Alonso – volume: 90 start-page: 275 year: 2008 ident: ref_34 article-title: The application of mutual information-based feature selection and fuzzy LS-SVM-based classifier in motion classification publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2008.01.003 contributor: fullname: Yan – volume: 68 start-page: 355 year: 2018 ident: ref_5 article-title: Gesture recognition for human-robot collaboration: A review publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2017.02.004 contributor: fullname: Liu – volume: 24 start-page: 243 year: 1984 ident: ref_9 article-title: The clinical use of surface EMG publication-title: Electromyogr. Clin. Neurophysiol. contributor: fullname: Hermens – ident: ref_28 doi: 10.3390/s18082497 – volume: 7 start-page: 397 year: 2020 ident: ref_46 article-title: High-density surface electromyography signals during isometric contractions of elbow muscles of healthy humans publication-title: Sci. Data doi: 10.1038/s41597-020-00717-6 contributor: fullname: Serna – volume: 103 start-page: 44 year: 2018 ident: ref_30 article-title: Position-independent gesture recognition using sEMG signals via canonical correlation analysis publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.08.020 contributor: fullname: Cheng – ident: ref_33 doi: 10.1007/978-3-319-00846-2_188 – volume: 27 start-page: 24 year: 2016 ident: ref_36 article-title: Distance and mutual information methods for EMG feature and channel subset selection for classification of hand movements publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.01.011 contributor: fullname: Kanitz – volume: 12 start-page: 282 year: 2007 ident: ref_21 article-title: A supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand control publication-title: IEEE-ASME Trans. Mechatron. doi: 10.1109/TMECH.2007.897262 contributor: fullname: Chu – volume: 8 start-page: 184 year: 2013 ident: ref_26 article-title: Pattern recognition of number gestures based on a wireless surface EMG system publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2012.08.005 contributor: fullname: Chen – volume: 10 start-page: 10 year: 2016 ident: ref_14 article-title: Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2016.00009 contributor: fullname: Atzori |
SSID | ssj0023338 |
Score | 2.4707935 |
Snippet | Electromyography-based gesture recognition has become a challenging problem in the decoding of fine hand movements. Recent research has focused on improving... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 3970 |
SubjectTerms | Accuracy Adult Algorithms Classification Deep learning Discriminant analysis Efficiency Electromyography - methods Feature selection Female Forearm - physiology gesture recognition Gestures Hand - physiology high-density surface electromyography (HD-sEMG) Humans Machine Learning Male Methods Movement - physiology Neural networks Pattern recognition Pattern Recognition, Automated - methods Principal Component Analysis Principal components analysis Support Vector Machine Support vector machines Young Adult |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA_iSQ_it9UpUbyWLXlpmh79HsI8iIPhpaRpgjvYyrqB_ve-tN3YRPDiqW0SQvpek9_vJa_vEXIJBrjJuA4zF-tQgJGhckKGLsKLiATkzu93DJ5kfygeR9FoKdWX9wlrwgM3gusqJZU2Mok1gqdOmBZWOZ4IaZhD9Mvq1beXzI2p1tQCtLyaOEKARn23QpziiLy9FfSpg_T_xix_OkguIc79NtlqqSK9aoa4Q9ZssUs2lwII7pHXvi5y-oC9ziaWPs-dgcqCXiM65RRvvCNHeOvd1KdfdPBVNnlvxsY_jgvqU3PqyTtF_X2Wk8oX1fv61T4Z3t-93PTDNltCaED2pmHGuQXgTEsN1iCys8w5HWnpYmWc5UilVf2fLHCILGJU4nq5AWadjJlVBg7IelEW9ohQtKGQmDCTSMuFVDbJUdiSOwuaCRO5gFzMpZh-NEExUjQmvKjThagDcu3lu2jg41jXBajdtNVu-pd2A9KZaydtJ1eV4rKEpCuWMg7I-aIap4U_69CFLWdNG8UgirHNYaPMxUg8R0PWJAKiVtS8MtTVmmL8VofeRnaKHYM4_o-XOyEbHCmSdzxjSYesTycze4oUZ5qd1V_zNyKu-e4 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9gKHim9SCjKIq9W1x3GcE2KhZYXUClVUqrhEjmOXPZCUZFei_55xkg1dhDglsa3E8th-b8aTGYC36FC6UlpehsxyhU5zE5TmIaWLShVWIdo7Ts_08kJ9vkwvR4NbN7pVbvfEfqOuGhdt5Ec0FwlpM62zd9c_ecwaFU9XxxQad2FPkqYgZ7C3OD77cj6pXEga2BBPCEm5P-oIryQh8HwHhfpg_f9imH87St5CnpMHsD9SRvZ-kPFDuOPrR3D_ViDBx_BtaeuKfaK3blrPzrdOQU3NFoRSFaOb6NDBP0Z39fUNO71phvw3KxcfVzWLKTpt-4ORHH81bReLevt-9wQuTo6_fljyMWsCd6jna15K6RGlsNqid4TwogzBplaHzLjgJVFq0_8vixJTT1iVh3nlUPigM-GNw6cwq5vaPwdGuhQRFOFy7aXSxueVE0HL4NEK5dKQwJvtKBbXQ3CMgpSKONTFNNQJLOL4Tg1iPOu-oGmvinF5FMZoY53OM0sUyebCKm-CzJWmDxLHKRM43EqnGBdZV_yZEgm8nqppecQzD1v7ZjO0MQLTjNo8G4Q59SRyNWJPKgGzI-adru7W1KvvfQhuYqn0YlQH_-_XC7gniQRF1zKRH8Js3W78SyIx6_LVOFN_Ax1X81Y priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9V5WU8INgGBMrkTbwG6o84zgNCdFtXTRoPE5UqXiLHsaHSlkDaSut_zzlpogVVe0pin5zTnZ37nX25A_jIDWcmYzrMXKxDwY0MlRMydBFeRCR47vx-x813OZuL60W0GEBbY3MnwNVe187Xk5pXd58e_m6_4oL_4j1OdNk_r9AKMbSr6Lk_Yz4fl4_gE91hAuPohjVJhfrkPVNUZ-zfBzP_j5Z8ZH6mL-HFDjeSb42iX8HAFofw_FE2wSP4OdNFTq5w1E1lyW0bGVQWZIKmKid446M6wgsfs77ekptt2RTBWRr_uCyIr9Opq3uCynwoq5Vvqjf5V8cwn17-OJ-Fu9IJoeFyvA4zxiwKgmqpuTVo5mnmnI60dLEyzjLE1ar-aZYzHlk0WIkb54ZT62RMrTL8NQyLsrBvgaBDhSiFmkRaJqSySW6ok8xZrqkwkQvgrJVi-qfJkJGiZ-FFnXaiDmDi5dsR-KTWdUNZ_Up3ayRVSiptZBJrxEk6oVpY5VgiJL4QgU4WwKjVTtpOlBS_UYjAYinjAE67blwj_uBDF7bcNDSK8ihGmjeNMjtOPGBDCCUCUD0191jt9xTL33UeboSqODAX757m6z0cMERCPr6MJiMYrquN_YBIZp2d1PP0Hzmy810 priority: 102 providerName: Scholars Portal |
Title | Hand Gesture Recognition Based on High-Density Myoelectricity in Forearm Flexors in Humans |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38931754 https://www.proquest.com/docview/3072737667 https://www.proquest.com/docview/3072813577 https://pubmed.ncbi.nlm.nih.gov/PMC11207234 https://doaj.org/article/8868ac697a064a91a4e8f2946c1f743b |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5swFH9qu8t2mPY9ui5i06408Qe2OS5d02hSqqpapWgXZIzdRmqgIonU_vd7NhA1U0-9GLANWH7PvN8zPz8D_GCGUVNQnRRO6oQzIxLluEhcigeeclY6P98xOxfTK_57ns73QPRrYQJp3xSL4-p2eVwtbgK38m5phj1PbHgxO0GMMJKU8eE-7KOG9j5652Yx9LraGEIMHfrhCm0URas72rE8IUD_U6jyf3LkI2szeQOvO5gY_2yb8xb2bPUOXj0KHvge_k51VcZn-NRNY-PLnghUV_EYLVMZ44kncSS_PEV9_RDPHup2z5uF8ZeLKvbbcupmGaPs7utm5bPCnP7qA1xNTv-cTJNup4TEMDFaJwWlljFKtNDMGrTqpHBOp1o4qYyzFGG0CmtkGWWpRfuUuVFpGLFOSGKVYR_hoKor-xli9J8QlBCTCUu5UDYrDXGCOss04SZ1EXzvezG_awNi5OhI-K7Ot10dwdj377aCj2EdMurmOu8kmSsllDYikxphkc6I5lY5mnGBL0RcU0Rw1Esn7wbWKsdPEgIuKYSM4Nu2GIeE_8-hK1tv2jqKsFRinU-tMLct8fgMEROPQO2IeaepuyWohSHsdq91h8-_9Qu8pAiKPNWMZEdwsG429iuCmnUxQE2eS0zV5GwAL8an5xeXgzBBgOmMq0HQ8X8LLf6v |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,12070,12779,21402,24332,27938,27939,31733,31734,33387,33388,33758,33759,43324,43614,43819,53806,53808,74081,74371,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOQCHimdJKWAQV6vrRxznhChQFuj2gFppxSVyHBv2QFKSXYn-e2aS7LaLEKcktpVYM7bnG3vyDcBr5ZX0pXS8jJnjWnnDbdSGxxQvOtWqirTfMTs103P9eZ7Oxw23bgyrXK-J_UJdNZ72yA9xLKKlzYzJ3lz84pQ1ik5XxxQaN-EW8XARd342v3K4FPpfA5uQQtf-sENrJdH-TrZsUE_V_y98-XeY5DW7c3wPdkfAyN4OGr4PN0L9AO5eoxF8CN-mrq7YR3zrqg3s6zokqKnZEdqoiuENhXPw9xSsvrxks8tmyH6z8PS4qBkl6HTtT4Za_N20HRX1u_vdIzg__nD2bsrHnAncKzNZ8lLKgJIQzjgVPNp3UcboUmdiZn0MEgG17f-WVVKlAS1VHieVVyJEk4lgvXoMO3VThyfA0JNCeCJ8boLUxoa88iIaGYNyQvs0JvBqLcXiYqDGKNClIFEXG1EncETy3TQgNuu-oGm_F-PkKKw11nmTZw4BksuF08FGmWuDH0SEUyZwsNZOMU6xrrgaEAm83FTj5KATD1eHZjW0sUKlGbbZG5S56QkhNcROOgG7peatrm7X1IsfPQE3YlR8sdL7_-_XC7g9PZudFCefTr88hTsS4RAFmYn8AHaW7So8QzizLJ_3Y_YPnJv04Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkL0gHg3UMAgrtGuH3GcU8XSLsujq6qiUsUlchyb7qFJSXYl-u87TryhixCnJLaVWJ6xv2_syQzAe244MwXTceFSHQtuZKyckLFL8CISwUvn9zuOF3J-Jr6cJ-fB_6kNbpWbNbFbqMva-D3yMeoiIm0qZTp2wS3i5HB2cPUr9hmk_ElrSKdxF3ZSgVo1gp3p0eLkdDC_OFpjfWwhjob-uEXsYojGky1E6gL3_4tt_u00eQuFZg_hQaCP5EMv70dwx1aPYfdWUMEn8GOuq5J8wreuG0tONw5CdUWmiFglwRvv3BEfetf11TU5vq77XDhL4x-XFfHpOnVzSVCmv-um9UXdXn_7FM5mR98_zuOQQSE2XE5WccGY5ZxRLTW3BtGeFs7pREuXKuMsQ3qtun9nOeOJRdzK3KQ0nFonU2qV4c9gVNWV3QOCdhWSFWoyaZmQymaloU4yZ7mmwiQugnebUcyv-kAZORoYfqjzYagjmPrxHRr42NZdQd38zMNUyZWSShuZpRrpks6oFlY5lgmJH0S-U0Swv5FOHiZcm_9RjwjeDtU4Vfz5h65sve7bKMqTFNs874U59MTzNmRSIgK1Jeatrm7XVMuLLhw3MlZ8MRcv_t-vN3APFTb_9nnx9SXcZ8iNvMcZzfZhtGrW9hVym1XxOijtDTrQ-oQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hand+Gesture+Recognition+Based+on+High-Density+Myoelectricity+in+Forearm+Flexors+in+Humans&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Xiaoling&rft.au=Yang%2C+Huaigang&rft.au=Zhang%2C+Dong&rft.au=Hu%2C+Xinfeng&rft.date=2024-06-19&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=12&rft.spage=3970&rft_id=info:doi/10.3390%2Fs24123970&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |