LiDGS: An efficient 3D reconstruction framework integrating lidar point clouds and multi-view images for enhanced geometric fidelity

•A new method combines LiDAR point clouds and multi-view images for 3D reconstruction.•Dense depth maps generated from LiDAR point clouds improve reconstruction accuracy.•An adaptive Gaussian densification strategy improves geometric fidelity in 3D models.•Depth regularization refines estimation, en...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 142; p. 104730
Main Authors Yan, Li, Song, Jiang, Xie, Hong, Wei, Pengcheng, Li, Gang, Zhu, Longze, Fan, Zhongli, Gong, Shucheng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A new method combines LiDAR point clouds and multi-view images for 3D reconstruction.•Dense depth maps generated from LiDAR point clouds improve reconstruction accuracy.•An adaptive Gaussian densification strategy improves geometric fidelity in 3D models.•Depth regularization refines estimation, ensuring consistent depth across viewpoints. Multi-view reconstruction of real-world scenes has been an important and challenging task. Although methods based on Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have made significant progress in rendering quality, there are still some limitations regarding the fidelity of geometric structures. To address this challenge, we propose a novel 3D reconstruction approach within the 3DGS framework, integrating lidar point clouds and multi-view images, named LiDGS, which achieves high-fidelity 3D scene reconstruction by introducing high-precision geometric a priori information and multiple geometric constraints from lidar point clouds, while guaranteeing efficient and accurate scene rendering. Specifically, we adopt an adaptive checkerboard sampling strategy and multi-hypothesis joint view selection (ACMP) for whole-image depth propagation, generating a high −precision dense depth map that provides continuous and accurate depth prior constraints for Gaussian optimization. Then, we design an adaptive Gaussian densification strategy, which effectively guides the geometric structure of the 3D scene through geometric anchors and adaptively adjusts the number and volume of Gaussians to more finely characterize the geometry of the object surface. Finally, this paper introduces a depth regularization method to correct the depth estimation of each Gaussian, ensuring the consistency of depth information from different viewpoints, which, in turn, improves the reconstruction quality. The experimental results show that the method achieves superior performance in both the new view synthesis task and the 3D reconstruction task, outperforming other classical methods. Our source code will be published at https://github.com/SongJiang-WHU/LiDGS.
AbstractList Multi-view reconstruction of real-world scenes has been an important and challenging task. Although methods based on Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have made significant progress in rendering quality, there are still some limitations regarding the fidelity of geometric structures. To address this challenge, we propose a novel 3D reconstruction approach within the 3DGS framework, integrating lidar point clouds and multi-view images, named LiDGS, which achieves high-fidelity 3D scene reconstruction by introducing high-precision geometric a priori information and multiple geometric constraints from lidar point clouds, while guaranteeing efficient and accurate scene rendering. Specifically, we adopt an adaptive checkerboard sampling strategy and multi-hypothesis joint view selection (ACMP) for whole-image depth propagation, generating a high −precision dense depth map that provides continuous and accurate depth prior constraints for Gaussian optimization. Then, we design an adaptive Gaussian densification strategy, which effectively guides the geometric structure of the 3D scene through geometric anchors and adaptively adjusts the number and volume of Gaussians to more finely characterize the geometry of the object surface. Finally, this paper introduces a depth regularization method to correct the depth estimation of each Gaussian, ensuring the consistency of depth information from different viewpoints, which, in turn, improves the reconstruction quality. The experimental results show that the method achieves superior performance in both the new view synthesis task and the 3D reconstruction task, outperforming other classical methods. Our source code will be published at https://github.com/SongJiang-WHU/LiDGS.
•A new method combines LiDAR point clouds and multi-view images for 3D reconstruction.•Dense depth maps generated from LiDAR point clouds improve reconstruction accuracy.•An adaptive Gaussian densification strategy improves geometric fidelity in 3D models.•Depth regularization refines estimation, ensuring consistent depth across viewpoints. Multi-view reconstruction of real-world scenes has been an important and challenging task. Although methods based on Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have made significant progress in rendering quality, there are still some limitations regarding the fidelity of geometric structures. To address this challenge, we propose a novel 3D reconstruction approach within the 3DGS framework, integrating lidar point clouds and multi-view images, named LiDGS, which achieves high-fidelity 3D scene reconstruction by introducing high-precision geometric a priori information and multiple geometric constraints from lidar point clouds, while guaranteeing efficient and accurate scene rendering. Specifically, we adopt an adaptive checkerboard sampling strategy and multi-hypothesis joint view selection (ACMP) for whole-image depth propagation, generating a high −precision dense depth map that provides continuous and accurate depth prior constraints for Gaussian optimization. Then, we design an adaptive Gaussian densification strategy, which effectively guides the geometric structure of the 3D scene through geometric anchors and adaptively adjusts the number and volume of Gaussians to more finely characterize the geometry of the object surface. Finally, this paper introduces a depth regularization method to correct the depth estimation of each Gaussian, ensuring the consistency of depth information from different viewpoints, which, in turn, improves the reconstruction quality. The experimental results show that the method achieves superior performance in both the new view synthesis task and the 3D reconstruction task, outperforming other classical methods. Our source code will be published at https://github.com/SongJiang-WHU/LiDGS.
ArticleNumber 104730
Author Song, Jiang
Gong, Shucheng
Yan, Li
Wei, Pengcheng
Li, Gang
Xie, Hong
Fan, Zhongli
Zhu, Longze
Author_xml – sequence: 1
  givenname: Li
  surname: Yan
  fullname: Yan, Li
  organization: School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Rd, Wuhan 430079, China
– sequence: 2
  givenname: Jiang
  orcidid: 0009-0006-1071-2636
  surname: Song
  fullname: Song, Jiang
  email: song_jiang@whu.edu.cn
  organization: School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Rd, Wuhan 430079, China
– sequence: 3
  givenname: Hong
  orcidid: 0000-0002-0956-0421
  surname: Xie
  fullname: Xie, Hong
  organization: School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Rd, Wuhan 430079, China
– sequence: 4
  givenname: Pengcheng
  surname: Wei
  fullname: Wei, Pengcheng
  organization: School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Rd, Wuhan 430079, China
– sequence: 5
  givenname: Gang
  surname: Li
  fullname: Li, Gang
  organization: School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Rd, Wuhan 430079, China
– sequence: 6
  givenname: Longze
  surname: Zhu
  fullname: Zhu, Longze
  organization: School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Rd, Wuhan 430079, China
– sequence: 7
  givenname: Zhongli
  surname: Fan
  fullname: Fan, Zhongli
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
– sequence: 8
  givenname: Shucheng
  surname: Gong
  fullname: Gong, Shucheng
  organization: School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Rd, Wuhan 430079, China
BookMark eNp9kcFuFDEQRH0IEkngA7j5B2axPd7ZGThFCYRIK3EAzlbb7h48zNqR7SXKnQ_HyyKOnFrdUpWq612xi5giMvZGio0Ucni7bBaYN0qobdv1rhcX7FJuh6kbda9esqtSFiHkbjeMl-zXPtzdf3nHbyJHouACxsr7O57RpVhqProaUuSU4YBPKf_gIVacM9QQZ74GD5k_pnbjbk1HXzhEzw_HtYbuZ8AnHg4wY-GUMsf4HaJDz2dMB6w5OE7B4xrq8yv2gmAt-PrvvGbfPn74evup23--f7i92XeuH0TtAN2WJq9ASnKalEKanLeD1SOAJWenAbV1dmsVuMmp0QvwA_WTEtajpf6aPZx9fYLFPOaWLj-bBMH8OaQ8G8g1uBUNiZ3UWlsNftIkYASvFPVqHO3kScvmJc9eLqdSMtI_PynMCYNZTMNgThjMGUPTvD9rsD3Z-smmnApvpYTWd20pwn_UvwH3SphL
Cites_doi 10.1007/978-3-031-73027-6_2
10.1145/3355089.3356513
10.1109/TVCG.2022.3203102
10.1145/3592433
10.1109/PBG.2005.194059
10.1145/3687762
10.1016/j.isprsjprs.2024.01.017
10.1109/CVPR.2016.445
10.1007/978-3-031-72761-0_25
10.1145/3306346.3322980
10.1111/cgf.14340
10.1007/978-3-031-72933-1_9
10.1109/WACV61041.2025.00375
10.1007/978-3-031-19824-3_20
10.1109/CVPR52734.2025.01119
10.1109/TGRS.2024.3510781
10.1145/3528223.3530127
10.1145/3503250
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jag.2025.104730
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID oai_doaj_org_article_f071444b4ad94f0a8ad22f3288b9df41
10_1016_j_jag_2025_104730
S1569843225003772
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAHBH
AALRI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABQEM
ABQYD
ABWVN
ACLVX
ACRLP
ACRPL
ACSBN
ADBBV
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGYEJ
AHEUO
AIIUN
AIKHN
AITUG
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EFJIC
EFKBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
M41
O-L
P-8
P-9
P2P
R2-
ROL
SES
SPC
SSJ
~02
AAYXX
CITATION
SSE
ID FETCH-LOGICAL-c360t-aec5f9d2a11fc4f22ef9cdb6b48aabfcb96e4bcb5b2ac9c28d0ad6f3920bdebf3
IEDL.DBID AIKHN
ISSN 1569-8432
IngestDate Wed Aug 27 01:30:47 EDT 2025
Thu Aug 21 00:13:39 EDT 2025
Sat Aug 30 17:13:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Depth prior
Depth regularization
3D reconstruction
Geometric anchors
3D gaussian splatting
Novel view synthesis
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c360t-aec5f9d2a11fc4f22ef9cdb6b48aabfcb96e4bcb5b2ac9c28d0ad6f3920bdebf3
ORCID 0009-0006-1071-2636
0000-0002-0956-0421
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1569843225003772
ParticipantIDs doaj_primary_oai_doaj_org_article_f071444b4ad94f0a8ad22f3288b9df41
crossref_primary_10_1016_j_jag_2025_104730
elsevier_sciencedirect_doi_10_1016_j_jag_2025_104730
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Xue, Chen, Wan, Huang, Yu, Li, Bao (b0150) 2019
Xu, Tao (b0145) 2020
Barron, Mildenhall, Verbin, Srinivasan, Hedman (b0005) 2023
Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H., 2022. TensoRF: Tensorial Radiance Fields, in: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (Eds.), Computer Vision – ECCV 2022, Lecture Notes in Computer Science. Springer Nature Switzerland, Cham, pp. 333–350. DOI: 10.1007/978-3-031-19824-3_20.
Hess, G., Lindström, C., Fatemi, M., Petersson, C., Svensson, L., 2025. SplatAD: Real-Time Lidar and Camera Rendering with 3D Gaussian Splatting for Autonomous Driving. DOI: 10.48550/arXiv.2411.16816.
Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng (b0095) 2022; 65
Cui, J., Cao, J., Zhao, F., He, Z., Chen, Y., Zhong, Y., Xu, L., Shi, Y., Zhang, Y., Yu, J., 2024. LetsGo: Large-Scale Garage Modeling and Rendering via LiDAR-Assisted Gaussian Primitives.
Rematas, Liu, Srinivasan, Barron, Tagliasacchi, Funkhouser, Ferrari (b0110) 2022
Barron, Mildenhall, Verbin, Srinivasan, Hedman (b0010) 2022
Müller, Evans, Schied, Keller (b0100) 2022; 41
Xiong (b0140) 2024
Wei, Yan, Xie, Qiu, Qiu, Wu, Zhao, Hu, Huang (b0130) 2024; 208
Schops, Schonberger, Galliani, Sattler, Schindler, Pollefeys, Geiger (b0120) 2017
Botsch, M., Hornung, A., Zwicker, M., Kobbelt, L., 2005. High-quality surface splatting on today’s GPUs, in: Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, 2005. IEEE, pp. 17–141.
Zhu, Z., Fan, Z., Jiang, Y., Wang, Z., 2024. FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting.
Wang, Chen, Cui, Qin, Lu, Yu, Zhao, Dong, Zhu, Trigoni (b0125) 2021
Wei, Liu, Rao, Zhao, Lu, Zhou (b0135) 2021
Garbin, Kowalski, Johnson, Shotton, Valentin (b0045) 2021
Lee, J.W., Lim, H., Yang, S., Choi, J., 2025. Micro-splatting: Maximizing Isotropic Constraints for Refined Optimization in 3D Gaussian Splatting. DOI: 10.48550/arXiv.2504.05740.
Zhang, Yan, Wei, Xie, Wang, Wang (b0195) 2024; 62
Kerbl, Kopanas, Leimkühler, Drettakis (b0060) 2023; 42
Neff, Stadlbauer, Parger, Kurz, Mueller, Chaitanya, Kaplanyan, Steinberger (b0105) 2021; 40
Liu, Y., Luo, C., Mao, Z., Peng, J., Zhang, Z., 2025. CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes. DOI: 10.48550/arXiv.2411.00771.
Zhang, K., Riegler, G., Snavely, N., Koltun, V., 2020. NeRF++: Analyzing and Improving Neural Radiance Fields.
Li, Z., Zhang, Y., Wu, C., Zhu, J., Zhang, L., 2024. HO-Gaussian: Hybrid Optimization of 3D Gaussian Splatting for Urban Scenes. DOI: 10.48550/arXiv.2403.20032.
Schönberger, J.L., Frahm, J.-M., 2016. Structure-from-Motion Revisited, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4104–4113. DOI: 10.1109/CVPR.2016.445.
Zhang, Zhan, Xu, Lu, Xing (b0185) 2024
Luo, Guan, Ju, Huang, Luo (b0085) 2019
Jiang, J., Gu, C., Chen, Y., Zhang, L., 2025. GS-LiDAR: Generating Realistic LiDAR Point Clouds with Panoramic Gaussian Splatting. DOI: 10.48550/arXiv.2501.13971.
Li, Y., Lyu, C., Di, Y., Zhai, G., Lee, G.H., Tombari, F., 2024. GeoGaussian: Geometry-aware Gaussian Splatting for Scene Rendering.
Deng, He, Ye, Duinkharjav, Chakravarthula, Yang, Sun (b0040) 2022; 28
Yu, Chen, Huang, Sattler, Geiger (b0175) 2024
Chen, Han, Xu, Su (b0025) 2019
Deng, Liu, Zhu, Ramanan (b0035) 2022
Yan, Low, Chen, Lee (b0160) 2024
Yifan, Serena, Wu, Öztireli, Sorkine-Hornung (b0170) 2019; 38
Mildenhall, Srinivasan, Ortiz-Cayon, Kalantari, Ramamoorthi, Ng, Kar (b0090) 2019; 38
Yu, Zhongrui, Wang, Haoran, Yang, J., Wang, Hanzhang, Xie, Z., Cai, Y., Cao, J., Ji, Z., Sun, M., 2024. SGD: Street View Synthesis with Gaussian Splatting and Diffusion Prior.
Yan, Qu, Xu, Zhao, Wang, Wang, Li (b0155) 2024
Zwicker, M., Pfister, H., Van Baar, J., Gross, M., 2001. EWA volume splatting, in: Proceedings Visualization, 2001. VIS’01. IEEE, pp. 29–538.
Yao, Luo, Li, Fang, Quan (b0165) 2018
Schops (10.1016/j.jag.2025.104730_b0120) 2017
Yifan (10.1016/j.jag.2025.104730_b0170) 2019; 38
Yu (10.1016/j.jag.2025.104730_b0175) 2024
Zhang (10.1016/j.jag.2025.104730_b0195) 2024; 62
10.1016/j.jag.2025.104730_b0050
10.1016/j.jag.2025.104730_b0075
10.1016/j.jag.2025.104730_b0030
Xue (10.1016/j.jag.2025.104730_b0150) 2019
10.1016/j.jag.2025.104730_b0190
Kerbl (10.1016/j.jag.2025.104730_b0060) 2023; 42
10.1016/j.jag.2025.104730_b0070
10.1016/j.jag.2025.104730_b0015
Chen (10.1016/j.jag.2025.104730_b0025) 2019
10.1016/j.jag.2025.104730_b0115
Yan (10.1016/j.jag.2025.104730_b0160) 2024
Deng (10.1016/j.jag.2025.104730_b0040) 2022; 28
10.1016/j.jag.2025.104730_b0055
Barron (10.1016/j.jag.2025.104730_b0010) 2022
Luo (10.1016/j.jag.2025.104730_b0085) 2019
Yan (10.1016/j.jag.2025.104730_b0155) 2024
Mildenhall (10.1016/j.jag.2025.104730_b0095) 2022; 65
Xiong (10.1016/j.jag.2025.104730_b0140) 2024
Xu (10.1016/j.jag.2025.104730_b0145) 2020
Wang (10.1016/j.jag.2025.104730_b0125) 2021
Wei (10.1016/j.jag.2025.104730_b0135) 2021
Zhang (10.1016/j.jag.2025.104730_b0185) 2024
Deng (10.1016/j.jag.2025.104730_b0035) 2022
10.1016/j.jag.2025.104730_b0020
10.1016/j.jag.2025.104730_b0080
Barron (10.1016/j.jag.2025.104730_b0005) 2023
10.1016/j.jag.2025.104730_b0180
Rematas (10.1016/j.jag.2025.104730_b0110) 2022
Mildenhall (10.1016/j.jag.2025.104730_b0090) 2019; 38
Garbin (10.1016/j.jag.2025.104730_b0045) 2021
10.1016/j.jag.2025.104730_b0065
Neff (10.1016/j.jag.2025.104730_b0105) 2021; 40
Müller (10.1016/j.jag.2025.104730_b0100) 2022; 41
Wei (10.1016/j.jag.2025.104730_b0130) 2024; 208
10.1016/j.jag.2025.104730_b0200
Yao (10.1016/j.jag.2025.104730_b0165) 2018
10.1016/j.jag.2025.104730_b0205
References_xml – start-page: 1538
  year: 2019
  end-page: 1547
  ident: b0025
  article-title: Point-based multi-view stereo network, in
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– reference: Yu, Zhongrui, Wang, Haoran, Yang, J., Wang, Hanzhang, Xie, Z., Cai, Y., Cao, J., Ji, Z., Sun, M., 2024. SGD: Street View Synthesis with Gaussian Splatting and Diffusion Prior.
– reference: Cui, J., Cao, J., Zhao, F., He, Z., Chen, Y., Zhong, Y., Xu, L., Shi, Y., Zhang, Y., Yu, J., 2024. LetsGo: Large-Scale Garage Modeling and Rendering via LiDAR-Assisted Gaussian Primitives.
– start-page: 12882
  year: 2022
  end-page: 12891
  ident: b0035
  article-title: Depth-supervised nerf: fewer views and faster training for free, in
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 19595
  year: 2024
  end-page: 19604
  ident: b0155
  article-title: Gs-slam: Dense visual slam with 3d gaussian splatting
  publication-title: In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 21424
  year: 2024
  end-page: 21433
  ident: b0185
  article-title: Fregs: 3d gaussian splatting with progressive frequency regularization
  publication-title: In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– reference: Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H., 2022. TensoRF: Tensorial Radiance Fields, in: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (Eds.), Computer Vision – ECCV 2022, Lecture Notes in Computer Science. Springer Nature Switzerland, Cham, pp. 333–350. DOI: 10.1007/978-3-031-19824-3_20.
– volume: 62
  start-page: 1
  year: 2024
  end-page: 15
  ident: b0195
  article-title: Micro-Structures Graph-based Point Cloud Registration for Balancing Efficiency and Accuracy
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 14346
  year: 2021
  end-page: 14355
  ident: b0045
  article-title: Fastnerf: High-fidelity neural rendering at 200fps
  publication-title: In: Proceedings of the IEEE/CVF International Conference on Computer Vision
– reference: Li, Z., Zhang, Y., Wu, C., Zhu, J., Zhang, L., 2024. HO-Gaussian: Hybrid Optimization of 3D Gaussian Splatting for Urban Scenes. DOI: 10.48550/arXiv.2403.20032.
– start-page: 12516
  year: 2020
  end-page: 12523
  ident: b0145
  article-title: Planar prior assisted patchmatch multi-view stereo, in
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 38
  start-page: 1
  year: 2019
  end-page: 14
  ident: b0090
  article-title: Local light field fusion: practical view synthesis with prescriptive sampling guidelines
  publication-title: ACM Trans. Graph.
– reference: Schönberger, J.L., Frahm, J.-M., 2016. Structure-from-Motion Revisited, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4104–4113. DOI: 10.1109/CVPR.2016.445.
– start-page: 16004
  year: 2021
  end-page: 16013
  ident: b0125
  publication-title: P2-Net: Joint Description and Detection of Local Features for Pixel and Point Matching, in
– volume: 38
  start-page: 1
  year: 2019
  end-page: 14
  ident: b0170
  article-title: Differentiable surface splatting for point-based geometry processing
  publication-title: ACM Trans. Graph.
– reference: Zwicker, M., Pfister, H., Van Baar, J., Gross, M., 2001. EWA volume splatting, in: Proceedings Visualization, 2001. VIS’01. IEEE, pp. 29–538.
– reference: Liu, Y., Luo, C., Mao, Z., Peng, J., Zhang, Z., 2025. CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes. DOI: 10.48550/arXiv.2411.00771.
– start-page: 4312
  year: 2019
  end-page: 4321
  ident: b0150
  article-title: Mvscrf: Learning multi-view stereo with conditional random fields
  publication-title: In: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 40
  start-page: 45
  year: 2021
  end-page: 59
  ident: b0105
  article-title: DONeRF: Towards Real‐Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks
  publication-title: Comput. Graphics Forum
– volume: 41
  start-page: 1
  year: 2022
  end-page: 15
  ident: b0100
  article-title: Instant neural graphics primitives with a multiresolution hash encoding
  publication-title: ACM Trans. Graph.
– volume: 208
  start-page: 296
  year: 2024
  end-page: 307
  ident: b0130
  article-title: LiDeNeRF: Neural radiance field reconstruction with depth prior provided by LiDAR point cloud
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 12932
  year: 2022
  end-page: 12942
  ident: b0110
  article-title: Urban radiance fields
  publication-title: In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 28
  start-page: 3854
  year: 2022
  end-page: 3864
  ident: b0040
  article-title: Fov-nerf: Foveated neural radiance fields for virtual reality
  publication-title: IEEE Trans. Vis. Comput. Graph.
– reference: Hess, G., Lindström, C., Fatemi, M., Petersson, C., Svensson, L., 2025. SplatAD: Real-Time Lidar and Camera Rendering with 3D Gaussian Splatting for Autonomous Driving. DOI: 10.48550/arXiv.2411.16816.
– reference: Botsch, M., Hornung, A., Zwicker, M., Kobbelt, L., 2005. High-quality surface splatting on today’s GPUs, in: Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, 2005. IEEE, pp. 17–141.
– reference: Jiang, J., Gu, C., Chen, Y., Zhang, L., 2025. GS-LiDAR: Generating Realistic LiDAR Point Clouds with Panoramic Gaussian Splatting. DOI: 10.48550/arXiv.2501.13971.
– reference: Li, Y., Lyu, C., Di, Y., Zhai, G., Lee, G.H., Tombari, F., 2024. GeoGaussian: Geometry-aware Gaussian Splatting for Scene Rendering.
– year: 2024
  ident: b0140
  article-title: SparseGS: Real-time 360° sparse view synthesis using Gaussian splatting (Master’s Thesis)
– start-page: 19697
  year: 2023
  end-page: 19705
  ident: b0005
  article-title: Zip-nerf: Anti-aliased grid-based neural radiance fields
  publication-title: In: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 767
  year: 2018
  end-page: 783
  ident: b0165
  article-title: Mvsnet: Depth inference for unstructured multi-view stereo
  publication-title: In: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 5470
  year: 2022
  end-page: 5479
  ident: b0010
  article-title: Mip-nerf 360: Unbounded anti-aliased neural radiance fields
  publication-title: In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 5610
  year: 2021
  end-page: 5619
  ident: b0135
  article-title: Nerfingmvs: Guided optimization of neural radiance fields for indoor multi-view stereo
  publication-title: In: Proceedings of the IEEE/CVF International Conference on Computer Vision
– reference: Zhang, K., Riegler, G., Snavely, N., Koltun, V., 2020. NeRF++: Analyzing and Improving Neural Radiance Fields.
– start-page: 3260
  year: 2017
  end-page: 3269
  ident: b0120
  article-title: A multi-view stereo benchmark with high-resolution images and multi-camera videos
  publication-title: In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 19447
  year: 2024
  end-page: 19456
  ident: b0175
  article-title: Mip-splatting: Alias-free 3d gaussian splatting, in
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 10452
  year: 2019
  end-page: 10461
  ident: b0085
  article-title: P-mvsnet: Learning patch-wise matching confidence aggregation for multi-view stereo
  publication-title: In: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 20923
  year: 2024
  end-page: 20931
  ident: b0160
  article-title: Multi-scale 3d gaussian splatting for anti-aliased rendering, in
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 42
  start-page: 139
  year: 2023
  ident: b0060
  article-title: 3D Gaussian Splatting for Real-Time Radiance Field Rendering
  publication-title: ACM Trans. Graph.
– reference: Lee, J.W., Lim, H., Yang, S., Choi, J., 2025. Micro-splatting: Maximizing Isotropic Constraints for Refined Optimization in 3D Gaussian Splatting. DOI: 10.48550/arXiv.2504.05740.
– volume: 65
  start-page: 99
  year: 2022
  end-page: 106
  ident: b0095
  article-title: NeRF: representing scenes as neural radiance fields for view synthesis
  publication-title: Commun. ACM
– reference: Zhu, Z., Fan, Z., Jiang, Y., Wang, Z., 2024. FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting.
– start-page: 19447
  year: 2024
  ident: 10.1016/j.jag.2025.104730_b0175
  article-title: Mip-splatting: Alias-free 3d gaussian splatting, in
– ident: 10.1016/j.jag.2025.104730_b0065
– ident: 10.1016/j.jag.2025.104730_b0075
  doi: 10.1007/978-3-031-73027-6_2
– start-page: 20923
  year: 2024
  ident: 10.1016/j.jag.2025.104730_b0160
  article-title: Multi-scale 3d gaussian splatting for anti-aliased rendering, in
– start-page: 21424
  year: 2024
  ident: 10.1016/j.jag.2025.104730_b0185
  article-title: Fregs: 3d gaussian splatting with progressive frequency regularization
– start-page: 14346
  year: 2021
  ident: 10.1016/j.jag.2025.104730_b0045
  article-title: Fastnerf: High-fidelity neural rendering at 200fps
– volume: 38
  start-page: 1
  year: 2019
  ident: 10.1016/j.jag.2025.104730_b0170
  article-title: Differentiable surface splatting for point-based geometry processing
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3355089.3356513
– start-page: 12882
  year: 2022
  ident: 10.1016/j.jag.2025.104730_b0035
  article-title: Depth-supervised nerf: fewer views and faster training for free, in
– start-page: 5610
  year: 2021
  ident: 10.1016/j.jag.2025.104730_b0135
  article-title: Nerfingmvs: Guided optimization of neural radiance fields for indoor multi-view stereo
– start-page: 16004
  year: 2021
  ident: 10.1016/j.jag.2025.104730_b0125
– volume: 28
  start-page: 3854
  year: 2022
  ident: 10.1016/j.jag.2025.104730_b0040
  article-title: Fov-nerf: Foveated neural radiance fields for virtual reality
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2022.3203102
– volume: 42
  start-page: 139
  year: 2023
  ident: 10.1016/j.jag.2025.104730_b0060
  article-title: 3D Gaussian Splatting for Real-Time Radiance Field Rendering
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3592433
– start-page: 1538
  year: 2019
  ident: 10.1016/j.jag.2025.104730_b0025
  article-title: Point-based multi-view stereo network, in
– ident: 10.1016/j.jag.2025.104730_b0015
  doi: 10.1109/PBG.2005.194059
– start-page: 12932
  year: 2022
  ident: 10.1016/j.jag.2025.104730_b0110
  article-title: Urban radiance fields
– start-page: 10452
  year: 2019
  ident: 10.1016/j.jag.2025.104730_b0085
  article-title: P-mvsnet: Learning patch-wise matching confidence aggregation for multi-view stereo
– start-page: 767
  year: 2018
  ident: 10.1016/j.jag.2025.104730_b0165
  article-title: Mvsnet: Depth inference for unstructured multi-view stereo
– year: 2024
  ident: 10.1016/j.jag.2025.104730_b0140
– ident: 10.1016/j.jag.2025.104730_b0205
– start-page: 3260
  year: 2017
  ident: 10.1016/j.jag.2025.104730_b0120
  article-title: A multi-view stereo benchmark with high-resolution images and multi-camera videos
– ident: 10.1016/j.jag.2025.104730_b0030
  doi: 10.1145/3687762
– start-page: 12516
  year: 2020
  ident: 10.1016/j.jag.2025.104730_b0145
  article-title: Planar prior assisted patchmatch multi-view stereo, in
– volume: 208
  start-page: 296
  year: 2024
  ident: 10.1016/j.jag.2025.104730_b0130
  article-title: LiDeNeRF: Neural radiance field reconstruction with depth prior provided by LiDAR point cloud
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2024.01.017
– start-page: 19697
  year: 2023
  ident: 10.1016/j.jag.2025.104730_b0005
  article-title: Zip-nerf: Anti-aliased grid-based neural radiance fields
– ident: 10.1016/j.jag.2025.104730_b0115
  doi: 10.1109/CVPR.2016.445
– ident: 10.1016/j.jag.2025.104730_b0070
  doi: 10.1007/978-3-031-72761-0_25
– volume: 38
  start-page: 1
  year: 2019
  ident: 10.1016/j.jag.2025.104730_b0090
  article-title: Local light field fusion: practical view synthesis with prescriptive sampling guidelines
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3306346.3322980
– ident: 10.1016/j.jag.2025.104730_b0190
– volume: 40
  start-page: 45
  year: 2021
  ident: 10.1016/j.jag.2025.104730_b0105
  article-title: DONeRF: Towards Real‐Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks
  publication-title: Comput. Graphics Forum
  doi: 10.1111/cgf.14340
– start-page: 4312
  year: 2019
  ident: 10.1016/j.jag.2025.104730_b0150
  article-title: Mvscrf: Learning multi-view stereo with conditional random fields
– ident: 10.1016/j.jag.2025.104730_b0200
  doi: 10.1007/978-3-031-72933-1_9
– ident: 10.1016/j.jag.2025.104730_b0055
– ident: 10.1016/j.jag.2025.104730_b0080
– start-page: 19595
  year: 2024
  ident: 10.1016/j.jag.2025.104730_b0155
  article-title: Gs-slam: Dense visual slam with 3d gaussian splatting
– ident: 10.1016/j.jag.2025.104730_b0180
  doi: 10.1109/WACV61041.2025.00375
– ident: 10.1016/j.jag.2025.104730_b0020
  doi: 10.1007/978-3-031-19824-3_20
– ident: 10.1016/j.jag.2025.104730_b0050
  doi: 10.1109/CVPR52734.2025.01119
– volume: 62
  start-page: 1
  year: 2024
  ident: 10.1016/j.jag.2025.104730_b0195
  article-title: Micro-Structures Graph-based Point Cloud Registration for Balancing Efficiency and Accuracy
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2024.3510781
– volume: 41
  start-page: 1
  year: 2022
  ident: 10.1016/j.jag.2025.104730_b0100
  article-title: Instant neural graphics primitives with a multiresolution hash encoding
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3528223.3530127
– volume: 65
  start-page: 99
  year: 2022
  ident: 10.1016/j.jag.2025.104730_b0095
  article-title: NeRF: representing scenes as neural radiance fields for view synthesis
  publication-title: Commun. ACM
  doi: 10.1145/3503250
– start-page: 5470
  year: 2022
  ident: 10.1016/j.jag.2025.104730_b0010
  article-title: Mip-nerf 360: Unbounded anti-aliased neural radiance fields
SSID ssj0017768
Score 2.4080234
Snippet •A new method combines LiDAR point clouds and multi-view images for 3D reconstruction.•Dense depth maps generated from LiDAR point clouds improve...
Multi-view reconstruction of real-world scenes has been an important and challenging task. Although methods based on Neural Radiance Fields (NeRF) and 3D...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 104730
SubjectTerms 3D gaussian splatting
3D reconstruction
Depth prior
Depth regularization
Geometric anchors
Novel view synthesis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8QwDI4QEwyIpzhe8sCEVJFL01zLBhwHQsACSGxVnAcc4nqIg3_AD8dJW-iCWJgqRZFTxW79WbY_M7bf504RDuVJHz0FKEblCRZKJC7VKeFz7jEOm7i-URf38vIhe-iM-go1YTU9cH1xhz502EiJUttCeq5zbYXwqchzLKyPLeuCfF4bTDX5g8GgboLLVJHkMhVtPjNWdj3rRwoMRRbym4NQ_tzxSJG4v-OYOs5mtMyWGpQIx_XbrbA5V62yxQ534CrbOPtpUaOtzTc6W2OfV-Ph-e0RHFfgIj8EbYB0CDH0_aaLBd9WZUHLGEFi4WVs9Ru8TmkNzMv0w85AVxZi2WESsggwntAfaAaEdcFVT7F-AB7ddBImcxnwgTWLgP06ux-d3Z1eJM2shcSkir8n2pnMF1boft8b6YVwvjAWFcpca_SGFOgkGsxQaFMYkVuurfKErjhahz7dYPPVtHKbDEyg_DJqQE8hjXFYIAmwVnjDrePYYwftfZevNaVG2daaPZeknDIop6yV02MnQSPfGwMbdlwgGykbGyn_spEek60-ywZY1ICBRI1_P3vrP87eZgtBZF0zuMPmSc1ul3DMO-5Fk_0CTCXzfw
  priority: 102
  providerName: Directory of Open Access Journals
Title LiDGS: An efficient 3D reconstruction framework integrating lidar point clouds and multi-view images for enhanced geometric fidelity
URI https://dx.doi.org/10.1016/j.jag.2025.104730
https://doaj.org/article/f071444b4ad94f0a8ad22f3288b9df41
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXOih4lHULWU1B06VonUcrxP3tiyPLaWoKkXiFvm5DYJkxdJ_0B_O2EmW7aGXnqJYYyfyTMbjzDefCTlOqRMYh9Ik1R43KEYUiZaCJS5TGcbn1Ot42MS3azG75Zd347sNMu1rYQKssvP9rU-P3rprGXWzOVpU1egGdx6y4MEgA4lKjn54i2VSoGlvTb58nV2vkgl53lbEoXwSOvTJzQjzuldz3CWycUh25gELvbY8RRb_tVVqbeU53yFvu5ARJu1b7ZINV--RN2tEgnvk4Oy1Xg1Fuw92uU_-XFWnFzefYVKDi2QRKADZKcR98Io7FnwP0YKePgKHhYfKqidYNNgG5qH5bZegagsRg5iElAJUj-iOloCBL7j6VwQTwNw1j-GYLgM-UGhhlP-O3J6f_ZzOku7ghcRkgj4nypmxl5apNPWGe8acl8ZqoXmhlPYGtem4NnqsmTLSsMJSZYXHUItq67TPDshm3dTuPQET-L-MyPHKuDFOS40DWMu8odZRPSCf-vkuFy2_RtkDz-5LVE4ZlFO2yhmQk6CRlWCgxo4NzdO87Gyj9KEki3PNlZXcU1Uoy5jPWFFoaT1PB4T3-iz_sjQcqvr3sz_8X7dDsh3uWsjgR7KJinVHGMY86yGa6fTH1fdhZ67D-DvgBcDw9w8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCaK9LDtMGzdimVPHnYaYESW5VdvWR9L1zSXtkBvgp6pi9YOmu4f9IeP8iPLDrvsZECmZUOkKRL8-Anga8xcRnEoi2LtKUExWRHpMuORS1RC8Tnzuj1s4nyRza7Ez-v0egcOh16YAKvsfX_n01tv3Y9M-tWcrKpqckGZR1mIYJCBRCUnP7wb2KnSEexOT89mi00xIc-7jjiSj8IDQ3GzhXndqiVliTwNxc48YKG3tqeWxX9rl9raeU5ewcs-ZMRp91WvYcfVe_Bii0hwD_aP__SrkWj_w67fwNO8OvpxcYDTGl1LFkECmBxhmwdvuGPRDxAtHOgjaFq8q6x6wFVDY2juml92jaq22GIQo1BSwOqe3NEaKfBFV9-0YAJcuuY-HNNl0AcKLYry38LVyfHl4SzqD16ITJKxx0g5k_rSchXH3gjPufOlsTrTolBKe0PadEIbnWquTGl4YZmymadQi2nrtE_2YVQ3tXsHaAL_l8lyunJhjNOlpgms5d4w65gew7dhveWq49eQA_DsVpJyZFCO7JQzhu9BIxvBQI3dDjQPS9nbhvShJUsILZQthWeqUJZzn_Ci0KX1Ih6DGPQp_7I0mqr697vf_99jX-DZ7PJ8Lueni7MP8Dzc6eCDH2FESnafKKR51J97k_0N20H3aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LiDGS%3A+An+efficient+3D+reconstruction+framework+integrating+lidar+point+clouds+and+multi-view+images+for+enhanced+geometric+fidelity&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Yan%2C+Li&rft.au=Song%2C+Jiang&rft.au=Xie%2C+Hong&rft.au=Wei%2C+Pengcheng&rft.date=2025-08-01&rft.issn=1569-8432&rft.volume=142&rft.spage=104730&rft_id=info:doi/10.1016%2Fj.jag.2025.104730&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jag_2025_104730
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon